• Aucun résultat trouvé

Comments on Beam-foil Spectroscopy

N/A
N/A
Protected

Academic year: 2021

Partager "Comments on Beam-foil Spectroscopy"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: jpa-00218403

https://hal.archives-ouvertes.fr/jpa-00218403

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Comments on Beam-foil Spectroscopy

S. Bashkin

To cite this version:

S. Bashkin. Comments on Beam-foil Spectroscopy. Journal de Physique Colloques, 1979, 40 (C1),

pp.C1-125-C1-138. �10.1051/jphyscol:1979123�. �jpa-00218403�

(2)

JOURNAL DE PHYSIQUE

Colloque

C1,

supplkment au n " 2, Tome 40, fkvrier

1979,

page

C1-125

Comments on Beam-fotl Spectroscopy

S. Bashkin*

Department o f Physics, The U n i v e r s i t y of Arizona, Tucson, Arizona 85721

A b s t r a c t

I' gPve a sununary o f t h e p r i n c i p a l advances i n beam-foil spectroscopy.

which have been made between t h e b i r t h o f t h i s technique and t h e present. I n a d d i t i o n , I pay p a r t i c u l a r a t t e n t i o n t o t h e i n t e r p r e t a t i o n o f data on t h e time- dependence of l i n e i n t e n s i t i e s , and argue t h a t t h e main cause o f c u r v a t u r e i n such data i s blends, r a t h e r than cascades.

.Resume

Je p&sente un somnaire des p r i n c i p a u x progres de l a Spectroscopie faisceau-lame depuis l a naissance de c e t t e technique. En o u t r e , j e p r e t e une a t t e n t i o n p a r t i c u l i e r e

3

l ' i n t e r p r e t a t i o n des donnees s u r l a depondance temporelle des i n t e n s i t e s des r a i e s , e t j'avance que l a cause l a p l u s importante de l a courbure de ces d e c l i n s r e s i d e dans l e m6lange de r a i e s p l u t 6 t que dans l e s cascades.

Some f i f t e e n years have passed s i n c e t h e modern b e a m f o i l method was i n t r o d u c e d 11-31 and t h e present conference o f f e r s a good o p p o r t u n i t y t o make some general remarks concerning t h e development i n t h i s f i e l d . I t w i l l be remembered t h a t t h e p r i n c i p a l , o r i g i n a l purpose o f b e a m f o i 1 spectroscopy was t o p e r m i t the measurement o f t h e m e a n l i v e s o f e x c i t e d e l e c t r o n i c s t a t e s 121. That purpose remains today as tRe s t n g l e most i m p o r t a n t a p p l i c a t i o n o f t h e beam- f o i l l i g h t source. I f t h e r e i s one t h i n g t h a t i s c l e a r from t h e p a s t f i f t e e n years, i t i s t h a t t h e r e i s a l o t o f d i s s a t i s f a c t i o n w i t h t h e l i f e t i m e deter- minations 14-71. Not o n l y can one f i n d numerous

*

Supported i n p a r t by NSF and ONR

c r i t i c i s m s of i n d i v i d u a l measurements, t h e very technique has been questioned as a way o f g e t t i n g a t these i n t e r e s t i n g numbers. That t h i s t o p i c i s s t i 11 o f major i n t e r e s t i s evidenced by t h e emphasis i n t h e program o f t h e present conference on ways o f i n - t e r p r e t i n g t h e l i f e t i m e data so as t o o b t a i n more be1 i e v a b l e numbers than a simp1 e a n a l y s i s can pro- vide. Those o f you who have read my own papers [8,9]

on t h e s u b j e c t know t h a t my p o i n t o f view i s some- what unorthodox; I s h a l l t r y t o e x p l a i n today why i t i s t h a t I adopt my p a r t i c u l a r p o s i t i o n .

To add substance t o t h e controversy concerning 1 if e t i m e measurements, I r e f e r t o Fig. 1, where I p l o t t h e o s c i l l a t o r s t r e n g t h as a f u n c t i o n o f r e - c i p r o c a l n u c l e a r charge f o r a t r a n s i t i o n i n t h e ZnI

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1979123

(3)

C1-126 JOURNAL DE PHYSIQUE

C widespread use. Other, rat'her s i m i 1 a r approaches by

L

P

20- Hay [20], B e r g k v i s t [21], t h e Lyon group [22,23] and

!i'

U) THEORY --o

o t h e r s 1241 have a l s o been d e s c r i b e d i n t h e l i t e r a -

b

-

-

0

- ! ? .*

-

0 t u r e . W h i l e t h e s e methods have been h e l p f u l i n r e -

g

1.0- EXPT. -+ $

d u c i n g t h e l i n e w i d t h t o 1 o r 2

A

a t 5000

A,

t h e

F i g . 1 .

6 g

I - ' pol**

La

t m n b i t i o n 4b2

'so

- 4b4p 1

P

dann

la

ntquence ~ o C L e c t h o n i q u e de ZnI.

6 -

"6

1-I

don t h e t z a n a L t i o n 46'

'so

- 4 . 3 4 ~ 1 Po i n Zhe Zn? DoeLecahonic bequence.

by S t o n e r and L e a v i t t

[la].

T h e i r r e f o c u s i n g

[ l a ]

and i n t e n s i t y - e n h a n c e m e n t [19] t e c h n i q u e s a r e now i n 3.0-

i s o e l e c t r o n i c sequence [lo-161. The t h r e e curves w h i c h a r e shown r e p r e s e n t v a r i o u s c a l c u l a t i o n s

[ l o -

121, w h i l e t h e p o i n t s t h a t l i e w e l l below t h o s e curves r e p r e s e n t d i f f e r e n t measurements [I 2- 153.

The d i s c r e p a n c y between t h e measured and c a l c u l a t e d v a l u e s i s u n s a t i ' s f a c t o r y . As l o n g as such d i s c r e p - a n c i e s p e r s i s t , i t i s no wonder t h a t use o f t h e beam f o i l s o u r c e f o r making t h e measurements i s suspect.

O f course, as o f t h e p r e s e n t time, t h e r e i s n o a l - t e r n a t i v e t o t h e b e a m f o i l method, so i t i s espec- i a l l y i m p o r t a n t t h a t we t r y t o u n d e r s t a n d t h e t r o u b l e s and t a k e s t e p s t o c o r r e c t them.

C l e a r l y t h e l i f e t i m e experiments cannot be done u n l e s s one has a l s o made a s p e c t r a l decomposition o f t h e l i g h t . Indeed, t h e s p e c t r o s c o p y remains as t h e fundamental o p e r a t i o n i n making use o f t h e beam-foi 1 l i g h t . Now i t was u n d e r s t o o d f r o m t h e f i r s t [2] t h a t the s p e c t r o s c o p y w o u l d s u f f e r f r o m t h e l i m i t a t i o n ' t h a t t h e b a p p l e r w i d t h o f t h e s p e c t r a l l i n e s w o u l d be s u b s t a n t i a l . I n f a c t , l i n e w i d t h s o f 10

A

o r more were n o t uncommon 1171. The f i r s t s u c c e s s f u l a t t a c k on t h e problem o f r e d u c i n g t h e l i n e w i d t h was made

+++I+

+

4

+

' Zn lsoelectronic

4s2 'so

-

454p 'P:

Sequence

f a c t i s t h a t such w i d t h s a r e s t i l l t o o g r e a t t o p e r m i t p r e c i s i o n s p e c t r o s c o p i c experiments. I t i s my view, on w h i c h I s h a l l expand i n a few moments, t h a t t h e l i f e t i m e d i f f i c u l t i e s o r i g i n a t e p r i m a r i l y i n t h e p o o r spectroscopy.

W h i l e i t seems i m p o s s i b l e t o i s o l a t e t r u l y narrow s p e c t r a l l i n e s , t h e r e have been a t t e m p t s t o over- come c e r t a i n aspects o f t h e l i n e w i d t h d i f f i c u l t i e s . One t h i n k s , f o r example, o f t h e quantum-beat exper- iments [25,26!. which e f f e c t i v e l y i s o l a t e p a i r s o f n e i g h b o r i n g s t a t e s , e n a b l i n g one t o f i n d t h e energy s e p a r a t i o n s o f f i n e - s t r u c t u r e and h y p e r f i n e - s t r u c - t u r e components [27-321. E q u a l l y i n t e r e s t i n g , such experiments have g i v e n some i n f o r m a t i o n on t h e n a t u r e o f t h e b e a m - f o i l i n t e r a c t i o n , a l t h o u g h t h a t i s s t i l l a m a t t e r o f c o n s i d e r a b l e c o n f u s i o n [33].

A n o t h e r approach, s t i l l n o t v e r y f r u i t f u l i n any g e n e r a l sense, i s t h e c r o s s i n g o f t h e i o n beam w i t h a l a s e r [34-421, f o r such a t e c h n i q u e o f f e r s t h e pos- s i b i l i t y o f g e n e r a t i n g narrow l i n e s o r a t l e a s t o f r e s t r i c t i n g t h e e x c i t a t i o n t o a s p e c i f i c l e v e l . The s m a l l d e n s i t y o f a p p r o p r i a t e t a r g e t l e v e l s when t h e i n t e r e s t i s i n a non-metastable e x c i t e d l e v e l makes experiments o f t h i s k i n d e x t r e m e l y d i f f i c u l t . The same t h i n g can be s a i d o f t h e a p p l i c a t i o n o f e x t e r - n a l f i e l d s t o t h e beams. W h i l e a number o f papers have appeared where s t a t i c o r o s c i l l a t i n g f i e l d s have been imposed on t h e r a d i a t i n g l e v e l s [29,42-791, t h e f a c t i s t h a t work o f t h a t n a t u r e has been q u i t e l i m i t e d .

(4)

There a r e some ways, a l l r a t h e r obvious, r e a l l y , i n which t h e general beam-foil method has been ex- tended from t h e e a r l i e s t phases. These a r e s u b s t i - t u t i n g p h o t o - e l e c t r i c f o r photographic r e c o r d i n g 1801, e n l a r g i n g t h e range o f wavelengths s t u d i e d t o i n c l u d e e v e r y t h i n g from x-rays w i t h energies o f s e v e r a l keV 181-831 up t o l i n e s i n t h e near i n f r a r e d

[84], using p a r t i c l e energies as h i g h as 700 MeV [85], and g r e a t l y reducing t h e s h o r t e s t measurable l i f e t i m e s down t o a few picosec [86-901.

The v a r i a t i o n o f p a r t i c l e energy has perhaps been as u s e f u l as any o t h e r k i n d o f beam-foil develop- ment because i t has p e r m i t t e d t h r e e separate kinds o f experiments. One i s t h e o b s e r v a t i o n o f spectros- c o p i c behavior along .a

n

i s o e l e c t r o n i c sequence [91,92], t h e most extensive example being the move- ment o f t h e 2 P1/2,3/2 2 l e v e l s i n t h e L i I sequence and the 2 P l e v e l s i n the Be I 3 sequence a l l theway t o Kr, as Dr. D i e t r i c h w i l l describe l a t e r i n t h i s meeting [85]. Another i s the proper i d e n t i f i c a t i o n o f t h e i o n i z a t i o n stage t o which a s p e c t r a l 1 in e be-

longs. Although I have cautioned i n the p a s t [93]

t h a t t h e v a r i a t i o n o f l i n e i n t e n s i t y w i t h p a r t i c l e energy 1943 i s sometimes aninadequate t e s t o f t h e e m i t t e r ' s n e t charge, t h a t method does have diag- n o s t i c value. I'll r e t u r n t o t h i s i n j u s t a few moments. The t h i r d experiment a t h i g h energy takes advantage o f the f a c t t h a t h i g h p a r t i c l e energy gives r i s e t o ions o f h i g h n e t charge. For l e v e l s i n such ions, t h e decay r a t e s o f h i g h l y - forbidden op- t i c a l t r a n s i t i o n s o f t e n become r e a d i l y observable, and t h e l i t e r a t u r e a l r e a d y i n c l u d e s impressive data on magnetic d i p o l e , magnetic quadrupole, double e l e c t r i c - d i p o l e processes, and s p i n - f o r b i d d e n t r a n - s i ti o n s [i7,81,35-116:. S t i l l anot5cr o p p o r t u n i t y which e n e r g e t i c p a r t i c l e s p r o v i d e i s t h a t one can compare measured and c a l c u l a t e d values o f t h e Lamb S h i f t as a f u n c t i o n b o t h o f n u c l e a r charge and o f p r i n c i p a l quantum numbers. A t t h i s meeting we w i l l hear about such experiments from t h e Oxford, Argonne, and Berkeley Laboratories.

Fig. 2. Spe&e

d e a.

EnengLe ddu 6 a i s c u 464 MeV.

CJC bpec&um.

B u m

enengy 464 MeV.

(5)

c1-128 JOURNAL DE PHYSIQUE

L e t me g l v e an example o f t h e k i n d o f spectros- copy which has been made p o s s i b l e by t h e use o f p a r t i c l e energies i n r e g i o n o f hundreds of MeV.

F i g u r e 2 shows a spectrum of C r taken a t t h e Berke- l e y HILAC A c c e l e r a t o r 11161 w i t h a p a r t i c l e energy o f 464 MeV. T r a n s i t i o n s i n t h e L i - l i k e s t r u c t u r e are c l e a r l y present; what i s i n t e r e s t i n g i s t h a t these l i n e s had never b e f o r e been d e t e c t e d i n t h e labora- t o r y . U n f o r t u n a t e l y , i t i s probably a l s o c o r r e c t t o say t h a t they w i l l never be seen again, because these high-energy experiments a r e so expensive i n machine time t h a t t h e r e i s l i t t l e chance t o examine a p a r t i c u l a r system unless t h e r e i s a v e r y s p e c i a l i n t e r e s t associated w i t h i t . The Cr observations

4 9 1 MeV &''on 206pg/cm2 C

0 k C 5 + + L 1

1

c ni

% e E

f f i d a n , , ,

WAVELENGTH (

% 1

Fig. 3. Spe&e de Fe. Enekgie du ~ a i s c e a u 49

1

Mev Epahseuh de h e 206 ug/cm2.

Spec&wn

0 6

Fe. Beam e n a g y

497

MeV. Foil .thicknab 206 ug/cm2.

were made i n c i d e n t a l l y i n t h e course of o u r experi- ment on i r o n 11161 and we have no i n t e n t i o n o f try- i n g t o t a k e f u r t h e r data on C r .

The experiment on i r o n a t h i g h energy a l s o con- t a i n e d an unexpected r e s u l t . F i g u r e 3 shows p a r t of t h e spectrum taken w f t h i r o n a t an energy o f 491 MeV.

The L i - l i k e f e a t u r e a t 225 i s w e l l i s o l a t e d from i t s n e a r e s t neighbor, t h e He-1 i k e component a t 271

1.

I might say t h a t w h i l e t h e L i - l i k e s t r u c t u r e had been seen i n t h e s o l a r corona, the H e - l i k e f e a t u r e had n o t been detected p r e v i o u s l y . L e t me c a l l a t t e n - t i o n t o t h e f a c t t h a t t h e s p e c t r a l r e g i o n between those two l i n e s i s devoid o f any f e a t u r e o f i n t e r e s t . On t h e o t h e r hand, i f we l o o k a t F i g . 4, wesee t h a t

o m -

*

*Oo0-

P

a

i

1.00-

Si

-

ul e

8

a 1000-

500

-

491 MeV fi+"a,

c

slits

I

i

WAVELENGTH

[%

) 255.1

8

"%$"I

Fe

BXa

Fig. 4 . Spectke de Fe come powr F h .

3

m a i n avec t'Epaisbeuh de t a tame 40

p g / c m 2

.

5pec.h.m

0 6

Fe as doh F 4 . 3

buR w i t h

boil .tkicknab 40 ug/cm2.

t u

9

"

132.8

% .21

or&

2s2 'So-2s2,, IP;

Fe

Xxm

and 263.7

8

' 252'%-2s2py'

(6)

same s p e c t r a l r e g i o n observed w i t h t h e same p a r t i c l e c u l a r i n t e r p r e t a t i o n . U n f o r t u n a t e l y the l i t e r a t u r e energy, b u t we now f i n d t h a t t h e r e i s a new l i n e i n - contains a measurement o f t h e decay time o f t h i s t e r p o l a t e d between t h e H e - l i k e and L i - l i k e features. f e a t u r e , and t h e l i f e t i m e which i s deduced from The new l i n e o r i g i n a t e s i n a t r a n s i t i o n i n B e - l i k e those data i s a s c r i b e d t o a l e v e l i n F 111 [1181.

i r o n . The d i f f e r e n c e between Figs. 3 and 4 i s t h a t t h e f o i l used f o r t h e second spectrum had a t h i c k - ness o f o n l y 40 micrograms/cmL whereas t h e o r i g i n a l f i g u r e was o b t a i n e d w i t h a f o i l o f 206 micrograms/

cm2. By reducing t h e f o i l thickness, i t was p o s s i b l e t o emphasize l o w e r charge components i n t h e r a d i a t - i n g beam and i t was t h i s which p e r m i t t e d us t o see t h e B e - l i k e t r a n s i t i o n . However, what t h i s a l s o shows i s t h a t t h e b e a m - f o i l i n t e r a c t i o n cannot be restp1,cted t o a s u r f a c e phenomenon. C l e a r l y , t h e r e i s a t l e a s t some i n f l u e n c e o f t h e i n t e r n a l volume o f t h e f o i l , and t h i s behavior, which i s e s p e c i a l l y easy t o see i n t h e high-energy experiments whereone can go from equi 1 i b r i um t o non-equi 1 i b r i um charge d i s t r i b u t i o n s , must be taken i n t o c o n s i d e r a t i o n i n any model o f t h e b e a m f o i l process.

L e t me t u r n my a t t e n t i o n now t o t h e l i f e t i m e problem, where t h e r e a r e a t l e a s t t h r e e separate matters t o be considered. I s a i d a few moments ago t h a t I t h i n k a major source o f d i f f i c u l t y i n t h e

l i f e t i m e work l i e s i n t h e poor spectroscopy. L e t me g i v e an example. F i g u r e 5 shows two s p e c t r a r e c e n t l y obtained a t The U n i v e r s i t y o f Lund [117]. These are o f f l u o r i n e as seen a t 2MeV and 3 MeV, r e s p e c t i v e l y . What i s o f i n t e r e s t i s t h e s e t o f l i n e s , i n c l u d i n g t h e l i n e a t 3042

A ,

a t t r i b u t e d t o F 111. Now t h e energy v a r i a t i o n o f l i n e i n t e n s i t y makes i t q u i t e c l e a r t h a t t h e l i n e a t 3042

A

i s d i f f e r e n t from t h e o t h e r l i n e s . a t t r i b u t e d t o F 111. I n f a c t , comparison o f t h e data a t 2 MeV and 3 MeV s t r o n g l y suggests t h a t t h i s p a r t i c u l a r l i n e o r i g i n a t e s i n a t r a n s i - t i o n i n F I V . C o n s u l t a t i o n w i t h Palenius, who has a l o t o f unpublished data on F, supports t h i s p a r t i -

-

2 MeV F

I

F.ig.5.

SpecXteb de

F.

a ) Enmgie

du

6 a h c a z u

2

MeV. Rmahquez en w-

fieh

Les aaieb enttre 2960

et

3045 A, dont Leb 4 avec Le, h n g u w b L a peu6 coWLteb appahtAennent

a F

111.

bl

Enehgie du 5 a h c e a u

3

MeV. La dEpendance en tnehgie deb a e n s d & des

d e b

momhe que Le de- gtE d ' h n i b d o n at p b g m d p o w ta b o w c e d e

3042 que porn Leb d e b . SpecXta 05

F.

a1 Beam enehgy 2 MeV. Note

i n pmtipanticuecvr

Zhe fines b m e e n 2960 A and 3045 A, 06 wkich f i e 6ouh cclith bhohtebt wavdeng.th0 b d o n g

to

F

111.

b) Beam enehgy

3

MeV. The enehgy dependence 05

t h e Line ivttenbLtLeb b h o u thaX t h e o w e

0 6

i o n i z a t i o n doh Lhe

~ O U I L C C

06 3042

Lb g&a2eh than

6oa f i e o t h m .

(7)

c1-130 JOURNAL DE PHYSIQUE

Obviously, if t h e l i n e does indeed come from F I V , t h e r e i s no way i n which a comparison o f t h e theo- r e t i c a l and experimental values c o u l d be p h y s i c a l l y s i g n i f i c a n t f o r F 111. We see from t h i s example t h a t an a b s o l u t e l y e s s e n t i a l requirement o f l i f e t i m e de- t e r m i n a t i o n s i s t h a t one c a r r y o u t t h e spectroscopy over a wide enough energy range t h a t t h e i d e n t i f i - c a t i o n o f the t r a n s i t i o n be unambiguously estab- l i s h e d . Sometimes, o f course a p a r t i c u l a r experimen- t a l group faces l i m i t a t i o n s o f apparatus which make i t impossible f o r such observations t o be c a r r i e d o u t . I n such cases, i t seems t o me, the decay must be h e l d i n abeyance u n t i l , perhaps through c o l l a b o r a t i o n w i t h people i n another l a b o r - a t o r y , t h e l e v e l i d e n t i f i c a t i o n can be placed on a f i r m foundation. I n t h e present instance, i t m i g h t t u r n o u t t h a t t h e r e i s an a c c i d e n t a l b l e n d o f l i n e s from F I 1 1 and F I V a t t h e wavelength i n question.

That, however, would n e c e s s a r i l y g i v e a curved s e t o f decay data, and f u r t h e r i l l u s t r a t e s t h e need f o r improved spectroscopy i n making l i f e t i m e determina- t i o n s .

A second problem w i t h t h e l i f e t i m e measurements i s t h a t s i g n a l s a r e o f t e n weak and, e s p e c i a l l y i f a l i n e looks r e l a t i v e l y i s o l a t e d from any o t h e r l i n e s , i t i s common p r a c t i c e t o open t h e s l i t s o f t h e spec- trometer. A t t h e same time, t h i s increases t h e l e n g t h o f the beam which i s under observation.

Again, i t i s my f e e l i n g t h a t t h i s i s a poor proced- u r e and gives r i s e t o i n t r i n s i c a l l y poor r e s u l t s . The reason i s two-fold. I n t h e f i r s t place, t h e con- t r i b u t i o n o f background becomes r e l a t i v e l y more im- p o r t a n t as t h e s l i t s are opened. Moreover, one r a r e l y mpkes measurements on t h e background o r o f t h e spectrum as a f u n c t i o n o f downstream d i s t a n c e so t h a t t h e r e j a t i v e p r o p o r t i o n s o f signal-to-back- ground may change i n an unknown fashion as one looks a t l a t e r and l a t e r times. There i s , thus, no way i n

which measurements w i t h wide s l i t s can produce quan- t a t i v e l y s a t i s f a c t o r y data on l i f e t i m e s .

The second reason i s n i c e l y i l l u s t r a t e d by Fig. 6 which was k i n d l y provided by a group a t Stockholm [119]. F i g u r e 6 shows t h e 1 ig h t from n = 4 i n hydro- gen e x c i t e d by a s i n g l e f o i l , t h e t o p curve being obtained w i t h protons, t h e middle w i t h diatomic hydrogen ions, and the bottom w i t h t r i a t o m i c hydro- gen ions, a l l w i t h t h e same p a r t i c l e v e l o c i t y . The f a m i l i a r quantum-beat s t r u c t u r e i s apparent, espec- i a l l y i n t h e topmost curve. Two o t h e r i n t e r e s t i n g c h a r a c t e r i s t i c s appear. The f i r s t i s t h a t t h e r e i s no simple monotonic decay o f the l i g h t from n = 4, nor, of course, would t h e r e be from any o t h e r l e v e l i n hydrogen except p o s s i b l y n = 2 . Consequently, t h e a n a l y s i s o f t h i s decay curve i n terms o f a l i f e t i m e c l e a r l y i s n o t s u s c e p t i b l e t o a simple treatment i n terms o f an exponential o r a sum o f exponentials.

The p h y s i c a l phenomenon which i s i n v o l v e d here i s much more complicated and, as we a l l know, o r i g i - nates i n a r a t h e r s p e c i a l k i n d o f b l e n d i n g o f t r a n -

s i t i o n s from degenerate s t a t e s .

The second f e a t u r e i s t h a t t h e general behavior o f t h e decay i s q u i t e d i f f e r e n t depending on t h e i o n which i s used f o r t h e e x c i t a t i o n . Now i t i s ob- vious t h a t these various f e a t u r e s become washed o u t i f one looks a t a f i n i t e l e n g t h o f beam, and t h i s , I b e l i e v e , adds substance t o my c l a i m t h a t one can n o t g e t good l i f e t i m e determinations unless one ex- amines an almost i n f i n i t e s i m a l beam l e n g t h . I t i s simply n o t so t h a t t h e a l g e b r a i c expression which says t h a t t h e beam l e n g t h c o n t r i b u t e s o n l y a con- s t a n t h y p e r b o l i c m u l t i p l i c a t i v e term t o the expon- e n t i a l decay i s t h e way i n which n a t u r e behaves.

While everyone i s now w i l l i n g t o concede a f t e r t h e f a c t t h a t t h e case o f hydrogen i s s p e c i a l , i t i s my c o n t e n t i o n t h a t every o t h e r system demands t h a t i t be s t u d i e d i n i n f i n i t e s i m a l l e n g t h s o f beam. Other-

(8)

DETECTOR POSITION ( m m ) Fig. 6.

IntennME de

H6

%

pobXiofl de La Lame.

I&e.n&.dy 0 6 H6

%

bod? p06&0fl.

w i s e , t h e decay d a t a may conceal p h y s i c a l l y s i g n i - f i c a n t q u a n t l t i e s which would make t h e a n a l y s i s o f t h e decay c u r v e i n terms o f a l i f e t i m e v i r t u a l l y meaningless.

L e t me now g i v e some s p e c i f i c examples o f o t h e r problems w h i c h r i s e in i n t e r p r e t i n g decay curves.

F i g u r e 7 shows some decay d a t a t a k e n by L e a v i t t and m y s e l f f o r a t r a n s i t i o n i n B r

V I I

[120]. These d a t a a r e p r o b a b l y as good as any e v e r t a k e n on such a s u b j e c t . The r a n g e o f i n t e n s i t i e s i s a p p r o x i m a t e l y a f a c t o r o f 200, s o t h e decay was f o l l o w i d f o r n e a r l y f o u r mean 1 iv e s . One sees t h a t t h e t y p i c a l a n a l y s i s has been c a r r i e d o u t and assignments made t o t h e t h r e e d i f f e r e n t e x p o n e n t i a l s w h i c h a r e s a i d t o c o n t r i b u t e t o t h e o v e r a l l curve. F i g u r e 8 shows o s c i l l a t o r s t r e n g t h s as a f u n c t i o n o f r e c i p r o c a l

n u c l e a r charge f o r t h e t r a n s i t i o n i n q u e s t i o n . There a r e v a r i o u s c a l c u l a t i o n s [ I 2 1

1,

below w h i c h a r e e x p e r i m e n t a l p o i n t s from d i f f e r e n t sources [12- 15,122-1241. The p r e s e n t d a t a g i v e r i s e t o t h e p o i n t l a b e l l e d B and one sees t h a t t h i s number i s much c l o s e r t o t h e t h e o r e t i c a l c u r v e s than i t s p r e - decessor i n t h e l i t e r a t u r e . From t h i s and a l s o f r o m t h e q u a l i t y o f d a t a one m i g h t c o n c l u d e t h a t t h e p r e - s e n t measurement i s i n d e e d s a t i s f a c t o r y . On t h e o t h e r hand, t h e r e i s t h e p o i n t B ' , which i s deduced f r o m p r e c i s e l y t h e same d a t a as p o i n t B. The d i f f e r e n c e between B and B ' i s t h a t t h e l a t t e r i s based on a d i f f e r e n t k i n d o f a n a l y s i s . I n p a r t i c u l a r , t h e d a t a were d i f f e r e n t i a t e d . I n p r i n c i p l e , such d i f f e r e n t i a -

t i o n adds w e i g h t t o t h e t r a n s i t i o n p r o b a b i l i t y , b u t one a l s o knows t h a t d i f f e r e n t i a t i n g d a t a i t s e l f i n -

(9)

JOURNAL DE PHYSIQUE

DISTANCE DOWNSTREAM

Fig.7. Cornbe de dEchoibbance de La UranbLtLon 44 2 ~ 7 / 2 - 4 p 2 P o 3 / 2 danb L a hi?guence Cu 7 . La f d e a p p l h t i e n t 6 R'L v77.

2 2

Decay c w v e 06 Xhe Rhav~sLCian 46 S 7 1 2 - 4 p p o 3 1 2 i n t h e Cul bequence. The h e bdangb a21 & V11.

troduces a d d i t i o n a l u n c e r t a i n t y . I t i s f a r from a t e d n o t o n l y t h e l o w e s t e x c i t e d s t a t e t h e decay o f c l e a r t h a t d i f f e r e n t i a t i o n o f t h e data produces a which i s e x h i b i t e d i n Fig. 9 b u t a l s o o t h e r e x c i t e d m r e s a t i s f a c t o r y number than t h e o r d i n a r y treatment. s t a t e s a l l t h e way up t o t h e i o n i z a t i o n l i m i t . What I mean t o say i s t h a t when L e a v i t t and I cannot

come t o agreement between ourselves about o u r own data, i t i s h a r d l y s u r p r i s i n g t h a t people making separate measurements i n separate 1 a b o r a t o r i e s pub-

Cu lsoslectronic

1 is h numbers which disagree sometimes by 1 arge fac-

..

U-

u

t o r s . This s i t u a t i o n leads me t o t h e conclusion t h a t

/*-

i t i s n o t p o s s i b l e t o deduce r e l i a b l e l i f e t i m e n u m bers when t h e r e i s s u b s t a n t i a l c u r v a t u r e i n t h e

decay data, /

F i g u r e 9 shows a d i f f e r e n t s i t u a t i o n . This comes z /-

,'

? N o

'

0

5 n i i a

from t h e work c a r r i e d o u t a t Berkeley [ I 1 6 1 on

0 .01 02 D3 .04 .C6

t r a n s i t i o n s i n L i - 1 i k e i r o n . I p r e v i o u s l y showed I/=

t h e spectrum from which t h i s decay curve was obtain-

FQ.

- g.

2 2

ed; t h a t spestrum showed t h a t H e - l i k e i n n was a l s o

6 Vb

pow

in

.Ownbition lb S ~ / ~ - 4 p P 0 3 ~ -f.a bEquence AoUe&onique CuI.

produced i n t h i s work. Consequently, i t would n o t be 2

6 -

v b do& .the . k m h % n 46

s ~ ~

in

t h e ~ - ~ ~ ~ P ~ ~ ~ ~

s u r p r i s i n g t o f i n d t h a t i n L i - l i k e i r o n , we gener- CUI O o d e c t h o n i c

bequence.

(10)

account f o r t h e absence o f c u r v a t u r e as w e l l as f o r

DISTANCE (em) 491 MeV ~ e + " m q g / c m 2 C o r k . SOOIL slits

Fig.

9 .

Cowtbe de dEorrohbance de l a .txanbfion

2 2

24 S J / ~ - 2 p p 0 1 / 2

poun Fe avec

3

Uecthorts.

Decay ewve

06

the tuwaition

Zb 2

S ~ / ~ - Z P % ~ J / ~ doh

3

decfrton Fe.

Therefore i t would again n o t be s u r p r i s i n g t o f i n d c u r v a t u r e f o r t h i s decay because t h e l o w e s t e x c i t e d s t a t e i s i n v o l v e d , h i g h e r e x c i t e d s t a t e s a r e almost c e r t a i n l y generated, and those h i g h e r s t a t e s must decay f o r t h e most p a r t through t h e 2 P system o f 2 i n t e r e s t . Nonetheless, t h e d a t a are as exponential as one c o u l d ever hope t o f i n d , over an i n t e n s i t y range o f a f a c t o r o f 25. One must t h e r e f i r e ask why i t i s t h a t t h i s l o w - l y i n g s t a t e , and t h i s i s char- a c t e r i s t i c o f many decay measurements, should ex- h i b i t an exponential decay w h i l e h i g h - l y i n g s t a t e s almost w i t h o u t exception show curvature. The propon- ents o f cascade c b n t r i b u t i o n s t o decay curves must

i t s presence, p a r t i c u l a r l y when t h e absence i s sur- p r i s i n g , as i n thSs instance. It i s again my view t h a t t h e reason t h i s decay i s exponential w h i l e those from h i g h e r s t a t e s are n o t comes s i m p l y from the f a c t t h a t t h e y i e l d o f t h i s r a d i a t i o n i s over- whelming, whereas when one l o o k s a t t h e l o w e r y i e l d s

from t h e h i g h e r e x c i t e d s t a t e s , i t i s i n e v i t a b l e t h a t t h e background o r b l e n d i n g which i s i n t r o d u c e d

?!hen t h e s l i t s a r e opened i n t r o d u c e s non-physical c o n t r i b u t i o n s t o t h e decay curve and t h e r e f o r e one has curvature. Thus, I repeat t h a t t h e source o f c u r v a t u r e i s almost c e r t a i n l y n o t cascades b u t i s blending. Others have a l s o o c c a s i o n a l l y blamed b l e n d i n g f o r disputes over l i f e t i m e determinations [125,126].

714 Mev Kr on C Foil 600

I k

Q

51

t

l psec

H

I00 10 20 30

DISTANCE (mm)

F i g .

10. Cowbes de dEchoOdance des

Z u n h i t i a r t s

2 b 2 s 1 / ~ - 2 ~ b 0 ~ / ~ , 3 / 2 pow

Ktc

avec

3 2

Uecthorts.

2

Decay c a v e s

06

f i e

;Dzan.b&v~ 20

S

J 1 2 - 2 p

doh

3

e.tec.&on

DL. 312

(11)

C1-134 JOURNAL DE PHYSIQUE

As a f i n a l n o t e on t h i s s u b j e c t , I show F i g . 10 where we see decay curves f r o m t h e Pj12, 2 2

P1 /2 ' n = 2 l e v e l s i n L i - l i k e Kr. F i g u r e 10 comes from work conducted by D i e t r i c h and c o l l a b o r a t o r s and w i 11 be d i s c u s s e d by O i e t r i c h [85] a t t h i s conference. A l l I w i s h t o p o i n t o u t i s t h a t t h e two curves a r e q u i t e e x p o n e n t i a l e x c e p t t h a t t h e decay o f t h e 'plI2 l e v e l shows an anomalous b e h a v i o r n e a r t h e f o i l . I f one wishes t o a s c r i b e t h i s c u r v a t u r e t o t h e e f f e c t s o f cascades one must t h e n a l s o a c c o u n t f o r t h e f a c t t h a t t h e decay o f t h e companion d o u b l e t component shows no such i n f l u e n c e . I b e l i e v e t h a t i t i s n o t p o s s i b l e t o f i n d a l e v e l scheme w h i c h w o u l d p e r m i t cascades t o one component o f t h i s d o u b l e t system and

n o t t o t h e o t h e r . I t seems t o me t h a t t h e most

p l a u s i b l e e x p l a n a t i o n o f t h i s e f f e c t i s t h a t t h e one decay was more a f f e c t e d by b l e n d s f r o m background and perhaps a n o t h e r chance l i n e i n t h e neighborhood t h a n t h e o t h e r .

I t would, I t h i n k , be h e l p f u l t o t h e s u b j e c t o f l i f e t i m e d e t e r m i n a t i o n s if t h o s e o f my c o l l e a g u e s , many o f them i n t h i s room, who s u p p o r t t h e cascade i n t e r p r e t a t i o n o f c u r v a t u r e i n decay d a t a were t o address themselves t o t h e examples I have g i v e n and show how t h e cascade c o n t r i b u t i o n s c o u l d g i v e r i s e t o t h e o b s e r v a t i o n s . F a i l i n g t h a t , I b e l i e v e i t i s f a i r t o c o n c l u d e t h a t o u r e n e r g i e s s h o u l d be d e v o t e d n o t t o t h e a l g e b r a i c a n a l y s i s o f cascades b u t t o im- provements i n t h e s p e c t r o s c o p y i f we a r e t o o b t a i n r e l i a b l e 1 if e t i m e numbers.

BIBLIOGRAPHIE

Kay L., Phys. L e t t .

5

(1963) 36.

Bashkin S., Nucl. I n s t r . Meth.

28

(1964) 28.

Bashkin S., Meinel A. B., Astrophys. J.

138

(1964) 413.

Younger, S. M. and Wiese, W . L., Phys. Rev. A (1978) 1944.

L i v i n g s t o n A. E, B a u d i n e t - R o b i n e t T.

,

G a r n i r H. P., Dumont, P. D. J. Opt. Soc. Am.

66

(1967) 1393.

I r w i n D. J.G., Kernahan J. A., P i n n i n g t o n E. H., L i v i n g s t o n A. E., J. Opt. Soc. Am.

66

(1966) 1396.

I r w i n D. J.G. and L i v i n g s t o n A. E., Can. J. Phys.

51

(1973) 848.

B a s h k i n S., Prog. i n Opt. X I 1 (1974) 289.

B a s h k i n S.

,

Beam-Foil Spectroscopy, Eds. S e l l i n I. A. and Pegg D. J., Plenum Press (New York, 1976) 129.

Z i l i t i s , V. A., Opt. Spectrosc.

25

(1968) 361.

H e l l i w e l l T. PI., Pilys. Rev.

1353

(1964) 325.

P i n n i n g t o n E. ti., Kernahan J. A., D o n n e l l y K. F., J. Opt. Soc. Am.

67

(1977) 162.

Anderson T., Jensen K. S., S l r e n s e n G., Nucl. I n s t r . Meth.

90

(1971) 35.

S l r e n s e n G . , Phys. Rev. A

7

(1973) 85.

(12)

I r w i n D.J.G., Kernahan J. A., P i n n i n g t o n E. H., L i v i n g s t o n A. E., J. Opt. Soc. Am.

66

(1976) 1396.

The d a t a and o s c i l l a t o r s t r e n g t h s f o r F i g . 1 were compiled by J. A. L e a v i t t , p r i v a t e communication.

Bashkin S., Beam-Foil Spectroscopy, Ed. S. Bashkin, Gordon and Breach (New York, 1968) Vol. 1, 3.

Stoner, J. O., J r . and L e a v i t t J. A., Appl. Phys. L e t t .

3

(1971) 477.

Stoner, J. O., J r . and L e a v i t t J. A., Appl. Phys. L e t t . 1_I1 (1971) 368.

C a r r i v e a u G. W., Doobov M. H., Hay H. J., S o f i e l d C. J., Nucl. I n s t r . Meth.

99

(1972) 439 B e r g k v i s t K. E., J. Opt. Soc. Am.

66

(1976) 837.

Dents A., Desesquelles J., Dufay M., Poul i z a c

H.

C., Beam-Foil Spectroscopy, Ed. Bashkin S., Gordon and Breach (New York, 1968) Vol

.

1, 341.

23. C e y z e r i a t P., Denis A., Desesquelles J., D r u e t t a M., P o u l i z a c M. D., Nucl. I n s t r . Meth.

90

(1970) 103.

24. J e l l e y N. A., S i l v e r J. D., Armour I. A., J. Phys. B

10

(1977) 2339.

25. Bashkin S., B i c k e l W. S., F i n k D., Wangsness R. K., Phys. Rev. L e t t .

15

(1965) 284.

26. Bashkin S. and Beauchemin G., Can. J. Phys. 4 4 (1966) 1603.

27. AndrX H. J., Phys. S c r i p t a

9

(1974) 257

28. Gaupp A., Andra H. J., Macek J., Phys. Rev. L e t t .

32

(1974) 268.

29. Bepry H. G., P i n n i n g t o n E. H., S u b t i l J. L., Phys. Rev. A

10

(1974) 1065.

30. B e r r y H. G., C u r t i s L. J., E l l i s D. G., Schectman R. M., Phys. Rev. L e t t .

3

(1975) 274.

31. Gaupp A., Dufay M., S u b t i l J. L., J. Phys. B

9 ,

(1976) 2365.

32. A s t n e r G., C u r t i s L. J., L i l j e b y L., Mannervik S., M a r t i n s o n I., J. Phys. B

2

(1976) L345.

33. Church D. A. and M i c h e l M. C., Proc. 4th Conf. on A p p l i c a t i o n s o f Small A c c e l e r a t o r s , 176 (1976).

34. Andra H. J., J. Opt. Soc. Am.

65

(1975) 1410.

35. G a i l l a r d M., AndrB' H. J., Gaupp A., bli'ttmann W., Plb'hn H. J., S t o n e r J. O., Jr., Phys. Rev.

A 1 2 (1975) 987.

-

-

36. Arnesen A., Bengtsson A., H a l l i n R., Kandela S., Noreland T., L i d h o l t R., Phys. Lett.=

(1975) 459.

37. Dufay M., C a r r e M., G a i l l a r d M. L., Meunier G., W i n t e r H., Z g a i n s k i A., Phys. Rev. L e t t .

2

(1976) 1678.

38. W i n t e r H. and G a i l l a r d M., Z. Phys. A

281

(1977) 311.

39. Arnesen A., Bengtsson A., C u r t i s L. J., H a l l i n R., N o r d l i n g C., Noreland T., Phys. L e t t .

56A

(1976) 355.

40. Arnesen A., Bengtsson A., H a l l i n R., Noreland T., J. Phys. B

10

(1977) 565.

(13)

c1-136 JOURNAL DE PHYSIQUE

Arnesen A., Bengtsson A., H a l l t n R., Ltndskog J., N o r d l i n g C., Noreland T., Phys. S c r p i t a 16 (1977) 31.

-

Kuske, P., Kirchner N., Wittmann W., Andra H. J. Kaiser D., Phys. Lett.*= (1978) 377.

Malmberg P. R., Bashkin S., T i l f o r d S. G., PRys. Rev. L e t t .

2

(1965) 98.

B i c k e l , W. S. and Bashkin S., Phys. Rev.

162

(1967) 12.

Brown T., Ford W. K., Jr., T r a c h s l i n W.. Beam-Foil Spectroscopy, Ed. S. Bashkin, Gordon and Breach (New Y ~ r k , 19681 Vol. 1,

45.

Fink,

U.,

J. Opt. Soc. Am.

58

119561 937.

Fink, U., Appl. Optics

7

(1968) 2373.

B i c k e l ,

W.

S., J . Opt. Soc. Am.

58

(1968) 313.

Hadefshi

T.,

B i c k e l W. S., Garcia J. D., B e r r y H. G . , Phys. Rev. L e t t .

23

(1969) 65.

S e l l f n

T. A.,

Moak C. D., G r i f f i n P. M., B i g g e r s t a f f J. A., Phys. Rev.

184

(1969) 56.

S e l l i n

T.

A., Moak C. D., G r i f f i n P. M., B i g g e r s t a f f J. A., Phys. Rev.

186

(1969) 217.

Carriveau G.

W.

and Bashkin S., Nucl. I n s t r . Meth.

90

(1970) 203.

Martlnson

I.,

B i c k e l W. S., 0lme A., J. Opt. Soc. Am.

60

(1970) 1213.

AndrH H. J., Phys. L e t t .

31A

(1970) 345.

Bashkin S. and Carriveau 6 . W., Phys. Rev. A

1

(1970) 269.

Andra H. J., Nucl. I n s t r . Meth.

90

(1970) 343.

A n d r I

H.

J., Phys. Rev. A

2

(1970) 2200.

Bashkin S., Carriveau G. W., Hay H. J., J. Phys. B

4

(1971) L32.

L i u C.

H.,

Bashkia S., B i c k e l W. S., Hadeishi T., Phys. Rev. L e t t .

26

(1971).

L i u C.

H.

a r d Church D. A., Phys. L e t t . (1971) 407.

Church D. A., D r u e t t a M., L i u C. H., Phys. Rev. L e t t .

27

(1971) 1763.

L i u C.

H.,

Druetta M., Church D.A., Phys. L e t t . (1972) 49.

Church

D.

A. and L i u C. H., Phys. Rev. A

2

(19721 1031.

L i u C. H. and Church D. A., Phys. Rev. L e t t e r s

29

(1972) 1208.

Stoner, J. 0. and Radjiemski L. J., Jr., Appl. Phys. L e t t .

3

(1972) 165.

Algllard M.

J

and Drake C. W., Nucl. h s t r . Methods

110

(1973) 311.

Zgainski

A,,

Churassy S. e t Lombardi M., J. Phys. 36 (1975) 1221.

Drake G.W.F. and Van Wijugaarden A., Beam-Fotl Spectroscopy, Eds. I. A. S e l l i n , D. J. Pegg, Plenum (New York, ,1976) Yo1

.

2, 749.

Church D. A. and L i u C. H., Physica 67 (19731 90.

Church D. A. and L i u C. H., Nucl. Tnstr. Meth.

x

(1973) 147.

L i u C. H., Gardiner R. B., Church

D.

A,, Phys. L e t t .

9

(1973) 165.

Church

D.

A. and L i u C. H., Nucl. r n s t r . Meth.

110

(1973) 267.

G a i l l a r d M., Carre C., B e r r y H. G., Lombardi M., Nucl. I n s t r . Meth.

110

(1973) 273.

Alguard M.

J.

and Drake C. W., PRys. Rev. A

3

(1973) 27.

(14)

P i n n i n g t o n E. H., B e r r y H. G., Desesquelles J., S u b t i l J. L., Nucl. I n s t r . Meth.

110

(1973) 315.

Churassy A., G a i l l a r d M. L., S i l v e r J. D., Phys. Rev. L e t t .

2

(1974) 185.

Bourgey, J., Denis A., Desesquelles J., J. Phys.

2

(1977) 1229.

Kramer P. B., Phys. Rev. L e t t .

28

(1977) 1021.

Denis A . , Desesquelles J., J. Phys. L e t t .

9

(1978) 204.

B a s h k i n S., Heroux L., Shaw J., Phys. L e t t .

2

(1964) 229.

Davis W. A. and Marrus R., Phys. Rev. A

15

(1977) 1963.

Dohmann H. D., Z. Phys. A

-

285 (1978) 171.

Cocke C. L., Beam-Foil Spectroscopy, Eds. I. A. S e l l i n , D. J. Pegg, Plenum Press (New York, 1976) 283.

B e r r y H. G. and Schectman R., Phys. Rev. A

2

(1974) 2345.

D i e t r i c h D. D., t h i s conference.

B e r r y H. G., Desesquelles J., Tryon

P.,

Schnur P., G a b r i e l s e G., Phys. Rev. A

14

(1976) 1457.

B a r r e t t e L. and D r o u i n R., Phys. S c r i p t a

10

(1976) 213.

I r w i n D.J.G. and D r o u i n R., Beam-Foil Spectroscopx, Eds. I . A. S e l l i n , D. J. Pegg, Plenum Press (New York, 19861 Vol

.

1, 347.

Knystautas E. J. and D r o u i n R., B e a m F o i l Spectroscopy, Eds. I. A. S e l l i n , D. J. Pegg, Plenum Press (New York, 1976) Vol

.

1, 393.

Buchet, J. P., Buchet-Poulizac M. C., DoCao G., Desesquelles J., Nucl. I n s t r . Meth.

110

(1973) 19.

91. B a r r e t t e L., Knystautas E. J., D r o u i n R., Nucl. h s t r . Meth.

110

(1973) 19.

92. Bashkin S. and Malmberg P. R., Proc. Phys. Soc.

87

(1966) 589.

93. Kay L., Proc. Phys. Soc.

85

(1965) 163.

94. S e l l i n , I. A . , D o n n e l l y B. C., Fan C. Y., Phys. Rev. L e t t .

81

(1968) 717.

95. S e l l i n I. A., Brown

M.,

Smith W. W . , D o n n e l l y B., Phys. Rev. A

2

(1970) 1189.

96. Marrus R. and Schmieder R. W., Phys. L e t t .

32A

(1970) 431.

97. Schmteder R. W. and Marrus R., Phys. Rev. L e t t .

25

(1970) 1245.

98. Marrus R. and Schmieder R. W., J. Opt. Soc. Am.

60

(1970) 1561.

99. Marrus R. and Schmieder R. W . , Phys. Rev. L e t t .

25

(1970) 1689.

100. Schmieder R.

W.

and Marrus R., Phys. Rev. L e t t .

25

(1970) 1692.

101. Schmieder R. W . and Marrus R., J. Opt. Soc. Am.

61

(1971) 1129.

102. Marrus R. and Schmieder R. W., Phys. Rev. Am.

5

(1972) 1160.

103. Mowat J. R., S e l l i n I. A., P e t e r s o n R. S., Pegg 0. J., Brown M. D., Macdonald J. R., Phys. Rev. A

8

(19731 145.

104. Moore C.

F.,

B r a i t h w a i t e W . J., Matthews D. L., Phys. L e t t . (1973) 199.

105. Gould H., Marrus R., Schmieder R. W., Phys. Rev. L e t t .

31

(1973) 504.

106. Cocke C. L., C u r n u t t e B., R a n d a l l R., Phys. Rev. L e t t .

31

(1973) 507.

(15)

c l - 1 3 8 JOURNAL DE PHYSIQUE

R i c h a r d P., Kauffman R. L., Hopkins F. F., Woods C. W . , Jamison K. A., Phys. Rev. L e t t .

30,

(1973) 888.

Marrus R. and Schmieder R. W . , Nucl. I n s t r . Meth.

110

(1973) 333.

R i c h a r d P., Kaufman R. L., Hopkins F., Woods C. W . , Jamison K. A.. Phys. Rev. A

8

(1973) 2187.

Cocke C. L., C u r n u t t e B., Macdonald J. R., R a n d a l l R., Phys. Rev. A

2,

(.1974) 57.

Gould H.. Marrus R., Mohr P., Phys. Rev. L e t t .

3

(1976) 676.

Cocke C. L., C u r n u t t e B., Macdonald J. R., Bednar J. A . , Marrus R., Phys. Rev. A

2

(1374) 2242.

Bednar J. A., Cocke C. L., C u r n u t t e B., Randall R., Phys. Rev. A (1975) 460.

Gould H. and Marrus R., Beam-Foil Spectroscopy, Eds. I. A. S e l l i n , D. J. Pegg, Plenum Press (New York, 1976) 305.

Varghese S. L., Cocke C. L., C u r n u t t e B., Phys. Rev. A

3

(1976) 1729.

D i e t r i c h D. D., L e a v i t t J. A., Bashkin S., Conway J. G., Gould H., Macdonald D., Marrus R., Johnson B. M., Pegg D. J., Phys. Rev. A

18

(1978) 208.

I s h i i K., Denne B., Engstrom L., H u l d t S., M a r t i n s o n I., Pegg D. J., V e j e E., Bashkin S., t o be pub1 i s hed.

P i n n i n g t o n E. H., I r w i n D.J.G., L i v i n g s t o n A. E., Kernahan J. A., G o s s e l i n R. N., B e r r y H. G., Can. J. Phys.

56

(1978) 517.

S e l l i n I A., H u l t b e r g S., J e l e n t e o w i c B., Mannervik S., L i l j e b y L., p r i v a t e communication.

L e a v i t t J. A. and Bashkin S., t o be p u b l i s h e d . Froese-Fischer C., J. Phys. B

10

(1977) 1241.

Anderson T., SBrensen G., J. Quant. Spectro. R a d i a t i v e Transfer

13

(1973) 369.

D r u e t t a M. and Buchet J. P., J. Opt. Soc. Am.

66

(1976) 433.

C u r t i s L. J., Engman B., M a r t i n s o n I., Phys. S c r i p t a

2

(1976) 109.

P a l e n i u s H. P., C u r t i s C. J., Lundin L., J. Phys. B

9

(1967) ~ 4 7 3 .

P i n n i n g t o n E. H., L i v i n g s t o n A. E., Kernahan J. A., PRys. Rev. A

9

(1974) 1004.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to