• Aucun résultat trouvé

Beta and Dirichlet sub-Gaussianity

N/A
N/A
Protected

Academic year: 2021

Partager "Beta and Dirichlet sub-Gaussianity"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01950665

https://hal.archives-ouvertes.fr/hal-01950665

Submitted on 11 Dec 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Beta and Dirichlet sub-Gaussianity

Olivier Marchal, Julyan Arbel

To cite this version:

(2)

Beta and Dirichlet sub-Gaussianity

Olivier Marchal, Univ. Lyon, Univ. Monnet, Institut Camille Jordan, France

Julyan Arbel, Inria, Mistis, Grenoble, France,

www.julyanarbel.com

Abstract

Optimal proxy variance σ2opt for the sub-Gaussianity of Beta

distribu-tion, improves recent conjecture σ20 by Elder (2016): σ2opt ≤ σ2

0 =

1

4(α+β+1) .

Provide different proof techniques for

(i) symmetrical case (α = β): direct coef. comparison of entire series

(ii) non-symmetrical case (α , β): ordinary differential equation satisfied

by moment-generating function, aka confluent hypergeometric function

Derive optimal proxy variance for Dirichlet.

Sub-Gaussianity & optimal proxy variance

A random variable X with finite mean µ = E[X] is sub-Gaussian if there

is a positive number σ2 (called a proxy variance) such that:

E[exp(x(X − µ))] ≤ exp

x2σ2

2

!

for all x ∈ R. (1)

If X is sub-Gaussian, the optimal proxy variance is:

σ2

opt(X) = min{σ

2

≥ 0 such that X is σ2-sub-Gaussian}.

Variance lower bounds optimal proxy variance: Var[X] ≤ σ2opt(X). When

σ2

opt(X) = Var[X], X is said to be strictly sub-Gaussian.

Optimal proxy variance illustrated & compared

0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.04 0.08 0.12 α+β=1 α 0 2 4 6 8 10 0.000 0.005 0.010 0.015 0.020 α+β=10 α 2 3 4 1 1 2 3 4 0.05 0.1 0.15

Top: varying α on x-axis, α + β = 1

(left) and α + β = 10 (right).

Left: α, β ∈ [0.2, 4].Magenta: σ2opt(α, β)Green: Var[Beta(α, β)]Black (dots): σ2 0 = 1 4(α+β+1)

Looking for connections with literature

Compare with Bernoulli setting (Berend and Kontorovich, 2013;

Buldygin and Moskvichova, 2013)

Possible links of our non-uniform sub-Gaussian result with

transportation inequalities

logarithmic Sobolev inequalities

Optimal proxy variance for the Beta

Theorem Beta(α, β) is σ2opt(α, β)-sub-Gaussian with:

                   σ2 opt(α, β) = α (α + β)x0 1F1(α + 1; α + β + 1; x0) 1F1(α; α + β; x0) − 1 !

where x0 is the unique solution of the equation

log(1F1(α; α + β; x0)) = αx0 2(α + β) 1 + 1F1(α + 1; α + β + 1; x0) 1F1(α; α + β; x0) ! .

Simple explicit upper bound to σ2opt(α, β) is σ20(α, β) = 4(α+β+1)1 :

Var[Beta(α, β)] ≤ σ2opt(α, β) ≤ σ20 (strict when α , β)

Sketch of proof

• α = β: direct coef. comparison of entire series representations of (1)

• α , β: study the MGF aka confluent hypergeometric function or

Kummer’s function

y(x) def= E[exp(xX)] = 1F1(α; α + β; λ) =

∞ X j=0 Γ(α + j)Γ(α + β) ( j!)Γ(α)Γ(α + β + j) x j.

using the ordinary differential equation it satisfies

xy00(x) + (α + β − x)y0(x) − αy(x) = 0

via the difference

ut(x) def= exp µx + σ2t x2/2 − E[exp(xX)], σ2t = t Var[X] + (1 − t)σ20

0 1 2 3 −1 0 1 2 x10−3 ● x0 u0 utopt utnonopt u1

For t = 0 (σ20), dotted black curve remains > 0

For t = topt 2opt), magenta curve has minimum = 0 at x0

For t = 1 (Var[X]), dashed green curve has negative second derivative

at x = 0, directly negative around 0

For tnon opt ∈ (topt, 1), orange, dash and dots curve is first positive, then

negative, and positive again

References

Berend, D. and Kontorovich, A. (2013). On the concentration of the missing mass. Electronic Communications in Probability, 18(3):1–7.

Buldygin, V. V. and Moskvichova, K. (2013). The sub-Gaussian norm of a binary random variable. Theory of probability and mathematical statistics, 86:33–49.

Elder, S. (2016). Bayesian adaptive data analysis guarantees from subgaussianity. arXiv preprint: arXiv:1611.00065.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American statistical association, 58(301):13–30.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to