• Aucun résultat trouvé

INTEGRAL REPRESENTATION FOR SOME GENERALIZED POLY-CAUCHY NUMBERS

N/A
N/A
Protected

Academic year: 2021

Partager "INTEGRAL REPRESENTATION FOR SOME GENERALIZED POLY-CAUCHY NUMBERS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: hal-01370757

https://hal.archives-ouvertes.fr/hal-01370757

Preprint submitted on 23 Sep 2016

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTEGRAL REPRESENTATION FOR SOME GENERALIZED POLY-CAUCHY NUMBERS

J Chikhi

To cite this version:

J Chikhi. INTEGRAL REPRESENTATION FOR SOME GENERALIZED POLY-CAUCHY NUM-

BERS. 2016. �hal-01370757�

(2)

INTEGRAL REPRESENTATION FOR SOME GENERALIZED POLY-CAUCHY NUMBERS

J. CHIKHI

Abstract. In this note, we establish an integral representation for a special functionEs,α(z)and apply it to some generalized poly-Cauchy numbersc(s)n,α:=n![tn]Es,α(log(1+t)). We recover, in the special caseα=s=1, the integral representation of the Bernoulli numbers of the second kindbn=c(1)n,1/n! obtained by Feng Qi by quite different methods.

1. INTRODUCTION

Letα andsbe parameters, withα real and postive andscomplex withℜs>0. We define some generalized poly-Cauchy numbers, see [3] fors=kinteger, by the generating function

Es,α(log(1+t)) =

n=0

c(s)n,αtn

n! , (|t|<1), whereEs,α is the function, defined for any complexe numberz, by

Es,α(z):=

n=0

zn n!(n+α)s .

This function is called poly-exponnential in [1] and, fors=ka positive integer, the extended polylogarithm factorial function, see [3] for instance.

In the sequel, we

•obtain a first integral representation forEs,α(z)and use it to obtain the main integral representation,

•apply it to get an integral representation for the generalized poly-Cauchy numberc(s)n,α,

•recover, by specialisation, the F. Qi’s integral representation for the Cauchy numberc(1)n,1. 2. MELLIN TYPEINTEGRAL REPRESENTATIONS

The firts integral representation is basic and, more or less well known.

Proposition 1. The function Es,α(z)admits the following integral representation, Es,α(z) = 1

Γ(s) Z 1

0

(−logx)s−1xα−1ezxdx. (1)

Proof. We firts obtain a Mellin type integral representation. Asα andℜsare positive, we have for any non negative integern,

Γ(s) (n+α)s =

Z

0

ts−1e−(n+α)tdt, so

Es,α(z) =

n=0

zn

n!(n+α)s = 1 Γ(s)

n=0

zn n!

Z

0

ts−1e−(n+α)tdt.

Date: September 23, 2016.

2010 Mathematics Subject Classification: 11B83 , 11B34 , 26A48.

Key words and phrases : poly-Cauchy numbers, second kind bernoulli numbers, Mellin transform, integral representation.

1

(3)

2 J. CHIKHI

The convergence modes of the series and integral permit to exchangeΣandR and obtain Es,α(z) = 1

Γ(s) Z

0

ts−1e−αt

n=0

zne−nt n!

! dt

= 1 Γ(s)

Z

0

ts−1e−αteze−t dt.

At the end, the changee−t=x gives the desired formula.

3. MAIN INTEGRAL REPRESENTATION

Here is our main result.

Theorem 2. Let a and b be real numbers and z=a+ib, then

Es,α(z) = ea 2iπ

Z

0

Es,α(z1(u))−Es,α(z2(u)) u(u+ea) du, (2)

where z1(u) =logu+i(b+π)and z2(u) =logu+i(b−π).

Proof. As mentionned bellow, we shall use the first integral representation (1), Es,α(z) = 1

Γ(s) Z 1

0

(−logx)s−1xα−1ezxdx

= 1 Γ(s)

Z 1 0

(−logx)s−1xα−1eibxeaxdx.

We putβ =ea, write

Es,α(z) = β Γ(s)

Z 1 0

(−logx)s−1xα−1eibxβx−1dx, and use the lemma

Lemma 3.

βx−1=sin(πx) π

Z

0

ux−1

u+βdu (0<x<1). (3)

Indeed, we find in many tables of integrals, as [2], the Mellin integral transform expression

Z

0

ts−1

t+1dt= π

sin(πs) (0<ℜs<1),

and just transform it, by the change of variableu=βt, to get the formula (3) for any real numberx∈(0,1).

Hence, we have

Es,α(z) = β πΓ(s)

Z 1 0

(−logx)s−1xα−1eibxsin(πx) Z

0

ux−1 u+βdu

dx, and, by the Fubini’s theorem, that

Es,α(z) = β πΓ(s)

Z

0

Z 1 0

(−logx)s−1xα−1eibxuxsin(πx)dx du

u(u+β)du.

(4)

We after consider the integral inside,

Z 1 0

(−logx)s−1xα−1eibxuxsin(πx)dx

= 1 2iπ

Z 1 0

(−logx)s−1xα−1eibxux(eiπx−e−iπx)dx

= 1 2iπ

Z 1 0

(−logx)s−1xα−1e(logu+i(b+π))xdx− 1 2iπ

Z 1 0

(−logx)s−1xα−1e(logu+i(b−π))xdx

= 1

2iπ(Es,α(logu+i(b+π))−Es,α(logu+i(b−π))),

and we are done .

4. THE GENERALIZED POLY-CAUCHY NUMBER INTEGRAL REPRESENTATION

Lett∈(−1,1)and putz=log(1+t). Thenz1(u) =logu+iπ,z2(u) =logu−iπand the integral representation (4) writes,

Corollary 4.

Es,α(log(1+t)) =1+t 2iπ

Z

0

Es,α(logu+iπ)−Es,α(logu−iπ)

u(u+1+t) du,

(4)

Remark 1. If s is a real positive number, then Es,α(log(1+t)) =1+t

π Im Z

0

Es,α(logu+iπ) u(u+1+t) du, (5)

where Im stands for the imaginary part.

In order to get successive derivatives, int, under the signR, that is legitimate, we write that(1+t)(u+1+t)−1= 1−u(u+1+t)−1and obtain for any positive integern,

dn

dtnEs,α(log(1+t)) =(−1)n−1n!

2iπ Z

0

Es,α(logu+iπ)−Es,α(logu−iπ) (u+1+t)n+1 du. Lettingt=0, we obtain the integral representation for the generalized poly-Cauchy numbers, Corollary 5.

c(s)n,α

n! =(−1)n−1 2iπ

Z

0

Es,α(logu+iπ)−Es,α(logu−iπ) (u+1)n+1 du. (6)

5. THEQI INTEGRAL REPRESENTATIONS

For the special caseα=s=1, we have E1,1(z) =

n=0

zn

(n+1)!=ez−1 z , then

ImE1,1(logu+iπ)) =Im −u−1

logu+iπ = π(u+1) log2u+π2

,

and finally by (5),

E1,1(log(1+t)) = t

log(1+t)= (1+t) Z

0

u+1

u(log2u+π2)(u+1+t)du, (7)

(5)

4 J. CHIKHI and by (6),

c(1)n,1

n! = (−1)n−1 Z

0

du

(log2u+π2)(u+1)n . (8)

The formulae (7) and (8) above are the integral representations found in [4] by different methods.

6. FINAL REMARK

When the parametersis real, so are the numbersc(s)n,α, one could investigate, as done by Feng Qi, the complete mono- tonicity, the log-convexity and, may be, more other proprieties of these numbers by using the integral representations (5) and (6).

REFERENCES

1. K.N. Boyadzhiev,Polyexponentialsavailable online at https://arxiv.org/pdf/0710.1332v1.pdf 2. I.S. Gradshteyn, I.M. Ryzhik,Table of Integrals, Series, and Products, Academic Press.

3. T. Komatsu, V. Laohakosol, K. Liptai,A generalization of poly-Cauchy numbers and their proprieities, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.

4. F. Qi, Feng Qi,An integral representation and properties of Bernoulli numbers of the second kind, available online at http://arxiv.org/abs/1301.7181.

JAMELCHIKHI, D ´EPARTEMENT DE MATHEMATIQUES´ , UNIVERSITE D´ ’EVRYVAL D’ESSONNE, B ˆATIMENT

I.B.G.B.I. , 23 BD. DEFRANCE, 91037 EVRYCEDEX, FRANCE, E-mail address:jamel.chikhi@univ-evry.fr

Références

Documents relatifs

En d´ eduire un isomorphisme du corps L sur un sous-anneau (que l’on pr´ ecisera) de l’anneau M n×n (K) des matrices carr´ ees n × n ` a coefficients dans K..

La fonction g n est clairement contine, dérivable strictement croissante.. Elle converge donc et sa limite α est positive

Comme Φ est une application linéaire entre deux espaces de même dimension, pour montrer que c'est un isomorphisme, il sut de montrer qu'il est injectif.. C'est à dire que son noyau

Several years ago, we introduced a method based on the Ramanujan summation of series which enabled us to generate a number of interesting identities linking together Cauchy

We obtain two sorts of recurrence relations for a class of generalized Cauchy numbers c (s) n,α.. The first recurrences are especially adapted to the so-called shifted

Furthermore, the potential representation (35) — with the Green function G chosen as the simple Green function given in Noblesse and Yang (2004b) — yields a potential representation

[r]

Est-il possible que l’une des puissance de P, P k pour un k ≥ 1, soit une matrice dont tous les coefficients sont strictement positifs, c’est-` a-dire est-il possible que la matrice