• Aucun résultat trouvé

FLAVOR MIXING AND THE MASSES OF LEPTONS AND QUARKS

N/A
N/A
Protected

Academic year: 2021

Partager "FLAVOR MIXING AND THE MASSES OF LEPTONS AND QUARKS"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00224046

https://hal.archives-ouvertes.fr/jpa-00224046

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

FLAVOR MIXING AND THE MASSES OF LEPTONS AND QUARKS

H. Fritzsch

To cite this version:

H. Fritzsch. FLAVOR MIXING AND THE MASSES OF LEPTONS AND QUARKS. Journal de

Physique Colloques, 1984, 45 (C3), pp.C3-189-C3-196. �10.1051/jphyscol:1984332�. �jpa-00224046�

(2)

JOURNAL DE PHYSIQUE

Colloque C3, suppl6ment au n03, Tome 45, mars 1984 page C3-189

FLAVOR MIXING AND THE MASSES OF LEPTONS AND QUARKS

H. Fritzsch

UnivezsitSt M g n c h e n , M P I f C r P h y s i k , F o e h d n g e r R i n g 6 , 0-8000 M iinchen, F.R .G.

A l l phenomena i n p a r t i c l e physics p r e s e n t l y known can be described w i t h i n the so- c a l l e d standard model, based on QCD

-

t h e oauge theory o f s t r o n g i n t e r a c t i o n

physics

-,

and on the SU(2) x U ( l ) theory

-

t h e gauge theory o f t h e weak and e l e c t r c - magnetic i n t e r a c t i o n s . No doubt, the i n t r o d u c t i o n o f t h e standard model o f leptons and quarks i s a g r e a t achievement; a l l i n t e r a c t i o n s observed i n nature w i t h t h e exception o f g r a v i t y a r e described s u c c e s s f u l l y . Yet i t i s s u r p r i s i n g t h a t t h e theory gives very l i t t l e i n s i g h t i n t o t h e problem o f masses. I n t h e standard model t h e l e p t o n and quark masses a r e i n t r o d u c e d by hand. No e x p l a n a t i o n o f these masses o r o f mass d i f f e r e n c e s i s given. The masses o f t h e weak bosons W and Z a r e i n - troduced as f u n c t i o n s o f t h e vacuum e x p e c t a t i o n value o f a s c a l a r Higgs f i e l d @:

M

-

e

.

c d ~ l o > , ( e =

J4aa').

Phenomenologically t h i s vacuum e x p e c t a t i o n value iF72etermined by the Fermi constant, i .e. by t h e s t r e n g t h o f t h e weak i n t e r a c t i o n amp1 i tudes a t low energies.

During t h e l a s t t e n years an important progress has been made i n understanding the mass s c a l e s o f s t r o n g i n t e r a c t i o n physics. The t y p i c a l mass s c a l e o f phenomena i n s t r o n g i n t e r a c t i o n physics i s o f t h e o r d e r o f 1 GeV. This mass s c a l e i s a r e f l e c - t i o n o f t h e confinement phenomenon i n QCD. The l a t t e r i m p l i e s t h a t the quarks i n - s i d e a hadron a r e confined i n a f i n i t e r e g i o n o f space, whose extension i s described by a confinement parameter A ~ . A l l hadronic masses can be c a l c u l a t e d , a t l e a s t i n p r i n c i p l e , i n terms o f A,. Mass r a t i o s l i k e Mp/M a r e independent o f A and can be computed. Thus t h e theory o f quantum chromodynamycs allows us f o r t h e f i r s t time t o c a l c u l a t e t h e masses o f p a r t i c l e s .

O f course, QCD does n o t g i v e y i n f o r m a t i o n about t h e quark masses. The l a t t e r are i n t r o d u c e d as f r e e parametersfy, i .e. they p l a y a r61e s i m i l a r t o the one played by the e l e c t r o n

-

o r muon mass i n atomic physics o r i n quantum electrodynamics.

The o r i g i n o f t h e e l e c t r o n

-

o r quark masses i s s t i l l unknown. A t t h e present t i n e i t i s n o t p o s s i b l e t o reach a deep understanding o f t h e p r o p e r t i e s o f t h e l e p t o n - quark spectrum. However time has come t o speculate about c e r t a i n p r o p e r t i e s , f o r example about p o s s i b l e connections between the weak m i x i n g angles and t h e quark masses.

The leptons and quarks can be c l a s s i f i e d i n t h r e e f a m i l i e s . Each f a m i l y has t h e charge s t r u c t u r e

i . e . i t i n c l u d e s a n e u t r i n o , a l e p t o n o f charge -1 ( i n u n i t s o f e), a quark o f charge 213 and a quark o f charge (-1/3) ( t h e t h r e e c o l o r s a r e denoted e x p l i c i t l y ) . The masses o f t h e charged fermions a r e as f o l l o w s ( i n MeV):

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984332

(3)

C3-190 JOURNAL DE PHYSIQUE

We s h a l l suppoze t h a t t h e t-quark e x i s t s . I t s mass must be g r e a t e r than about 22 GeV otherwise t h e tt ground s t a t e would have been observed i n t h e eie-- a n n i h i l a t i o n experiments2). The masses o f t h e quarks are, o f course, n o t measurable d i r e c t l y , b u t must be i n f e r r e d from observed p r o p e r t i e s o f t h e hadronic spectra. The mass values depend on t h e energy s c a l e used f o r t h e determination o f the quark masses.

lJe f o l l o w r e f . (1) and denote t h e quark masses a t an energy scale o f 1 GeV.

The eigenstates of t h e quark mass m a t r i x do n o t c o i n c i d e w i t h the weak i n t e r a c t i o n eigenstates. I t i s customary t o denote the weak i n t e r a c t i o n m i x i n g by i n t r o d u c i n g m i x t u r e s o f mass eigenstates f o r t h e charge -1/3

-

quarks d ' , s ' , b ' :

where Vij i s a 3 x 3 u n i t a r y m a t r i x .

I n t h e formal l i m i t md = ms mb = 0 an a r b i t r a r y u n i t a r y t r a n s f o r m a t i o n o f t h e f i e l d s (d,s,b) can be made w i t h o u t changing t h e physics. I n p a r t i c u l a r t h e m a t r i x Vij can be diagonalized:

Thus t h e m a t r i x V i j has n o n t r i v i a l m a t r i x elements o n l y i f a t l e a s t one o f the masses md, m o r m b i s d i f f e r e n t from zero ( o r analogously one o f t h e masses mu, mc o r mt?. Therefore one may conclude: t h e quark masses and t h e weak m i x i n g angles a r e r e l a t e d . Any theory o f these masses must a t t h e same time g i v e i n - f o r m a t i o n about t h e weak m i x i n g angles, and v i c e versa. One may even discuss t h e hypothesis t h a t t h e weak m i x i n g angles are f u n c t i o n s o f the quark masses. This s i t u a t i o n a r i s e s provided thequark mass m a t r i x obeys c e r t a i n c o n s t r a i n t s , which are f u l f i l le d as a consequence o f u n d e r l y i n g d i s c r e t e o r continuous symmetries (see e.g. r e f . ( 3 ) ) .

Below I s h a l l discuss some p o s s i b l e connections between t h e weak m i x i n g angles and t h e quark masses. The observed p a t t e r n o f t h e quark masses e x h i b i t s c l e a r l y a w e l l

-

d e f i n e d h i e r a r c h y . The 1 ig h t e s t quarks (u,d) a r e much 1 ig h t e r than t h e quarks

(c,s), which i n t u r n a r e s u b s t a n t i a l l y l i g h t e r than ( t , b ) . Before employing t h i s h i e r a r c h y f o r a s p e c i f i c purpose, l e t me mention a few f a c t s about t h e weak m i x i n g m a t r i x V .

..

1 J

(4)

The m i x i n g m a t r i x V i

-

i s u s u a l l y w r i t t e n as a f u n c t i o n o f t h r e e m i x i n g angles ei ( i = 1,2,3) and a

$base

parameter a:

s1 C3 S3

(V. .) =

( "

- s 1 c 2 c 1 c 2 c 3 + s 2 s 3 e i6 c 1 c 2 s 3 - s 2 c 3 e 1 J

-sl s2 c1 s2 c3

-

c s e c s s + c 2 c 3 e i a

2 3 1 2 3

(c.= cosei, s.= s i n e . ) .

1 1 1

I n the l i m i t e2= eg= 6 = 0 t h e m i x i n g m a t r i x reduces t o t h e Cabibbo m i x i n g m a t r i x

(el: Cabibbo angle)

For small m i x i n g angles t h e m a t r i x V can be w r i t t e n approximately as f o l l o w s :

Since

m

>> m

,

t h e b-quark decay can proceed o n l y v i a t h e m a t r i x elemente Vcb and Vub. l n t t h e

lhit

e2= e3= 0 the b-quark would be s t a b l e .

Recently the l i f e time o f t h e b - f l a v o r e d mesons (quark composition i b , db) has been determined:

This l i f e time i s s u r p r i s i n g l y long. I f the m a t r i x elements Vcb ('dub) w r e o f the same o r d e r as t h e m a t r i x element Vus ( sz 0.22), one expects ~ ( b ) c 10- 15 s. Thus VUb and Vcb must be much l e s s than Vus.

Furthermore i t i s known t h a t t h e m a t r i x element Vub i s much l e s s than vcbz7)

Gathering a l l the informations about the weak m a t r i x elements (see e.g. r e f . ( 7 ) ) , one f i n d s a m i x i n g m a t r i x as f o l l o w s 8 ) :

(

0.9723.. .0.9737 0.228..

.

0.234 0.000

...

0.008 (V..) = 1 J 0.228

...

0.234 0.9704

...

0.9726 0.042

...

0.067

0.003

...

0.016 0.041

...

0.066 0.9979

...

0.9991

[ t h e complex phase parameter 6 has been omitted].

(5)

C3-192 JOURNAL DE PHYSIQUE

I t i s w o r t h w h i l e t o remark t h a t t h e submatrix

i s r a t h e r close t o t h e u n i t m a t r i x , i . e . n a t u r e seems t o be c l o s e t o t h e l i m i t where the heavy quark doublet (t,b) decouples from the o t h e r quarks. One i s i n v i t e d t o speculate about the reason f o r t h i s s u r p r i s i n g phenomenon. Below we s h a l l discuss two hypotheses about t h e quark mass m a t r i x , which a r e r e l a t e d t o t h i s "decoupling phenomenon".

I. Decoupl i n g . Hypothesis

Suppose o n l y the f i r s t two f a m i l i e s would be present. We consider the l i m i t mu = md = 0. I n t h i s case t h e masses of t h e quarks c and s a r e " i n f i n i t e l heavy c6mpared t o the (u,d)

-

masses, and one m i g h t expect t h a t i n t h i s l i m i t {he physics o f the (u,d)

-

system decouples e n t i r e l y from the physics o f t h e (c,s)

-

system. I n o t h e r words: the Cabibbo angle should vanish as mu, md j 0:9)

I n r e f . (3) a s p e c i a l mass m a t r i x f o r the quarks was discussed, which l e d t o t h e re1 a t i o n :

where !3 i s an (unknown) phase parameter. This r e l a t i o n f u l f i l s t h e decoupling c o n d i t i o n .

I n t h e case o f s i x quarks t h e decoupling hypothesis i m p l i e s t h a t a l l weak mixing angles vanish as mu, md -> 0 and mc, ms -> 0:

i .e. the heavy quarks (t,b) decouple, and the b-quark i s s t a b l e . 11. S c a l i n g Hypothesis

Suppose we s t a r t from a c e r t a i n s e t o f weak eigenstates denoted by t h e doublets

I n t h i s b a s i s the mass matrixes w i l l n o t be diagonal. L e t m ( 2 / 3 ) t h e mass m a t r i x f o r (u,c,t), and m ( - 1 / 3 ) t h e mass m a t r i x f o r (d,s,b). We consider t h e s p e c i a l case w h e r e m ( 2 1 3 ) and (-113) a r e p r o p o r t i o n a l t o each o t h e r :

I n t h a t case a diagonal i z a t i o n o f m ( 2 / 3 ) leads a u t o m a t i c a l l y t o a diagonal i z a t i o n o f %I (-1/3). I n t h e b a s i s where t h e quarks o f charge (2/3) are mass eigenstates, t h e quarks o f charge (-113) w i l l a l s o be mass eigenstates. No weak i n t e r a c t i o n m i x i n g r e s u l t s , and t h e quark masses f u l f i l t h e r e l a t i o n s :

(6)

Suppose i t i s p o s s i b l e t o express t h e weak m i x i n g angles as functions o f the quark masses. I n t h i s case we f i n d i t n a t u r a l t o adopt t h e f o l l o w i n g s c a l i n g hypothesis A:

I f the masses o f t h e quarks o f charge (2/3) are p r o p o r t i o n a l t o t h e masses o f (-1/3)-charged quarks, a l l weak m i x i n g angles vanish.

The m i x i n g angles ei can o n l y be f u n c t i o n s o f t h e dimensionless r a t i o s o f quark masses m. / m. ( i , j = u,d,s ...). 'Jhatever the dynamics u n d e r l y i n g t h e weak m i x i n g phenomendn ma3 be, i t w i l l presumably be a dynamics i n v o l v i n g o n l y p r o p e r t i e s o f t h e quarks o f t h e same e l e c t r i c charge. I n o t h e r words: the m a t r i x elements o f t h e quark mass m a t r i x aa) ( 2 / 3 ) w i l l depend o n l y on p r o p e r t i e s o f the quarks o f charge 2/3, and w i l l n o t depend on p r o p e r t i e s o f the quarks o f charge (-1/3). We a r r i v e a t t h e second p a r t B o f t h e s c a l i n g hypothesis:

The weak m i x i n g angles depend o n l y on r a t i o s o f quark masses o f t h e same e l e c t r i c charge:

Below we discuss a few u s e f u l a p p l i c a t i o n s o f both t h e decoupling and s c a l i n g hypo- t h e s i s .

I f we apply t h e s c a l i n g hypothesis t o t h e s p e c i a l two-family-case discussed above (see r e f . (3) )

,

one f i n d s :

As required, t h e m i x i n g angle depends o n l y on t h e r a t i o s of masses o f quarks w i t h the same e l e c t r i c charge. I n the l i m i t where (u,c) and (d,s) a r e p r o p o r t i o n a l , the angle vanishes.

I n r e a l i t y one has md / ms >> m / mc, i .e. one i s r a t h e r f a r from a p r o p o r t i o n a l i t y o f t h e quark masses. Taking theU quark masses as i n d i c a t e d above one f i n d s

ec 0.17. However, t h e values o f t h e u,d,s-quark masses a r e r a t h e r u n c e r t a i n . The measured value o f e, (ec 0.22) i s reproduced by t a k i n g e.g. mu = 12 MeV,

md = 15 MeV, ms = 150 MeV. We i n t e r p r e t t h e r e l a t i v e l y l a r g e value o f the Cabibbo angle as a consequence o f t h e l a r @ e d e v i a t i o n from t h e p r o p o r t i o n a l i t y case mu / mc = md / ms. I f t h i s were t r u e , t h e u-quark mass would be about e i g h t times l a r g e r than md. I n r e a l i t y mu i s l e s s than md, i m p l y i n g t h a t t h e neutron i s heavier than t h e proton.Thus t h e neutron- roto on mass d i f f e r e n c e and t h e r e l a t i v e l y l a r g e value o f 8, a r e i n t i m a t e l y r e l a t e d t o each o t h e r . Therefore t h e r e l a t i v e l y l a r g e value o f t h e Cabibbo angle has important consequences f o r low energy physics, e s p e c i a l l y f o r physics a t t h e I L L . I f ec were much s m a l l e r than observed, t h e neutron would be l i g h t e r than the proton, and n o t t h e neutron, b u t the p r o t o n would decay v i a t h e 6-decay process.

L e t us consider -the second and t h i r d generation. The u- and d- quark masses are very small compared t o a l l o t h e r quark masses. The l i m i t mu = md = 0 i s expected t o be a good approximation. Applying the decoupling c o n d i t i o n , one expects the (u,d) system t o be unmixed i n t h i s l i m i t , i .e. 8, = 0. The o n l y m i x i n g which can be present i s a m i x i n g between s and b, i . e . the s i x quark m i x i n g m a t r i x takes the form:

(7)

C3-194 JOURNAL DE PHYSIQUE

The (2 x 2 ) submatrix can be w r i t t e n i n terms o f one angle n:

The experimental data on t h e b-quark l i f e time imply t h a t t h e angle n i s very small: n

*

0.05. Thus one must be r a t h e r c l o s e t o t h e p r o p o r t i o n a l i t y case m t :

m,

=

mf,:

mg, i . e . mt = X ~ ? ' G ~ V . (Of course, t h i s value i s r a t h e r un- c e r t a i n , mostly due t o t h e u n c 8 r t a i n t x o f m ~ , which may vary between 150 and 200 MeV

-

mt v a r i e s correspondingly between 35 and 47 GeV.)

Applying t h e special mass m a t r i x discussed i n r e f . (3), one f i n d s

The c o n s t r a i n t n 0.05 given two p o s s i b l e s o l u t i o n s f o r mt. The a c t u a l value o f mt depends r a t h e r s e n s i t i v e l y on ms. I n t h e f o l l o w i n g t a b l e we g i v e t h e s o l u t i o n s f o r various values o f ms. F o r mc and mb (normalized a t E = 1 GeV) we adopt t h e values mc ( 1 GeV) = 1.35 GeV, mb ( 1 GeV) = 5.3 GeV (see r e f . ( 1 ) ) .

Sesides t h e values o f mt ( p = 1 BeV) we have a l s o denoted t h e value o f mt renormalized a t E = nt. (This i s t h e mass parameter t o be used i n e s t i m a t i o n s o f t h e spectrum o f t - p a r t i c l e s ) . The e x t r a p o l a t i o n o f mt (1 GeV) t o mt(mt) depends r a t h e r sensi- t i v e l y on t h e magnitude o f as (aS: s t r o n g i n t e r a c t i o n c o u p l i n g constant) o r r e - s p e c t i v e l y , on t h e s c a l e parameter A. Ne have used A = 100 MeV.

The f i r s t s o l u t i o n f o r mt i s compatible w i t h t h e experimental c o n s t r a i n t s f o r ms < 120 MeV, w h i l e t h e second s o l u t i o n gives r e l a t i v e l y l a r g e values f o r mt (above 40 GeV). We should l i k e t o s t r e s s t h e l a r g e d e v i a t i o n between mt ( 1 GeV), obtained from o u r considerations about m i x i n g angles, and mt(mt), which i s supposed t o be the quark mass value t o be used i n e s t i m a t i o n s o f the spectrum o f tt- and t-

f l a v o r e d p a r t i c l e s .

Independent o f whether t h e s p e c i a l mixing scheme discussed i n r e f . (3) i s c o r r e c t o r not, o u r hypotheses imply:

0.15 28 18 96 52

0.18 24 15 7 5 42 ms [GeV I

m t ( l GeV)

-

1. S o l u t i o n mt(mt)

m t ( l GeV)

-

2. s o l u t i o n mt(mt).

0.20 22 14 6 5 37

-

0.12 34 2 2 135 7 1

(8)

I f t h e determinant

vanishes, t h e s-b-mixing vanishes as w e l l . Nature seems t o be n o t f a r from t h i s case (see a l s o r e f . ( 1 0 ) ) . Nevertheless t h e t-quark mass depends s t i l l r a t h e r s e n s i t i v e l y on t h e a c t u a l value o f ms and on t h e s-b-mixing angle, and, o f course, on t h e s p e c i a l p r o p e r t i e s o f t h e m i x i n g mechanism. The t-quark mass can vary over a l a r g e range (see t h e t a b l e above).

U n f o r t u n a t e l y these observations about t h e s t r u c t u r e o f t h e quark mass m a t r i x d i s - cussed here g i v e very l i t t l e i n f o r m a t i o n about t h e l e p t o n mass m a t r i x . O f course, t h e l e p t o n i c weak m i x i n g angle can be s e t t o zero, i f a l l n e u t r i n o masses vanish,

i . e . we a r e d e a l i n g w i t h t h r e e unmixed weak doublets:

However as soon as a t l e a s t one o f t h e n e u t r i n o s acquires a non- zero r e s t mass, weak m i x i n g angles a r e expected t o be present.

He could discuss both t h e decoupling and s c a l i n g hypotheses i n t h e l e p t o n case as w e l l . However i t seems t h a t the s i t u a t i o n here i s d i f f e r e n t . The t h i r d charged l e p t o n T i s very heavy, b u t the associated n e u t r i n o v need n o t be much h e a v i e r than the o t h e r n e u t r i n o s v,, and ve. Thus one needs n o t be c l o s e t o the l i m i t

,, / mvT + me,Ft / m, -t 0, where t h e t h i r d d o u b l e t (v,,~) decouples from the ot.66; ones. I t seems t h a t t h e mechanism responsible f o r t h e generation o f n e u t r i n o masses ( i f t h e r e i s any), must d i f f e r q u a l i t a t i v e l y from t h e mechanism which generates t h e masses f o r t h e charged leptons and t h e quarks. The n e u t r i n o masses may w e l l show no h i e r a r c h i c a l p a t t e r n and be o f s i m i l a r o r d e r o f magnitude, i . e . mvp- m,

-

,, w N mv_, i n which case t h e m i x i n g among t h e n e u t r i n o s i s expected t o be large.,The search f o r non-zero n e u t r i n o masses ( f o r example by searching f o r neu- t r i n o o s c i l l a t i o n s ) remains an i m p o r t a n t task f o r t h e f u t u r e .

I n t h i s t a l k I have discussed some ideas about t h e s t r u c t u r e o f t h e fermion mass m a t r i x , which have been developed i n c l o s e c o n t a c t w i t h experimental observations.

I have n o t mentioned t h e y e t unknown u n d e r l y i n g physics, which leads t o observed p a t t e r n o f masses and m i x i n g angles. Despite t h e r e g u l a r i t i e s i n t h i s p a t t e r n discussed above, the quark and l e p t o n mass spectrum i s r a t h e r complex. Probably a s o l u t i o n t o t h e problem o f masses can o n l y be found w i t h a theory, which takes the i d e a o f a s u b s t r u c t u r e o f l e p t o n s and quarks s e r i o u s l y l l ) . The most i n t e r e s t i n g p o s s i b i l i t y i s t o r e l a t e t h e f i n i t e range o f t h e weak i n t e r a c t i o n ( o f t h e o r d e r o f 10-l6 cm) t o t h e r a d i i o f leptons, quarks and weak bosons. I n t h i s case t h e l e p t o n and quarks masses are (perhaps) j u s t electromagnetic s e l f energies; t h e observed p a t t e r n o f masses and m i x i n g angles can be i n t e r p r e t e d t h a t way12). I n t h i s case t h e physics phenomena a t v e r y low energy, e.g. n e u t r i n o o s c i l l a t i o n s , t h e neutron- proton mass d i f f e r e n c e e t c . a r e i n t i m a t e l y r e l a t e d t o the s u b s t r u c t u r e o f t h e leptons and quarks, i .e. t o t h e physics a t energies o f t h e o r d e r o f 1 TeV o r l a r g e r

References and Footnotes

1. See e.g. : J. Gasser and H. Leutwyler, Physics Reports

8 7

(1982) 77.

2. The present lower l i m i t on mt i s about 22 GeV (G. U o l f , p r i v a t e communication).

(9)

C3-196 JOURNAL DE PHYSIQUE

See e.g.: H. F r i t z s c h , Nucl. Phys. B 155 (1979) 189, and references t h e r e i n F o r r e c e n t reviews see: H. F r i t z s c h and P. Minkowski,

Physics Reports 73 (1981) 69.

C. J a r l s kog, Proceedings o f t h e I n t . Europhysics Conference on High Energy Physics, B r i g h t o n (UK)

,

1983.

G. Hanson, Proceedings o f t h e I n t . Europhysics Conference, B r i g h t o n (UK), 1983 G. Chadwick, i b i d . , E. Fernandez e t al., SLAC

-

p r e p r i n t 3154 (1983).

See e.g.: G. A l t a r e l l i , Proceedings o f t h e I n t . NATO Summer I n s t i t u t e , Munich (1983).

F o r a review see: C. J a r l s k o g ( r e f . 4). See a l s o : K. Kleinknecht and B. Renk, t o appear i n Z. Phys. C (1983).

See a l s o : H. H a r a r i , Proceedings o f t h e I n t . NATO Summer I n s t i t u t e , Munich (1983.

F o r a d i f f e r e n t approach which f u l f i l s b o t h the decoupling and s c a l i n g hypotheses see: B. Stech, CERFI

-

p r e p r i n t TH 3644 (1983).

See e.g. : H. F r i t z s c h , Composite W-bosons and T h e i r Dynamics, MPI Munich p r e p r i n t (Nov. 1983).

To appear.in: Proceedings o f t h e I n t . School on Subnuclear Physics, E r i c e , Si c i 1 y (1983).

12. U. Baur and H. F r i t z s c h , t o appear i n : Phys. L e t t . B (1984).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to