• Aucun résultat trouvé

PHOTOLUMINESCENCE IN HEAVILY DOPED Si AND Ge

N/A
N/A
Protected

Academic year: 2021

Partager "PHOTOLUMINESCENCE IN HEAVILY DOPED Si AND Ge"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00223088

https://hal.archives-ouvertes.fr/jpa-00223088

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PHOTOLUMINESCENCE IN HEAVILY DOPED Si AND Ge

J. Wagner, A. Compaan, A. Axmann

To cite this version:

J. Wagner, A. Compaan, A. Axmann. PHOTOLUMINESCENCE IN HEAVILY DOPED Si AND Ge. Journal de Physique Colloques, 1983, 44 (C5), pp.C5-61-C5-64. �10.1051/jphyscol:1983508�. �jpa- 00223088�

(2)

JOURNAL DE PHYSIQUE

Colloque C5, suppl6rnent au nO1O, Tome 44, octobre 1983 page C5-61

PHOTOLUMINESCENCE IN HEAVILY DOPED Si AND Ge

J. Wagner, A. cornpaan' and A. Axmann*

Max-PZanck-Institut fiir Festkiirperforschung, Heisenbergstr. 1, 7000 Stuttgart 80, F. R. G.

*Fraunhofer-Institut fur Angewandte FestkBrperphysik, Eckerstr. 4, 7800 Freiburg, F. R. G.

resum6 - iious prksentons des spectres de photoluminescence d basse temp6ra- t u r e mesurks sur une s k r i e d ' k c h a n t i l l o n s de S i e t de Ge dop6s e t implantes en i o n s l o u r d s . En operant un r e c u i t l a s e r sur l e s 6 c h a n t i l l o n s implantks, des concentrations de p o r t e u r s a l l a n t b i e n au-deld de l a l i m i t e de s o l u b i l i - t 6 d l l i q u i l i b r e peuvent E t r e obtenues ( j u s q u ' d l o z 1 ~ m - ~ ) . Oe ces spectres nous dkduisons des i n f o r m a t i o n s sur l a bande i n t e r d i t e r 6 d u i t e a i n s i que sur l e remplissage des bandes en f o n c t i o n de l a c o n c e n t r a t i o n de p o r t e u r s . A b s t r a c t - We r e p o r t t h e r e s u l t s o f low-temperature photoluminescence mea- surements on a s e r i e s o f b u l k doped and h e a v i l y i o n i n p l a n t e d S i and Ge samples. B y l a s e r annealinq of t h e i o n implanted samples c a r r i e r concentra- t i o n s f a r above t h e e q u i l i b r i u m s o l u b i l i t y l i m i t (up t o lo2' ~ m - ~ ) were ob- tained. From t h i s photoluminescence spectra, i n f o r m a t i o n on t h e reduced band gap and t h e band f i l l i n g as a f u n c t i o n of c a r r i e r c o n c e n t r a t i o n i s obtained.

The basic physical p r o p e r t i e s o f h e a v i l y doped semiconductors a r e o f p r a c t i c a l as w e l l as t h e o r e t i c a l i n t e r e s t . For b u l k dooed m a t e r i a l t h e s u b s t i t u t i o n a l i m p u r i t y c o n c e n t r a t i o n i s l i m i t e d t o 10'' - loz0 cm-3 by t h e e q u i l i b r i u m s o l u b i l i t y l i m i t . I t has been shown p r e v i o u s l y t h a t c o n c e n t r a t i o n f a r above t h i s l i m i t can be ob- t a i n e d by l a s e r annealing o f h e a v i l y i o n implanted m a t e r i a l /I/.

We performed photoluminescence s t u d i e s on both b u l k doped and i o n implanted S i and Ge samples w i t h c a r r i e r c o n c e n t r a t i o n up t o loz1 cmT3. By photoluminescence (PL) ex- periments t h e c a r r i e r d i s t r i b u t i o n w i t h i n t h e conduction o r valence band as w e l l as t h e c a r r i e r induced shrinkage o f t h e band gap can be s t u d i e d v i a t h e r a d i a t i v e r e - combination o f photoexcited m i n o r i t y c a r r i e r s /2,3/.

The i o n implanted samples were bombarded w i t h up t o 2

-

1016 ionslcm and annealed -2 w i t h an XeCl excimer l a s e r 141. For t h e PL measurements t h e samples were cooled by He exchange gas t o 5

-

10K. The luminescence was e x c i t e d by t h e 647.1 nm l i n e of a Kr i o n l a s e r and analyzed by a l m double spectrometer and an i n t r i n s i c Ge diode.

Fig. 1 shows t h e r e s u l t s f o r b u l k doped Si:P. I n t h e PL spectrum o f t h e sample w i t h t h e l o w e s t i m p u r i t y c a n c e n t r a t i o n ( 4

.

1018 ~ m - ~ ) f o u r l i n e s are resolved.

These are, from higher t o lower energies, the n o - p h o n o n - t r a n s i t i o n p ) , t h e TA and TO momentum conserving phonon a s s i s t e a r e p l i c a s and t h e TO + 0 r e p l i c a , i n - v o l v i n g a momentum conserving p l u s an o p t i c a l zone center phonon. For i n c r e a s i n g i m p u r i t y c o n c e n t r a t i o n t h e l i n e s become broader and f o r t h e heaviest doped samples o n l y the two s t r o n g e s t rep1 i c a s (NP and TO) can be d i s t i n g u i s h e d . From t h e e x c i t a - t i o n d e n s i t y o f = l o 0 W/cm z used f o r r e c o r d i n g t h i s spectra i t can b e concluded t h a t

t Permanent address:

Department of Physics, Cardwell Hall, Kansas State University, Manhattan, Kansas 66506, U.S.A.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983508

(3)

0 - 6 2 JOURNAL DE PHYSIQUE

we a r e i n t h e h i g h e x c i t a t i o n l i m i t as d e f i n e d by Parsons 151. Therefore the l u m i - nescence i s i n t e r p r e t e d as t h e r a d i a t i v e recombination o f e l e c t r o n s from t h e dege- nerate conduction band w i t h f r e e photoexcited holes.

Photon Energy feV) 0.9

1.4 1.3 1.2 1.1 1.0

Wavelength (ym)

Photon Energy (eV)

1.7 1.6 1.5 1.4 1.3 1.2 Wavelength (pm)

Fiq. I

-

Photoluminescence o f b u l k F i a . 2 - Photoluminescence o f b u l k d o ~ e d doped S i :P samples a t 10 K. The .,

arrows i n d i c a t e t h e h i g h energy ( 4

.

10'' and i o n implanted ( 1

-

1016

c u t o f f edge o f t h e [UP-line (EGal) cm-2 and 2 1016 i m p l a n t a t i o n dose)

.

,-

and t h e low energy edge o f t h e Ge:P samples. The i m p l a n t a t i o n o f 1

.

loLb

TO-rep1 i c a (EG,2 - haT0).

cm-2 corresponds t o about 2-3

.

loz0 and

t h e one o f 2

-

1016 t o about 5

-

loz0

~ r n - ~ c a r r i e r concentration. The arrows i n d i -

c a t e t h e h i g h energy edge EG-l o f t h e lumines-

-. > -

cence band. The drawn l i n e s a r e spectra n o t c o r r e c t e d f o r d e t e c t o r response. The dashed l i n e s i n d i c a t e t h e luginescence l i n e shape a f t e r a p p l y i n g t h i s c o r r e c t i o n .

The low energy c u t - o f f o f the luminescence l i n e , i n d i c a t i n g t h e energy separation EG,2 a t t h e top of t h e valence and bottom o f t h e conduction band, e x h i b i t s a pro- nounced s h i f t t o lower energies w i t h i n c r e a s i n g c a r r i e r c o n c e n t r a t i o n . The h i g h energy edge EG,l, given by t h e sum o f t h e band gap EG,2 and t h e k i n e t i c energy of

t h e c a r r i e r s , remains approximately constant w i t h i n c r e a s i n g i m p u r i t y concentration.

(4)

Fig. 3 - Bandstructure o f Ge. The luminescence t r a n s i t i o n s , p o s s i b l e i n h e a v i l y doped n-type m a t e r i a l , a r e schematically i n d i c a t e d . The values shown f o r band sepa- r a t i o n s r e f e r t o pure Ge a t low temperatures.

The r e s u l t s f o r Ge:P a r e summarized i n F i g . 2. The sample w i t h t h e lowest i m p u r i t y c o n c e n t r a t i o n i s b u l k doped, t h e more h e a v i l y doped ones a r e i o n implanted. The l u - minescence spectrum, here again o r i g i n a t i n g from band t o band t r a n s i t i o n s , i s domi- nated by t h e no-phonon c o n t r i b u t i o n 121. The h i g h energy edge shows a d r a s t i c s h i f t t o higher energies w i t h i n c r e a s i n g c a r r i e r concentration. For t h e heaviest i m p l a n t - ed sample (25

-

10" ~ m - ~ ) the luminescence band extends up t o 0.98 eV. T h i s i n d i - cates f o r t h a t c a r r i e r c o n c e n t r a t i o n a f i l l i n g o f t h e d i r e c t r conduction band m i - nimum and, e v e n t u a l l y , a l s o o f the higher l y i n g i n d i r e c t X mi8ima (see F i g . 3 ) . The corresponding gap energies are 0.89 eV and 0.95 eV f o r C t h e r t o r ( t o p o f the valence band) and X t o r t r a n s i t i o n r e s p e c t i v e l y , compared tcr '0.75 $V f o r t h e lowest gap i n v o l v i n b t h e ' i n d i r e c t L p o i n t conduction band minima (LC t o r )

.

These

values r e f e r t o pure Ge a t low temperatures. The low energy edge o f t h e PI 1 in e

c o u l d n o t be r e s o l v e d due t o t h e cut-off a t 1.7 um o f t h e Ge d e t e c t o r used f o r these experiments.

Only a r e l a t i v e l y small number o f e l e c t r o n s c o n t r i b u t e t o t h e r t o r luminescence due t o t h e much lower d e n s i t y o f s t a t e s i n the r c band minimum 8ompar8d t o t h e 4 - f o l d degenerated L p o i n t minima. But on the o t h e r hand t h e luminescence e f f i c i e n c y i s expected t o be much h i g h e r f o r t h i s d i r e c t t r a n s i t i o n than f o r i n d i r e c t proces- ses. So t h e luminescence i n t e n s i t y of t h e d i r e c t t r a n s i t i o n becomes comparable t o t h e one o f t h e i n d i r e c t L t o r v recombination. D i r e c t luminescence from the r c con-

C

d u c t i o n band minimum has been r e p o r t e d p r e v i o u s l y f o r h i g h l y photoexcited pure Ge by van D r i e l e t a l . 161. The low temperature PL spectra shown i n t h a t paper have s t r o n g s i m i l a r i t i e s t o t h e one shown i n t h e present work f o r t h e most h e a v i l y doped sample.

Comparing t h e dependence o f t h e o p t i c a l gap EGS1 on t h e c a r r i e r c o n c e n t r a t i o n f o r n-type Ge and S i a remarkable d i f f e r e n c e i s found. I n Ge a pronounced s h i f t t o higher energies i s observed f o r i n c r e a s i n g dopant c o n c e n t r a t i o n s . T h i s s h i f t amounts t o ~ 0 . 2 5 eV f o r 5

.

loz0 ~ m - ~ , compared t o the band gap o f pure Ge. I n S i i n con-

(5)

JOURNAL DE PHYSIQUE

t r a s t an a p p r o x i m a t e l y c o n s t a n t v a l u e o f EG-l i s f o u n d u p t o 1.5 lo2' CVI-~. As p o i n t e d o u t by Mahan / 7 / t h i s d i f f e r e n t b e h a v i o u r i s a t t r i b u t e d t o two e f f e c t s . F i r s t t h e e f f e c t i v e d e n s i t y o f s t a t e s mass f o r e l e c t r o n s i s a f a c t o r o f two s m a l l e r f o r Ge t h a n f o r S i when t a k i n g i n t o account t h e degeneracy o f t h e c o n d u c t i o n band.

T h i s e f f e c t r e s u l t s i n a h i g h e r k i n e t i c energy i n Ge t h a n i n S i f o r a g i v e n c a r r i e r c o n c e n t r a t i o n . Second t h e r e d u c t i o n o f t h e gap EG,p i s l a r g e r i n S i t h a n i n Ge due t o t h e l a r g e r Rydberg energy o f S i .

I n c o n c l u s i o n we have shown t h a t semiconductors e x t r e m e l y h e a v i l y doped b y i o n im- p l a n t a t i o n and l a s e r a n n e a l i n g can be s t u d i e d by photoluminescence. T h i s s t u d y p r o v i d e s v a l u a b l e i n f o r m a t i o n on t h e f i l l i n g o f h i g h e r l y i n g band minima and on t h e band gap s h i f t as a f u n c t i o n o f c a r r i e r c o n c e n t r a t i o n o v e r a much w i d e r range as a c c e s s i b l e w i t h b u l k doped m a t e r i a l .

ACKNOWLEDGEMENTS

We l i k e t o t h a n k P r o f . M. Cardona f o r many h e l p f u l d i s c u s s i o n s and Messrs. H. H i r t ,

PI. Siemers and P. Wurster f o r v a l u a b l e e x p e r i m e n t a l a s s i s t a n c e .

REFERENCES

1. WHITE C.W., APPLETON B.R., STRITZKER B., ZEHNER D.M. and WILSON S.R., "Laser and Electron-Beam S o l i d I n t e r a c t i o n s and M a t e r i a l s P r o c e s s i n g " (ed. b y J.F.

Gibbons, L.D. Hess, T.W. Sigmon, E l s e v i e r N o r t h H o l l a n d I n c . , New York, 1981), p. 59.

2. BENOIT d l a GUILLAUME C. and CENROGORA J., Phys. S t a t . S o l . 35 (1968) 599.

3. SCHMID P.E., THEWALT M.L.W. and DUMKE W.P., Sol i d S t a t e Commz. 38 (1981) 1091 and r e f e r e n c e s t h e r e i n .

4. COMPAAN A., CONTRERAS G., CARDONA M. and AXMANN A. ( p a p e r , t h e s e p r o c e e d i n g s ) . 5. PARSONS R.R., Sol i d S t a t e Commun. 29 (1979) 763.

6. VA"N DRIEL H.M., ELCI A., BESSEY J .-ST and SCULLY M.O., Sol i d S t a t e Commun. 20

119761 837.

7. MAHAN'G.D., J. Appl

.

Phys. 15 (1980) 2634.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to