• Aucun résultat trouvé

THE ELECTRICAL RESISTIVITIES OF SOLUTIONS OF Li22Si5 AND OF Li22Ge5 IN LIQUID LITHIUM

N/A
N/A
Protected

Academic year: 2021

Partager "THE ELECTRICAL RESISTIVITIES OF SOLUTIONS OF Li22Si5 AND OF Li22Ge5 IN LIQUID LITHIUM"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220232

https://hal.archives-ouvertes.fr/jpa-00220232

Submitted on 1 Jan 1980

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE ELECTRICAL RESISTIVITIES OF SOLUTIONS OF Li22Si5 AND OF Li22Ge5 IN LIQUID LITHIUM

P. Hubberstey, A. Dadd

To cite this version:

P. Hubberstey, A. Dadd. THE ELECTRICAL RESISTIVITIES OF SOLUTIONS OF Li22Si5 AND OF Li22Ge5 IN LIQUID LITHIUM. Journal de Physique Colloques, 1980, 41 (C8), pp.C8-531-C8-534.

�10.1051/jphyscol:19808134�. �jpa-00220232�

(2)

JOURNAL DE PHYSIQUE CoZZoque C8, suppl&ment au n08, Tome 41, aoCt 1980, page C8-531

THE ELECTRICAL R E S I S T I V I T I E S OF SOLUTIONS O F L i Z 2 S i 5 AND OF L i 2 2 G e 5 IN LIQUID LITHIUM

P . Hubberstey and A.T. Dadd

Inorganic Chemistry Department, ~ n i v e r s i t y o f Nottingham, Nottingham, NG7 2110, U.K.

INTRODUCTION

S o l u t i o n s of t h e r m a l l y s t a b l e , s t r o n g l y bonded i n t e r m e t a l l i c compounds in l i q u i d a l k a l i metals a r e of both t e c h n o l o g i c a l importance and academic i n t e r e s t . Liquid l i t h i u m , l i t h i u m a l l o y s and l i t h i u m compounds a r e p r e s e n t l y b e i n g c o n s i d e r ed a s c a n d i d a t e s f o r t h e b r e e d i n g medium of f u t u r e D

-

T f u e l l e d thermonuclear r e a c t o r s ; l y 2 t h e poss- i b l e use of l i q u i d l i t h i u m a s t h e primary c o o l a n t i n t h e s e r e a c t o r s i s a l s o b e i n g c o n s i d e r e d . l y 2

Academic i n t e r e s t i n t h e s e s o l u t i o n s i s f o s - t e r e d by t h e i n c r e a s i n g evidence which s u g g e s t s t h a t t h e s o l u t i o n s p a r t i a l l y r e t a i n t h e s t r u c t u r a l and e l e c t r o n i c p r o p e r t i e s of t h e s o l i d s t a t e i n t e r - m e t a l l i c compounds. Thus, r e c e n t l y determined thermodynamic p r o p e r t i e s of L i

-

1 n Y 3 L i

-

T I , 3 L i

-

p b Y 4 L i

-

E i i Y 3 Na

-

L+aY5Na

-

T1 and Na 6

-

Sn 7

s o l u t i o n s a r e c o n s i s t e n t w i t h t h e e x i s t e n c e of a s s - o c i a t e s i n t h e s o l u t i o n s . Furthermore, 7 ~ i and

Knight s h i f t and e l e c t r i c a l r e s i s t i v i t y s t u d i e s of L i

-

I n s o l u t i o n s 8 i n d i c a t e t h e forma- t i o n of a l o o s e l y bound L i In compound i n t h e

3 l i q u i & phase.

As p a r t of our c o n t i n u i n g s t u d y of t h e physics and chemistry of s o l u t i o n s formed by Group IV elements i n l i q u i d a l k a l i

metal^,^-'^

we r e p o r t i n t h i s paper e l e c t r i c a l r e s i s t i v i t y d z t a f o r s o l u t i o n s of L i M ( M = S i o r Ge ) i n l i q u i d

22 5

l i t h i u m ( 0.00 $ x SL

.

6 0.0165; 0.00 ,<xGe< 0.0872 )

.

The r e s i s t i v i t y d a t a a r e n o t only of i n t e r e s t , per

se, b u t a r e used t o e l u c i d a t e t h e chemistry of t h e s e s o l u t i o n s . Thus, s o l u b i l i t y d a t a f o r Li22M5 i n l i q u i d l i t h i u m a r e r e p o r t e d , t o g e t h e r w i t h t h e r e a c t i o n s of t h e s e s o l u t i o n s w i t h L i N.

3

EXPERIMXNTAL

The a p p a r a t u s and procedure f o r t h e measure- ment of t h e r e s i s t a n c e of l i q u i d metal s o l u t i o n s h a s been d e s c r i b e d previously.10 The s o l u t i o n s were prepared, i n s i t u , e i t h e r ( f o r L i

-

Li22M5 ~ 0 1 ~ -

t i o n s ) by weighing i n t h e a p p r o p r i a t e Group I V element ( S i , Koch L i g h t , 99.999$, 0.10g; Ge, Koch L i g h t 99.999,$, 0.25g ) under argon, o r ( f o r L i

-

L i N s o l u t i o n s ) by exposing a known volume of

3

4 3 n i t r o g e n gas ( Air P r o d u c t s , 99.98$, 1 0 mm a t S.T.P. ) t o t h e l i q u i d l i t h i u m ( Koch L i g h t , b9.9@

j o g )

.

Argon ( Air P r o d u c t s , 99.9% ) was used t o p r o t e c t t h e l i q u i d m e t a l a t a l l times. Lithium, n i t r o g e n and argon, were p u r i f i e d a s d e s c r i b e d

p r e v i o u s l y ; 1 3 s i l i c o n and germanium were used with- o u t f u r t h e r p u r i f i c a t i o n .

The r e s i s t a n c e of t h e s o l u t i o n s was monitored c o n t i n u o u s l y u s i n g a v e r s i o n of t h e c a p i l l a r y method. R e s i s t i v i t i e s were c a l c u l a t e d from c a l i b r a - t i o n and sample r e s i s t a n c e d a t a and t h e dimensions of t h e c a p i l l a r y . 'Ghereas t h e r e s i s t i v i t i e ? , of t h e L i

-

L i M s o l u t i o n s were determined a s a f u n c t i o n

22 5

of temperature under c o n s t a n t c o n c e n t r a t i o n condi- t i o n s , t h o s e of L i

-

L i M

-

L i N s o l u t i o n s were

22 5 3

determined a s a f u n c t i o n of c o n c e n t r a t i o n .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19808134

(3)

C8-532 JOURNAL DE PHYSIQUE

Figure 2 :- a e s i s t i v i t y

-

composition isotherms f o r more concentrated ( x Ge ~ 0 . 0 8 7 2 ) L i

-

L i Ge s o l u t i o n s . Temperatures

22 5

( K ) given a g a i n s t t h e curves.

Figure 1 :- R e s i s t i v i t y

-

composition i s o t h e m s f o r d i l u t e ( x M 4 0.0165 ) L i

-

L i 22 M 5

( M = S i o r Ge ) s o l u t i o n s . Tempera- t u r e s ( K ) given a g a i n s t t h e curves.

RESULTS AM) DISCUSSION

R e s i s t i v i t i e s of L i

-

L i @ S o l u t i o n s 22 5

R e s i s t i v i t y d a t a were obtained a s a f u n c t i o n of temperature f o r 1 4 Li

-

L i S i 22 5 ( 0.00 (xSi

<

0.0165 ) and 26 L i

-

L i Ge 22 5 ( O.OO<x Ge

<

0.0872 )

s o l u t i o n s . R e s i s t i v i t y

-

composition isotherms were c o n s t r u c t e d f o r d i l u t e s o l u t i o n s ( 0.00 (x M

5

0.0165 ) of both s o l u t e s i n t h e temperature range 575 (T/K (775; s e l e c t e d isotherms a r e presented i n Figure 1. Over t h e s e l i m i t e d c o n c e n t r a t i o n ranges, t h e two s o l u t e s cause a n e f f e c t i v e l y l i n e a r i n - crease i n t h e r e s i s t i v i t y of l i t h i u m with i n c r e a s - ing concentration. Consequently, p r e c i s e r e s i s t i v -

i t y values (

%,am

) a r e given a s a f u n c t i o n of com- p o s i t i o n ( x. ) by equation ( 1 ) ; v a l u e s of t h e r e s -

1 t

q = 9. + k.xtj

111 ( 1)

i s t i v . i t y of pure l i t h i u m ( go

,am

) , t h e c o n s t a n t , A , s t a n d a r d d e v i a t i o n s ( o,Rm ) and t h e r e l e v a n t composition ranges a r e c o l l e c t e d i n Table 1.

R e s i s t i v i t y

-

composition isotherms were a l s o c o n s t r u c t e d f o r more concentrated L i

-

L i Ge sol-

22 5 u t i o n s ( 0.00 (xGe ( 0.0872 ) i n t h e temperature range 725 (T/K ( 8 3 5 ; s e l e c t e d isotherms a r e pres- ented i n Figure 2. Although l i n e a r a t very d i l u t e c o n c e n t r a t i o n , t h e s e isotherms e x h i b i t a n i n c r e a s - i n g g r a d i e n t with i n c r e a s i n g s o l u t e concentration.

These curves can be represented adequately by equa- t i o n (2) ; values of g,, 6, and t h e r e l e v a n t compos-

t

= ?. + 1.b 10-5xGe + L 10-kx 3 (2) i t i o n ranges a r e c o l l e c t e d i n Table 2.

Consideration of t h e d a t a shows t h a t L i Ge 22 5

i s marginally more e f f e c t i v e i n i n c r e a s i n g t h e

(4)

max. x Ge

Table 1 :- c o e f f i c i e n t s i n t h e

t -

x e q u a t i o n (1) Table 3 :- Values of t h e u n i t r e s i s t i v i t y i n c r e a s e

-

M

P r e c i p i t a t i n g phases w i t h l i t h i u m a s s o l v e n t LiH Li20 L i N L i S i L i Ge

3 22 5 22 5

-

L i Pb

-22 5

4.9 2.1* 7.0 10.4 11.2

-

9.0

P r e c i p i t a t i n g phases with sodium a s s o l v e n t

NaH Na20

- -

NaGe Na 15 Sn 4 Na 15 Pb 4

4.6 2.0*

- -

8.6 11.8 11.2

*

e x t r a p o l a t e d d a t a value.

The c l a s s i c a l Faber

-

Ziman ( n e a r l y f r e e e l e c t r o n ) t r e a t m e n t of t h e e l e c t r i c a l r e s i s t i v i t y

( 1 0 8 p/nm ) f o r s o l u t e s i n l i q u i d a l k a l i m e t a l s a t 673 K.

L i

-

Li S i s o l u t i o n s 22 5

Table 2 :- C o e f f i c i e n t s i n t h e 9

-

x e q u a t i o n (2) of b i n a r y a l l o y s mono- and p o l y v a l e n t m e t a l s g i v e s Ge

( 7 2 5 750 775 800 825 835 a p

-

xM i s o t h e r m which f o l l o w s t h e p a t t e r n shown T/K

log./'rn 8 1 0 " ~

l o

8 u/nm max. xSi

575 625 675 725 775

27.38 28.78 30.06 31.23 32.29

10.25 10.30 10.35 10.40 10.50

0.042 0.048 0.047 0.053 0.062

0.0020 0.0050 0.0112 0.0165 0.0165

r e s i s t i v i t y of l i q u i d l i t h i u m . Comparison of t h e from t h e r e s u l t s of t h e thermodynamic and e l e c t r i c - L i

-

L i Ge s o l u t i o n s

22 5

l 0 ' % k m

lo8a/hm

max xGe

u n i t r e s i s t i v i t y i n c r e a s e s ( i.e., t h e i n c r e a s e i n a l r e s i s t i v i t y s t u d i e s d i s c u s s e d i n t h e i n t r o d u c - r e s i s t i v i t y , a t x M = 0.01 ), w i t h d a t a f o r o t h e r s o l - t i o n . I n t e r m e t a l l i c compounds between a l k a l i m e t a l s

u i d s t a t e ; t h i s model h a s been developed r e c e n t l y 3 1 ° 2 3 31*78 32*29 32*79 33'21 33.40

0.11 0.13 0.19 0.22 0.22 0.25

0.026 0.037 0.051 0.066 0.085 0.087

u t e s i n l i t h i u m i s e f f e c t e d i n Table 3. Of t h e sol- and t h e Group elements ( e.g., L i M ) a r e very 22 5

i n F i g u r e 2. The a l t e r n a t i v e , somewhat more q u a l i t - a t i v e model assumes compound f o r m a t i o n i n t h e l i q -

u t e s examined, L i M have t h e g r e a t e s t e f f e c t .

22 5 s t a b l e . T h i s s t a b i l i t y i s i n d i c a t i v e of s t r o n g bond These h i g h v a l u e s a r e c h a r a c t e r i s t i c o f a l k a l i i n g , p o s s i b l y c o v a l e n t but more probably i o n i c , metal s o l u t i o n s c o n t a i n i n g Group I V elements, s i m i l - w i t h i n t h e s e s p e c i e s ; both t y p e s of bonding

TU.

a r v a l u e s b e i n g observed f o r s o l u t i o n s of Li22Pb5 g i v e e l e c t r o n l o c a l i s a t i o n . If t h e e l e c t r o n i c p r o p i n l i t h i u m and NaGe, Na Sn and Na i n sodium e r t i e s of t h e i n t e r m e t a l l i c compounds a r e r i t a i n e d

15 4 15 4

( Table 3 )

.

i n t h e l i q u i d , i t i s f e a s i b l e t h a t e l e c t r o n l o c a l - The r e s u l t s must be considered w i t h i n t h e i s a t i o n w i l l occur r e s u l t i n g i n abnormally h i g h c o n t e x t of t h e e n t i r e L i

-

M ( M = S i , Ge ) system* r e s i s t i v i t i e s a t t h e s o l u t i o n composition r e l a t i n g Two models, one based on t h e n e a r l y f r e e e l e c t r o n t o t h e s e compounds (

%i

= 0.815 ). The q

-

xM

t h e o r y , t h e o t h e r assuming compound formation i n i s o t h e r m would t h u s b e expected t o be s i m i l a r t o t h e l i q u i d , can be proposed t o ac'count f o r t h e r e - t h a t shown i n F i g u r e 2.

s u l t s . Although based on q u i t e d i v e r s e assumptions, S o l u b i l i t i e s of L i M i n L i q u i d L i t h i m

22-5

-

t h e y g e n e r a t e s i m i l a r 9

-

xM isotherms. Such an i s o - D i s c o n t i n u i t i e s i n t h e

p -

T d a t a occur a t t h e m i s shown schematically i n F i g u r e 2 ( I n s e t ) t h e boundary s e p a r a t i n g t h e single-phase ( l i q u i d ) t h e r e s i s t i v i t y r i s e s s t e e p l y from t h e l i t h i u m r e g i o n from t h e two-phase ( l i q u i d + Li22M5 ) v a l u e t o a l a r g e maximum a t

3.

= 0.8 ( thereby region. The v a r i a t i o n of t h e temperature ( T/K ) g i v i n g t h e very h i g h u n i t r e s i s t i v i t y i n c r e a s e s ) of t h e d i s c o n t i n u i t y w i t h s o l u t i o n composition followed by a g r a d u a l d e c r e a s e t o t h e germanium ( xM ) i s a measure of t h e s o l u b i l i t y of L i M i n

22 5

(5)

JOURNAL DE PHYSIQUE

7.2 x lo-%m(mol$ N)-I b u t i n a decrease, g r a d i e n t --

xlo-e 00 0005 OQlO 0015 100 O W 0010 bole ~ o m x lo-=

20

20

10

-

A' 00185 0

I I I I I I I

00 OOOJ 0010 bo15(W 0005 OO(0

W'5 X~ W20

Figure 3 :- R e s i s t i v i t y d a t a f o r Li

-

Li M 22 5

-

Li3N

s o l u t i o n s a t 725 K.

lithium. The d a t a can be represented by e q u a t i o n s ( 3 ) and (4). The remarkable s i m i l a r i t y i n t h e

I n x S i = 5 . 5 4 8 - 6 7 7 5 / T 5 0 0 ( ~ / ~ ( 7 0 0 (3) In X ~ e = 5.459

-

6630/T 530(T/K(715 (4) L i M s o l u b i l i t i e s may be a t t r i b u t e d t o . t h e sim-

22 5

i l a r s t a b i l i t i e s of t h e i n t e r m e t a l l i c compounds.

R e s i s t i v i t i e s of L i

-

L i M

-

L i N S o l u t i o n s 22 5 -3

The i n t e r a c t i o n s between L i M and L i N i n

22 5 3

l i t h i u m a t 725 K have been e l u c i d a t e d using elec- t r i c a l r e s i s t i v i t y techniques; t h e r e s u l t s a r e de- p i c t e d i n Figure 3. S o l u t i o n of L i Ge i n l i t h i u m

22 5

gave a l i n e a r r e s i s t i v i t y i n c r e a s e , g r a d i e n t = l l . 2 5 x 10-8nm(mol$ ~ e ) - l ; subsequent a d d i t i o n of L i N gave a f u r t h e r l i n e a r i n c r e a s e , g r a d i e n t =

3 -8 -1

7.2 x 1 0 flm(mol% N)

.

Since t h e s e g r a d i e n t s a r e those a n t i c i p a t e d f o r t h e s o l u t i o n of LiZ2Ge5 and L i N s e p a r a t e l y i n l i t h i u m , it i s concluded t h a t

3

no i n t e r a c t i o n occurs.

S o l u t i o n of L i S i i n . l i t h i u m gave t h e ex- 22 5

pected r e s i s t i v i t y i n c r e a s e with g r a d i e n t 10.40 x

-8 -1

1 0 R m(mol$ ~ i )

.

Subsequent a d d i t i o n of Li3N, however, r e s u l t e d n o t i n an i n c r e a s e , g r a d i e n t

= -3.3 x 1 0 ~ m ( m o l $ N)". -8 Tnis decrease i s a t t r i b - uted t o t h e l o s s of L i S i from s o l u t i o n by reac-

22 5

t i o n with t h e added L i N t o form a LixSi N t e r n a r y

3 Y

=

compound. I f i t i s assumed t h a t the product i s in- s o l u b l e i n l i t h i u m , t h e r e s i s t i v i t y decrease i n d i c - a t e s t h a t i t s Si:N r a t i o i s ca. 1:4. Preliminary X-ray powder d i f f r a c t i o n s t u d i e s of t h e s o l i d prod- u c t i s o l a t e d from t h e r e a c t i o n system by d i s t i l l - a t i o n of excess l i t h i u m a t 875K confirms t h i s r a t i o i n d i c a t i n g t h a t t h e product may be Li8SiN This

4' system i s t h u s analogous t o t h e Li

-

Li2C2

-

L i 3 N

system, from which t h e complex s a l t , Li NCN, can be 2

i s o l a t e d ; t h u s f a r , no o t h e r s i m i l a r complex s a l t s have been shown t o be s t a b l e t o l i q u i d lithium.u'

The a u t h o r s would l i k e t o thank t h e S.R.C. f o r t h e award of a maintenance g r a n t ( t o A.T.D. )

BEFJBENCES

1. J.H.DeVan, J.Nuclear Mater. ,85&86(1979)249.

2. R.E.Gold,D.~.Smith, Proc.2nd.Int.Conf.Liquid Metals i n Energy Prodn., i n t h e p r e s s . 3. B. Predel, G. Oehme , ~ . ~ e t a l l k u n d e , 7 0 ( 1 9 7 9 ) 618, 4. B.Frede1. G.Oehme, Z.Metallkunde,70(1979)450.

5. S.Tamaki, N.E.Cusack, J.Phys.F. ,9(1979)403.

6. E.Mairova, A.G.Morashevskii, Russ.J.Pnys.Chem., 51 ( 1977) u+16.

7. M.Rivier, A.Pelton, J.Electrochem.Soo.,l25 (1973) 1377.

8. C.van d e r Marel,E.Brandenburg,W.van d e r Lugt, J . P ~ Y S . F . ,8(1978)~273.

9. P.Hubberstey, R.Pulham, J.C.S.Faraday I , 7 0 (1974) 1631.

10. P.Hubberstey, R.FuIham, J . C .S.Dalton, (1972) 819.

11. P.Hubberstey, R.Pulham, J.C.S.Dalton, (1974)1541 12. P.Hubberstey, A.Castleman, J.Electrochem.Soc.,

119(1972) 963,967

13. P.Adams ,M.Down ,P.Hubbers t e y ,R. Pulham, J.C. S.

Faraday I , 73 (1977) 230.

14. M.Down,M.Haley,P.Hubberstey,R.Pulham,A.Thunder, J.C.S.Dalton,(1978)lJ+07.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to