• Aucun résultat trouvé

STABILITY STUDIES OF CABLED CONDUCTORS IN He I AND He II

N/A
N/A
Protected

Academic year: 2021

Partager "STABILITY STUDIES OF CABLED CONDUCTORS IN He I AND He II"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00223574

https://hal.archives-ouvertes.fr/jpa-00223574

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

STABILITY STUDIES OF CABLED CONDUCTORS IN He I AND He II

S. van Sciver, K. Stocker

To cite this version:

S. van Sciver, K. Stocker. STABILITY STUDIES OF CABLED CONDUCTORS IN He I AND He II. Journal de Physique Colloques, 1984, 45 (C1), pp.C1-519-C1-524. �10.1051/jphyscol:19841106�.

�jpa-00223574�

(2)

JOURNAL DE PHYSIQUE

Colloque C l , supplbment a u no 1, Tome 45, janvier 1984 page CI-519

S T A B I L I T Y STUDIES OF CABLED CONDUCTORS I N He I AND He I 1 S.W. Van S c i v e r and K. Stocker

Applied Superconductivity Center, University of Glisconsin-Madison, Madison, Wisconsin 53706, U . S. A.

Resume

-

Des experiences o n t

e t e

e f f e c t u e e s pour e t u d i e r l e s p r i n c i p e s m u e s q u i gouvernent 1 a s t a b i 1 i t e de supraconducteurs composites c 9 b l e s r e f r o i d i s p a r un b a i n He1 ou H e I I .

A b s t r a c t

-

Experiments have been performed t o study t h e p h y s i c a l p r i n c i p a l s governing t h e s t a b i l i t y o f c a b l e d composite superconductors c o o l e d by pool b o i l i n g He I and He 11.

There i s c o n s i d e r a b l e i n t e r e s t i n c a b l e d composite superconductors f o r a p p l i c a t i o n s which r e q u i r e t i m e v a r y i n g magnetic f i e l d s . A few examples o f these i n c l u d e magnets f o r f u s i o n p a r t i c u l a r l y i n t h e Tokamak c o n f i g u r a t i o n and h i g h energy p h y s i c s

d i p o l es.

The s t a b i l i t y o f cabled conductors i s n o t w e l l e s t a b l i s h e d . For f u l l y s t a b l e magnetic systems t h e l i m i t s a r e determined p r i m a r i l y by t r a n s i e n t and steady s t a t e h e a t t r a n s f e r between t h e conductor and bath. One i m p o r t a n t parameter which i s n o t w e l l known i s t h e e q u i v a l e n t c o o l e d p e r i m e t e r f o r a s u r f a c e t h a t c o n s i s t s o f a r e g u l a r bundle o f w i r e s r a t h e r than an i d e a l plane o f known o r i e n t a t i o n / I / . I n an attempt t o answer these questions, t h e p r e s e n t study has c o n c e n t r a t e d on measurements o f heat t r a n s f e r and s t a b i l i t y o f model cab1 e c o n f i g u r a t i o n s . The goals o f t h i s i n v e s t i g a t i o n have been two-fold. F i r s t , t o determine heat t r a n s f e r l i m i t s f o r cables o r bundles which have predominantly c y l i n d r i c a l geometries. Sec- ond, t o use these heat t r a n s f e r l i m i t s t o understand t h e performance o f c a b l e d com- p o s i t e superconductors. I n b o t h cases these measurements a r e c a r r i e d o u t i n He I a t 4.2 K and He 11. P r e l i m i n a r y r e s u l t s o f t h i s work have been r e p o r t e d p r e v i o u s l y /2/.

HEAT TRANSFER STUDIES

The experimental model adopted t o i n v e s t i g a t e t h e heat t r a n s f e r i s a bundle o f seven s t a i n l e s s s t e e l tubes o f diameter 1.25

w

and w a l l t h i c k n e s s 0.15 mm. Several o f t h e tubes w i t h i n each bundle are instrumented w i t h Au(Fe)-chrome1 thermocouples so t h a t t h e i n n e r s u r f a c e temperature can be measured. The tubes a r e heated by passing a D.C. c u r r e n t . Using t h i s c o n f i g u r a t i o n s u r f a c e heat t r a n s f e r c h a r a c t e r i s t i c s can be determined p r o v i d e d t h e temperature drop t h r o u g h t h e s t a i n l e s s s t e e l i s t a k e n i n t o account.

One o f t h e p r i n c i p a l q u e s t i o n s p e r t a i n i n g t o t h i s c o n f i g u r a t i o n i s an e s t i m a t e o f t h e e f f e c t i v e cooled perimeter, P. T h i s q u a n t i t y i s s t r o n g l y a f f e c t e d by geomet- r i c a l c o n s t r a i n t s such as number and diameter o f wires. Since t h e r e i s no u n i v e r - s a l l y accepted approach t o t h i s question, we have somewhat a r b i t r a r i l y chosen t h e c o o l e d p e r i m e t e r t o be a 1 i n e enci r c l i n g t h e e n t i r e bundle. Thus a seven w i r e bundle has a c o o l e d p e r i m e t e r o f 3n$ where $ i s t h e i n d i v i d u a l w i r e diameter.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19841106

(3)

C 1-520 JOURNAL DE PHYSIQUE

I n the heat t r a n s f e r experiments, a number o f f a c t o r s a f f e c t the measured tempera- t u r e d i f f e r e n c e and c r i t i c a l heat fluxes. These f a c t o r s include:

1 ) Tube o s i t i o n I n general the heat t r a n s f e r i s best f o r t h e tube a t t h e t o p of the h r s t f o r t h a t i n t h e center. This e f f e c t manifests i t s e l f i n both t h e c r i t i c a l heat f l u x and f i l m b o i l i n g heat t r a n s f e r c o e f f i c i e n t .

2) Spacing between tubes. Heat t r a n s f e r improves when helium i s allowed t o v e n t i l a t e between i n d i v i d u a l components o f the bundle.

3) Bath temperature. The peak heat f l u x e s increase w i t h decreasing b a t h

temperature. This e f f e c t i s i n p a r t due t o the bath being subcooled t o 1 atm (100 KPa) but i s most pronounced i n t h e He I 1 range.

4) Heater ramp rate. The peak heat f l u x increases w i t h the c u r r e n t ramp r a t e because the subcool ed h e l ium bath temperature r i s e s as t h e heat i s appl ied. Thi s e f f e c t i s l a r g e s t i n the He I 1 heat t r a n s f e r r e s u l t s where the e n t i r e bath can be affected.

For t h e case o f He I, extensive measurements o f the heat t r a n s f e r curve f o r t h e seven tube bundle have been c a r r i e d out /3/. I n t h i s study t h e parameters which were v a r i e d i n c l u d e gap between bundle components and bath temperature. For a composite superconductor, t h e r e would be no s i z a b l e gap between components. Further because o f h i g h c o n d u c t i v i t y metals present, the heat t r a n s f e r t o t h e center conduc- t o r could be i n p a r t c o n t r o l l e d by heat conduction t o adjacent components. For ous measurements, the peak heat f l u x t o these r y d e l bundles varied from about 0.3 W/cm f o r t h e center conductor t o c l o s e t o 1 W/cm f o r those on t h e outside.

Heat t r a n s f e r t o subcooled He I 1 has considerably d i f f e r e n t behavior. I n p a r t i c u l a r , the peak heat f l u x i s c o n t r o l l e d by a conduction mechanism and t h e temperature d i f f e r e n c e between the bath and the He 11-He I phase t r a n s i t i o n , (TA

-

Tb).

Because o f t h i s f a c t , heat t r a n s f e r i s l i m i t e d by t h e helium cross s e c t i o n a l area. This problem has been s t u d i e d e x t e n s i v e l y f o r one dimensional channels where f o r p r a c t i c a l systems heat flow obeys t h e Gorter-Mellink r e l a t i o n /4/

where f (T) i s a temperature dependent f u n c t i o n w i t h a minimum around 1.9 K.

The peak heat f l u x i n He I 1 i s obtained by i n t e g r a t i o n o f (1) between t h e bath temperature and Th. I n c y l i n d r i c a l coordinates t h i s r e l a t i o n takes t h e form

where r i s the r a d i u s of the c y l i n d r i c a l heater surface and qo* i s the surface heat f l u x . P f f o r t s t o c o r r e l a t e experimental peak heat f l u x e s i n He I 1 w i t h ( 2 ) have n o t been e n t i r e l y successful. I n p a r t i c u l a r t h e r a t i o of the experimental t o

t h e o r e t i c a l value (qex */qth*) i s always l e s s than u n i t y w i t h t h e d e v i a t i o n i n c r e a s i n g w i t h decreaeing radius /5/.

Measurements o f the normalized peak heat f l u x i n He I 1 q0(r0/2)1/3 f o r several c y l i n d r i c a l t e s t sections are shown i n Fig. 1. A1 so p l o t t e d i s t h e temperature dependent heat c o n d u c t i v i t y f u n c t i o n Z(Tb). The seven tube bundle i s assumed t o have an e f f e c t i v e diameter +eff o f 3.75 mm. The other two sets o f r e s u l t s are f o r a s i n g l e tube

+

= 1.25 mn and a previous experiment on a v e r t i c a l l y o r i e n t e d cyl i n d r i - cal copper sample,

+

= 12.7 mm. The f i r s t c h a r a c t e r i s t i c t o note i s t h a t t h e experimental data a l l f a l l below t h e expected c o r r e l a t i o n based on (2). Further, t h e d e v i a t i o n increases w i t h decreasing e f f e c t i v e diameter. One apparent discrep- ancy i n these r e s u l t s i s f o r the s i n g l e tube where higher than expected peak heat f l u x e s occur. This dependence i s most probably brought on by t h e s e n s i t i v i t y o f c r i t i c a l heat f l u x t o t h e rat'e a t which the c u r r e n t i s ramped. However, i t should be p o s s i b l e t o p r e d i c t t h e maximum heat t r a n s f e r r a t e i n c o n f i g u r a t i o n s dominated by c y l i n d r i c a l geometry by combining ( 2 ) w i t h an empirical adjustment f o r the d e v i a t i o n i n cyl i n d r i c a l geometry.

(4)

STABILITY MEASUREMENTS

The t e s t c o n f i g u r a t i o n f o r the s t a b i l i t y measurements c o n s i s t s o f a seven w i r e cable. The s i x outer wires are u n i n s u l a t e d copper-NbTi composites w i t h t h e core

.

+=12.7rnrn

., +

* 1.25 rnm

1

Fig. 1. Normalized peak heat f l u x i n He I 1 f o r c y l i n d r i c a l geometries.

being a r e s i s t i v e heater. C h a r a c t e r i s t i c s o f t h e two cables t e s t e d a r e given i n Table I.

Table I. C h a r a c t e r i s t i c s of cab1 ed conductor sections.

Sample I Sample I 1

Conductor 6 x 0.25 mm 6 x 0.51 mm

Cu:NbTi r a t i o 5 4

Core 0.25 mn Manganin 0.50 mn SS

I (5 T, 4.2 K ) 90 A 296 A

R ~ R Stabi 1 i zer 80

- -

Length (mn) 663 622

I n a d d i t i o n t o the core heater, sample I i s instrumented w i t h a l o c a l heater 12 mm l o n g which a l s o i n s u l a t e s the conductor from the helium bath.

Each t e s t s e c t i o n i s i n d u c t i v e l y wound i n a grooved phenolic c o i l form which allows approximately 50% o f the conductor surface t o be cooled by the he1 ium. This provides a cooled perimeter P o f 1.2 nun and 2.4 mn f o r samples I and I 1 respec- t i v e l y . Normalization of the conductor i s achieved by e i t h e r p u l s i n g the core or l o c a l heater and d e t e c t i n g t h e e x t e n t o f the zone w i t h voltage taps over t h e t e s t s e c t i o n length. This experiment was performed i n f i e l d s between 3 and 7 T a t 4.2 K and 3 and 9 T a t 1.9 K as a f u n c t i o n o f a p p l i e d current.

P l o t t e d i n Fig. 2 are the c r i t i c a l I and recovery c u r r e n t 3 IR f o r sample I. At 4.2 K, t h e recovery c u r r e n t s were obtained f o r a 1.55 J/cm heat pulse which i s s u f f i c i e n t t o d r i v e the conductor f u l l y normal a t zero f i e l d . Recovery currents were defined according t o f u l l recovery o f t h e conductor a f t e r approximately 200 msec.

(5)

Cl-522 J O U R N A L DE PHYSIQUE

The recovery currents a t 4.2 K were compared t o the unconditional s t a b i l i t y re1 a t i on,

I R 2 R = qP ( 3 )

Fig. 2. C r i t i c a l and recovery c u r r e n t s f o r sample I i n He I and He 11.

where q i s t h e recovery heat f l u x from f i l m b o i l i n g . Based on t h e measured s t a b i l i z e r resistance and recovery c r r e n t s the equivalen3 recovery heat f l u x i s

?!

c a l c u l a t e d t o vary between 0.38 W/cm a t 7 T t o 0.54 W/cm a t 3 T . The noted f i e l d dependence i s most probably the r e s u l t o f end c o o l i n g e f f e c t s . Values determined from these experiments are w i t h i n t h e range o f those measured f o r t h e model c o n f i g - u r a t i o n employed i n the heat t r a n s f e r study. Also, by d e f i n i n g the e q u i v a l e n t perimeter as a c i r c l e enclosing t h e conductor, we f i n d t h e heat t r a n s f e r and s t a b i l i t y c h a r a c t e r i s t i c s r a t h e r s i m i l a r t o those obtained f o r f l a t surfaces /6,7/.

I n the case o f He 11, t h e behavior i s considerably d i f f e r e n t . F i r s t , t h e energy pulse was only capable o f normalizing t h e conductor i n s u l a t e d by the heater. The recovery c u r r e n t IR' shown i n Fig. 2 i s a c t u a l l y associated o n l y w i t h t h i s e f f e c t , which i s discussed f u r t h e r below. Based on the c y l i n d r i c a l heat t r a n s f e r analysis, we estimate t h e f u l l recovery c u r r e n t a t 1.9 K t o be t h a o f t h e upper curve IR Fig. 2 which corresponds t o a peak heat f l u x o f 9.5 W/cm

8 .

Unfortunately, i t was i n n o t p o s s i b l e t o t e s t t h i s l i m i t i n t h e present experiment because o f t h e i n s t a b i l i t y associated w i t h the i n s u l a t e d region.

The energy density r e q u i r e d t o achieve n o r m a l i z a t i o n of t h e conductor was measured f o r sample I a t 1.9 K and sample I 1 a t 4.2 K. For t h e case o f sample I a t 1.9 K, t h e only normal zone occurred under t h e i n s u l a t e d region. For sample I I a t 4.2 K i t was possible t o quench t h e e n t i r 3 conductor a t c u r r e n t s above 0.5 I by t h e a p p l i c a - t i o n o f a pulse l e s s than 1 J/cm

.

A s u n a r y o f pulse energy d e n s i t i e s versus I/Ic i s shown i n Fig. 3. A1 so p l o t t e d a r e t h e r e s u l t s o f Tsuchiya and Suenaga /8/ f o r s i n g l e conductors o f NbTi a t 5 T and Nb3Sn a t 10 T.

Comparing the r e s u l t s a t 4.2 K f o r NbTi, i t i s i n t e r e s t i n g t o note t h e much g r e a t e r l e v e l o f s t a b i l i t y f o r the cable a t h i g h currents. This e f f e c t could be due t o one o f several f a c t o r s i n c l u d i n g t h e higher copper t o superconductor r a t i o f o r t h e cable, the method by which the heat pulse i s a p p l i e d o r heat t r a n s f e r consider- ations. The l a t t e r explanation appears t o be most probable because t h e hea3 r e q u i r e d t o vaporize the helium w i t h i n the cable represents about 135 mj/cm of conductor which i s comparable t o t h e minimum energy a t t h e highest currents.

(6)

The r e s u l t s from sample I a t 1.9 K a t 8 t o 9 T show a much h i g h e r degree o f s t a b i l i t y r e q u i r i n g between f o u r and e i g h t t i m e s t h e energy d e n s i t y n o r m a l i z e d t o t h e conductor t h a n a t 4.2 K. T h i s l e v e l o f s t a b i l i t y i s comparable t o t h a t o b t a i n e d by Tsuchiya and Suenaga /8/ f o r Nb3Sn a t 4.2 K. I n t h a t case t h e h i g h l e v e l o f

L

NbTi CABL

-

0 ST. a71 : 4.2 K -,mx cu

-

s t a b i l i t y i s o b t a i n e d because o f t h e h i g h Tc w h i l e i n t h e p r e s e n t case i s due t o enhancement o f heat t r a n s f e r .

0

I n o r d e r t o develop a f u r t h e r u n d e r s t a n d i n g o f t h e t y p e o f normal zone e s t a b l i s h e d i n t h e sample I a t 1.9 K, we have analyzed o u r d a t a u s i n g a model developed by M e u r i s and M a i l f e r t /9/. The model t r e a t s uncooled r e g i o n s o f t h e conductor and c a l c u l a t e s t h e c o n d i t i o n s whereby steady normal zones e x i s t and t h e energy r e q u i r e d t o c r e a t e them. Parameters t h a t determine t h i s c o n d i t i o n are:

, . . * ' , , . , ' * " " "

P

a = ( s t a b i l i t y parameter)

h ~ A (Tc

-

Tb)

0.5 1.0 1.5

I / l c

Fig. 3. Energy d e n s i t y r e q u i r e d t o normal i z e conductor samples.

i = I

T

( n o r m a l i z e d c u r r e n t ) ( 5 )

and

x S = [%j1/2 1 (normal i z e d ha1 f w i d t h ) (6

There i s some u n c e r t a i n t y i n t h i s a n a l y s i s owing t o t h e f a c t t h a t t h e heat t r a n s f e r c o e f f i c i e n t , h, t h e coo'led p e r i m e t e r , p, a r e n o t known and t h e thermal c o n d u c t i v i t y depends on a p p l i e d f i e l d as w e l l as temperature. p w v e r , f o r our experimental c o n d i t i o n s , t h e f u l l r e c o v e r y s h o u l d o c c u r when ai

(

0.5 w i t h some v a r i a t i o n due t o t h e p r o p e r t i e s changing w i t h magnetic f i e 1 d.

We have measured t h e energy p e r u n i t l e n g t h r e q u i r e d t o c r e a t e t h e s e steady normal zones f o r sample I a t 1.9 K and a p p l i e d f i e l d s between 3 and 9 T. These r e s u l t s a r e sh wn i n Fig. 4 n o r m a l i z e d a g a i n s t t h e s t a b i l i t y parameter a. Recovery o c c u r s f o r

a i q

,$

0.5. F o r c u r r e n t s l a r g e r t h a n t h i s , a de r e a r i n g s i z e d energy pul r e i s r e q u f r e d t o c r e a t e these normal zones. Foa ai 0.6 t h i s p u l s e i s a p p r o x i m a t e l y c o n s t a n t and c l o s e i n v a l u e t o t h e energy . q u i r e d t o v a p o r i z e t h e i n t e r s t i c i a l

(7)

C1-524 JOURNAL

DE

PHYSIQUE

he1 ium, AEH

.

Note t h a t t h e e n t h a l py o f t h e conductor between Tb and T i s a1 s o p l o t t e d i n

fig.

4. T h i s energy AECoOd i s about a f a c t o r o f 20 s m a l l e r t h a n 6EHe and i s n o t expected t o c o n t r o l t h e behavior.

Fig. 4. Energy r e q u i r e d t o c r e a t e steady normal zones i n sample I.

CONCLUSIONS

We have i n v e s t i g a t e d t h e heat t r a n s f e r and s t a b i l i t y o f seven w i r e cable conductors i n He I and He 11. The r e s u l t s can be summarized as f o l l o w s :

1 ) For a cable i n He I, s u r r o u n d i n g t h e conductor i s between 0.3 t o 1 W/cm t h e peak heat f l u x when avera ed over a c i r c l e

P .

2) I n He 11, The peak heat I l u x i s c o n t r o l l e d by r a d i a l heat t r a n s p o r t i n He I 1 and can approach 10 W/cm i n small diameter samples.

3 ) The energy d e n s i t y r e q u i r e d t o quench a cable i n He I i s h i g h e r than t h a t f o r an i n d i v i d u a l w i r e because o f t h e e n t h a l p y o f t h e he1 ium w i t h i n t h e cab1 e.

4 ) I n He I 1 t h e conductor performance was c o n t r o l l e d by a normal zone c r e a t e d under an i n s u l a t e d r e g i o n o f t h e t e s t section.

ACKNOWLE DGNENTS

Work supported by t h e U.S. Department o f Energy under c o n t r a c t E-AC02-82ER52077.

Thanks a l s o go t o A. K h a l i l f o r c o n t r i b u t i n g t o t h e e a r l y stages o f t h i s work.

REFERENCES

1. HSU Y.H., PURCELL J.R., CHEN W.Y. and ALCORN J.S., IEEE Trans. on Magnetics Mag- 17 (1981) 750.

2.

-

KHALIL A., STOCKER K. and VAN SCIVER S.W., IEEE Trans. on Magnetics Mag-19 (1983) 268.

3. KHALIL A., Cryogenics 22 (1982) 277.

4. VAN SCIVER S.W., ~ d v a n c e s i n Cryogenic E n g i n e e r i n g

27

(1982) 375.

5.

.

VAN SCIVER S.W. and LEE R.L., Advances i n Cryogenic E n g i n e e r i n g 25 (1980) 363 and i n Cryogenic Processes and Equipment i n Energy Systems, A S M E ~ U ~ . H00164

(19801 147.

6. CLAUDET G., MEURIS C., PARAIN J., TURCK 0.. IEEE Trans. on Magnetics Mag-15 (19811 340.

7. ~UROWSKI P., Cryogenics

2

(1981) 533.

8. TSUCHIYA K. and SUENAGA M., s u b m i t t e d t o Advances i n Cryogenic E n g i n e e r i n g

2.

9. MEURIS C. and MAILFERT A., IEEE Trans. on Magnetics Mag-17 (1981) 1079.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to