• Aucun résultat trouvé

Process scale-up and optimization for production of high efficacy oral rabies vaccine

N/A
N/A
Protected

Academic year: 2021

Partager "Process scale-up and optimization for production of high efficacy oral rabies vaccine"

Copied!
26
0
0

Texte intégral

(1)

https://doi.org/10.4224/23001977

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=ef506fef-5eaf-4fa2-a15f-e82157388ff2

https://publications-cnrc.canada.ca/fra/voir/objet/?id=ef506fef-5eaf-4fa2-a15f-e82157388ff2

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Process scale-up and optimization for production of high efficacy oral

rabies vaccine

Lamen, Amine; Shen, Chun Fang; Lanthier, Stephane; Beresford, Andrew;

Montes, Johnny; Beresford, Andrew

(2)

Process Scale-up and Optimization

for Production of High Efficacy Oral

Rabies Vaccine

Amine Kamen

(3)

2

Outlines

• Introduction

• Process development

• Field trials results

• Conclusions and

Perspectives

(4)

3

Rabies: Old Disease

New Challenges

¾ Rabies is an important causative agent of disease

resulting in an acute infection of the nervous system

and death

¾ Rabies remains endemic throughout the world.

• 55,000 deaths per year (WHO)

• Major Public health issue

¾ Global reservoir in domestic and wildlife animals

including dogs, foxes, raccoons, skunks, coyotes,

mongooses and bats

¾ Oral Rabies Vaccine (ORV) is a publicly acceptable

methodology that may be applied on a broad

(5)

Wildlife Rabies

Control in Ontario

Source: Ontario Ministry of Natural Resouces

9 Between 1958 and 1990 there was an

average of 1,500 confirmed cases of

wildlife rabies per year.

9 Since 1989 OMNR has used oral

vaccines as a tool to control wildlife

rabies. Program has been very

successful.

9 In 2009 there were only 16 confirmed

cases in terrestrial mammals. 50% in

skunks.

9 Available oral rabies vaccines were

ineffective in skunk.

9 Control of rabies in wildlife remains

an important challenge.

9 A human adenovirus rabies

glycoprotein recombinant vaccine

(AdRG1.3) was developed for oral

vaccination: Yarosh et al. 1996, Vaccine

9 AdRG1.3 rabies vaccine is produced

by cell culture process using HEK 293

cell.

¾ Large quantity of vaccine is required for field trials

(6)

5

AdV vector

Vector

Well characterized

Broad tropis

m

Weak

ly pathogenic

Respiratory track

Manufacturing

High titers

High stability

Well characterized

up-&

downs

(7)

6

From first to third

generation AdV

Wild-type AdV

1

st

generation

2

d

generation

3

d

generation

9 Reduction of immunogenicity & toxicity

9 Improved transgene capacity

9 Lower production yield & increased complexity of production

system

(8)

7

HEK293 a platform for

viral vectors and

vaccine manufacturing

Production &

Purification

Application

Scale

References

Adenovirus

vaccines

500L

Kamen et al., J. gene

medicine, 2004

P21

Gutless AdV

Muscular Dystrophy

3L

Dormond et al.,

Biotechnol.Bioeng, 2009

Reovirus

Oncolytic

100L

Transfiguration et al.

J.PBA, 2008

P21

Influenza H1N1

Vaccine

3L

Le Ru et al. Vaccine, 2010

P20

AAV

Interferon

3L

Durocher et al., VirMet,

2007.

P9

Retrovirus

Marker 3L,

perfusion

Ghani et al.,

Biotechnol.Bioeng, 2006

(9)

8

Improvement of

Production yield and

Process Robustness

1. Selection of a basal

medium

2. Medium development

3. Increase in cell density

4. Streamlining the

Process

(10)

9

Selection of basal

medium

with med exchange

100 91.6 61.6 76.2 123

0

20

40

60

80

100

120

140

DMEM

DM-

LC-SFM

Ex-Cell Vpro

IHM-01

Medium type (+ 5% FBS)

N

o

rm

a

li

z

e

d

produc

ti

v

it

y

(

%

)

(11)

10

Effect of cell density at

infection

100

70.8

47.1

117.6

83.4

74.8

123

0

20

40

60

80

100

120

140

DMEM-1mc/mL

DM-

Vpro

IHM-01

Cell density at infection

N

o

rm

a

lize

d

p

ro

d

u

c

tiv

it

y

(

%

)

1 mc/mL

2 mc/mL

(12)

Production of AdRG1.3

in 180 L bioreactor with

medium exchange

100 82.5 207.5 100 205.3 178.9 202.6 180.0 0 50 100 150 200 250 125 mL SF 20 L 120L-B1 120L-B2

N

o

rm

a

liz

e

d

v

o

lu

m

e

tr

ic

v

ir

u

s

p

ro

d

u

c

tiv

it

y

(

%

)

VP IVP DM EM + 5% FB S

(13)

12

More Robust

Production

Process

for

M

anufacturing

?

(14)

13

IHM-02, resulted in

production w/o

medium exchange

8.3E+10

1.5E+11

2.4E+11

7.7E+10

2.6E+10

9.1E+10

0.0E+00

5.0E+10

1.0E+11

1.5E+11

2.0E+11

2.5E+11

3.0E+11

1 mc/mL

2 mc/mL

3 mc/mL

Cell density at infection

Vi

rus c

onc

. (vp/

mL)

with med exchange

w/o med exchange

(15)

14

1.0E+09 1.0E+10 1.0E+11 1.0E+12 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 Batch number V ir us conc ( v p/m L)

Mean = 9.95E+10

STDEV = 2.31E+10

Production data 2008

160L batch

(16)

15

Production data 2009

500 L batch

1.0E+09 1.0E+10 1.0E+11 1.0E+12 B1 B2 B3 B4 B6 B7 B9 B11 B12 B13 B14 B15 B16 Batch number V ir u s co n c ( v p /mL )

Mean = 9.97E+10

STDEV = 5.27E+10

(17)

16

(18)

17

Concluding Remarks:

Process development

• Improved production process resulting in

– 50% saving in material expenses and

– 25% reduction in labor costs

– More robust process

• Improved AdRG1.3 viral yield by a

factor of three through optimization of

cell culture media

(19)

18

Successful Scale-up of

AdV-based ORV

vaccine

~ 12000L of AdRG1.3 (ONRAB) at

10

11

VP/mL produced for field trials

(20)

19

ORV Baiting

Vaccine-filled baits are distributed throughout the

area by airplanes.

Key component in the baits is adenovirus type 5

expressing rabies glycoprotein (AdRG1.3).

Source: Ontario Ministry of Natural 

Resouces

(21)

20

Aerial baiting of

rabies vaccine

Rabies vaccine bait developed by Ontario

Ministry of Natural Resources

Baits will be distributed by plane.

Aerial baiting is done using a bait machine.

Aerial baiting is part of Ontario’s

rabies control program.

(22)

21

Vaccine efficacy in

Raccoons

(23)

22

Vaccine efficacy in

(24)

New facilities for

commercial

manufacturing

Artemis

Technologies Inc.

(25)

24

Conclusion

• Successful process optimization and scale-up for

manufacturing of an adenovirus-base ORV

• Production of >> 5 millions baits for field trials

• Succesful technology transfer for manufacturing

of adenovirus-based ORV

• Highly efficient ORV based on 2006/07 field trials

• This ORV-related program has potentially broad

appplications in developing countries where most

of the 55,000 human rabies cases per year are

(26)

25

Project Team

Chun Fang Shen

Stephane Lanthier

Danielle Jacob

Johnny Montes

Olivier Henri

Hélène Coelho

Robert Voyer

Ricardo Ochoa

Louis Bisson

Alice Bernier

Credit

Artemis Technologies

Andrew Beresford

Alex Beath

Other Departments and

Agencies

OMNR

CFIA

Références

Documents relatifs

(A-1) Correlation between mRNA level of RABV-G gene, gene copy number and RABV-G protein level ( a - RABV-G and p-RABV-G correspond to the expression level of RABV-G in P.

ةيبساحلما ةباقرلا جمانربل ةنسل 2019 قيقحتلاب راعشإ اهلاسرإ دعب اذهو 250/DIWM/CDI/SDCFR/SCF/2019 خيرات يف فلكملل 11/05/2019 عم ،مهتابجاوو مهقوقح

PRESENTEE PAR SUJET : SOUTENUE PUBLIQUEMENT LE : JURY : PRESIDENT DU JURY EXAMINATEUR EXAMINATEUR 2017 Mélanie LESCALIER. Les tendinopathies de la coiffe

Pre-eruptive conditions, crustal processes, and magmatic timescales recorded in products of Calbuco and Osorno volcanoes, Southern Andes. Localised heating and intensive

réactifs, l’avancement maximal xmax et les coefficients stœchiométriques a,b, c, d et e. 3°) Déterminer la composition finale du système réactionnel. 4°) On refait

contains compiled information summarizing studies of RABORAL V‑RG immunogenicity and efficacy in wildlife species that are the current target of label or experimental use of

For each area, three parameters were evaluated separately for adult foxes and fox cubs: the bait uptake rate (that is the per- centage of foxes marked with tetracycline,

The impact of the vaccination with SAG2 baits on the number of terrestrial animal rabies cases is illustrated in four countries, Switzerland, France, Estonia and Italy....