• Aucun résultat trouvé

Agglomeration of wet granular materials in rotating drum

N/A
N/A
Protected

Academic year: 2021

Partager "Agglomeration of wet granular materials in rotating drum"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01772261

https://hal.archives-ouvertes.fr/hal-01772261

Submitted on 20 Apr 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Agglomeration of wet granular materials in rotating drum

Thanh-Trung Vo, Saeid Nezamabadi, Jean-Yves Delenne, Farhang Radjai

To cite this version:

Thanh-Trung Vo, Saeid Nezamabadi, Jean-Yves Delenne, Farhang Radjai. Agglomeration of wet granular materials in rotating drum. Powders & grains 2017, Jul 2017, Montpellier, France. �hal-01772261�

(2)

CAPILLARY COHESION & VISCOUS FORCE

INDUSTRIAL PROCESS

MOLECULAR DYNAMICS METHOD

FURTHER RESEARCHES

GRANULE COMPRESSION STRENGTH

AGGLOMERATION RESULTS

OBJECTIVES & METHODOLOGY

AGGLOMERATION OF WET GRANULAR MATERIAL IN ROTATING DRUM

THANH-TRUNG VO , SAEID NEZAMABADI , JEAN-YVES DELENNE , FARHANG RADJAI

1 1 2 1,3

Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS, Montpellier, France IATE, UMR1208 INRA - CIRAD - Université de Montpellier - SupAgro, 34060 Montpellier, France

<MSE>, UMI 3466 CNRS-MIT, CEE, MIT, 77 Massachusetts Avenue, Cambridge 02139, USA

1

2 3

position vector of particle i

mass of particle i (kg) vector gravity

normal unit vector

tangential unit vector

Simulation the agglomeration process of solid particles in the presence of a viscous liquid. We are mostly interested in application to iron ore granulation in a horizontal rotating drum. In this work, we use Molecular Dynamics (MD) method to simulate the agglomeration process during the dense granular flows in the rotary drum. In which particles are distributed by an uniform distribution of particle volume fractions.

Granulation (balling) Drum

Agglomeration is the process of particles size enlargement and most commonly refers to the upgrading of material fines into larger particles, such as pellets or granules. Iron ore granulation is an important stage in the steel making.

ROLLING - CASCADING MODEL

Water drops Dry particles Wet particles Granule

)

rota ting dru m capillary bond

Mechanism of granule formation

Granular material flow & granule growth in the cascading regime

8

th

International Conference on

Micromechanics of Granular Media

Exponential increase of granule for different Froude numbers. Exponential increase of granule

for different size ratios

Exponential increase of kinetic energy normalized by potential energy

of granule as function of Fr.

Exponential increases of wet & contact coordination numbers (a) and decrease of kinetic energy normalized by potential energy of granule (b), as functions of size ratio 𝞪.

a) b)

Filling level: Packing fraction:

- Investigation the agglomeration process of a huge number of particles.

- Comparison between experiment and simulation of agglomeration processes in rotating drum.

Conclusions

1 The effect of size ratio on the granule

growth is more crucial than that of rotational speed.

2 Granule growth is an exponential function

of size ratio and rotational speed of drum.

3 Kinetic energy normalized by potential

energy increases proportional to the rotational speed, but inversely proportional to the size ratio.

4 The wet and contact coordination

numbers of agglomerate grains are proportional to size ratio.

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0 5x10-7 1x10-6 1.5x10-6 2x10-6 2.5x10-6 3x10-6 3.5x10-6 4x10-6 f c (10 -6 N) δn (m) Vb=1.7 10-17(m3), α=2 Vb=7.1.10-18(m3), α=2 Vb=1.7 10-17(m3), α=3 Vb=7.1.10-18(m3), α=3 Vb=1.7 10-17(m3), α=4 Vb=7.1.10-18(m3), α=4 Vb=1.7 10-17(m3), α=5 Vb=7.1.10-18(m3), α=5 Froude number:

Powders & Grains 2017

Granule

(formed & grown)

!

!

0.27 0.275 0.28 0.285 0.29 0.295 0.3 2 2.5 3 3.5 4 4.5 5 kΕ g /p Ε g α 0.27 0.275 0.28 0.285 0.29 0.295 0.3 2 2.5 3 3.5 4 4.5 5 kΕ g /p Ε g α 0.27 0.275 0.28 0.285 0.29 0.295 0.3 2 2.5 3 3.5 4 4.5 5 kΕ g /p Ε g α 3 4 5 6 7 8 9 10 11 12 2 2.5 3 3.5 4 4.5 5 Coordination number Ζ c , Ζ b α Ζb Ζc 3 4 5 6 7 8 9 10 11 12 2 2.5 3 3.5 4 4.5 5 Coordination number Ζ c , Ζ b α Ζb Ζc 3 4 5 6 7 8 9 10 11 12 2 2.5 3 3.5 4 4.5 5 Coordination number Ζ c , Ζ b α Ζb Ζc 0.29 0.295 0.3 0.305 0.31 0.315 0.5 0.6 0.7 0.8 0.9 1 kΕ g /p Ε g Fr 0.29 0.295 0.3 0.305 0.31 0.315 0.5 0.6 0.7 0.8 0.9 1 kΕ g /p Ε g Fr 0.29 0.295 0.3 0.305 0.31 0.315 0.5 0.6 0.7 0.8 0.9 1 kΕ g /p Ε g Fr 100 110 120 130 140 150 160 170 180 190 200 0 10 20 30 40 50 Granule growth, N g (particles) Drum Revolutions Fr=0.5 Fr=0.6 Fr=0.7 Fr=0.8 Fr=0.9 Fr=1.0 100 110 120 130 140 150 160 170 180 190 200 0 10 20 30 40 50 Granule growth, N g (particles) Drum Revolutions Fr=0.5 Fr=0.6 Fr=0.7 Fr=0.8 Fr=0.9 Fr=1.0 100 110 120 130 140 150 160 170 180 190 200 0 10 20 30 40 50 Granule growth, N g (particles) Drum Revolutions Fr=0.5 Fr=0.6 Fr=0.7 Fr=0.8 Fr=0.9 Fr=1.0

m

i

d

2

s

i

dt

2

=

X

(i)

((f

n

+ f

c

+ f

vis

)n + f

t

t) + m

i

g

s

i

g

n

t

m

i Liquid bridge Ri i mig fcij f ij n fvisij fvisik fcik ftij mkg k Rk Rj j mjg n

!

A

B

'

!

S

LC

C

R

c x z

f =

S

⇡R

2c

=

'

sin '

2⇡

= Vs S ⇤ L = ⌃( 43 ⇡R3i ) S ⇤ L F r = ! 2R c g

C = AB = 2R

c

sin

'

2

S =

R

2 c

2

('

sin ')

LC = AB = 'Rc fc = 8 > < > : R, for n < 0

Re n , for 0 n nmax

0, for n nmax fvis = 3 2 ⇡R 2 1 n d n dt

 = 2⇡

s

cos ✓

max n = (1 + 1 2 ✓)V 1/3 b ↵ = Rmax Rmin = c h(↵)( Vb R0 ) 1 2

R =

p

R

i

R

j Diagram of capillary bridge

fracture dg

The snapshots of model and force chains of a granule under diametrical compression.

0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 σ p /σ c µ α = 1 α = 2 α = 5 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 σ p /σ c µ α = 1 α = 2 α = 5 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 σ p /σ c µ α = 1 α = 2 α = 5 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0 1 2 3 4 5 6 Φ α 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0 1 2 3 4 5 6 Φ α 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0 1 2 3 4 5 6 Φ α 8 9 10 11 12 13 0 1 2 3 4 5 6 Ζ α 8 9 10 11 12 13 0 1 2 3 4 5 6 Ζ α 8 9 10 11 12 13 0 1 2 3 4 5 6 Ζ α

Normalized peak strength as

function of friction coefficient. Packing fraction and coordination number, as functions of size ratio

c = s

hRi

!

Rotational speed (rad/s)

Free surface angle Filling angle (degree)

'

debonding distance 100 120 140 160 180 200 220 240 0 10 20 30 40 50 Granule growth, N g (particles) Drum Revolutions 100 120 140 160 180 200 220 240 0 10 20 30 40 50 Granule growth, N g (particles) Drum Revolutions α=2 α=3 α=4 α=5 100 120 140 160 180 200 220 240 0 10 20 30 40 50 Granule growth, N g (particles) Drum Revolutions 100 120 140 160 180 200 220 240 0 10 20 30 40 50 Granule growth, N g (particles) Drum Revolutions

Références

Documents relatifs

لالأأ : ةماعلا ريًاعاا ( ةيطخشلا ) : يجعاخلا ثاباؿخلا مكضالإ تُطخصلا ثافطلاب ملهخج اهنىو تُطخش اهنؤب ريًاهالإا هظه فضىج غضاىن رلاز ًم نىيخجو

Here, we provide an extensive biochemical and kinetic characterization of VmoLac and describe the X-ray structures of the enzyme bound to a fatty acid and to its cognate

The duplex antigen analysis showed a significant association of malaria attack inci- dence with IgG responses to MSP1p19 expressed as OD values, OD-ratio or dichotomized into

These tools aim at plan- ning real-time decisions given little, changing, and uncertain information available, which are: (i) a hydrological graphical tool (abacus) to estimate

biguities arising when associating different types of words (nouns, C. Pasquier et al. / Extending a Fuzzy Polarity Propagation Method for Multi-Domain Sentiment Analysis

Dans les trois chapitres précédents nous avons présenté nos propositions pour permettre l’exploration de relations complexes entre ensembles de données hétérogènes : le modèle

We report an experimental study of the thermal conductivity of a granular material when water is added to the system. Because of the formation of liquid bridges at the contacts

The mechanical response of a wet granular layer to imposed shear is studied experimentally at low applied normal stress. The granular material is immersed in water and the shear