• Aucun résultat trouvé

Synthesis and characterization of macroporous tin oxide composite as an anode material for Li-ion batteries

N/A
N/A
Protected

Academic year: 2021

Partager "Synthesis and characterization of macroporous tin oxide composite as an anode material for Li-ion batteries"

Copied!
7
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Journal of power sources, 196, 22, pp. 9731-9736, 2011-11-15

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1016/j.jpowrsour.2011.07.061

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Synthesis and characterization of macroporous tin oxide composite as

an anode material for Li-ion batteries

Yim, Chae-Ho; Baranova, Elena A.; Courtel, Fabrice M.; Abu-Lebdeh, Yaser;

Davidson, Isobel J.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=7c820d38-de40-4f83-a79b-7dbf9f8b466d

https://publications-cnrc.canada.ca/fra/voir/objet/?id=7c820d38-de40-4f83-a79b-7dbf9f8b466d

(2)

ContentslistsavailableatScienceDirect

Journal

of

Power

Sources

j ou rn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / j p o w s o u r

Synthesis

and

characterization

of

macroporous

tin

oxide

composite

as

an

anode

material

for

Li-ion

batteries

Chae-Ho

Yim

a

,

Elena

A.

Baranova

a

,

Fabrice

M.

Courtel

b

,

Yaser

Abu-Lebdeh

b,∗

,

Isobel

J.

Davidson

b aDepartmentofChemicalandBiologicalEngineering,UniversityofOttawa,161rueLouisPasteur,Ottawa,ON,K1N6N5,Canada

bNationalResearchCouncilCanada,1200MontrealRoad,Ottawa,ON,K1A0R6,Canada

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received7June2011

Receivedinrevisedform15July2011 Accepted16July2011

Available online 22 July 2011 Keywords:

MacroporousSnO2/Ccomposite SnO2

Li-ionbatteries

a

b

s

t

r

a

c

t

AmacroporousSnO2/Ccompositeanodematerialwassynthesizedusinganorganictemplate-assisted

method.Polystyrenespheresweresynthesizedandusedastemplateandleadtomacroporous

morphol-ogywithporesof300–500nmindiameterandasurfaceareaof54.7m2g−1.X-raydiffractionshowed

thattheSnO2nanoparticlesarecrystallizedinarutileP42/mnmlatticewiththepresenceofSnmetal

traces.ThesynthesizedmacroporousSnO2/Ccompositeprovidedpromisingperformanceinlithiumhalf

cellsshowingadischargecapacityof607mAhg−1after55cycles.Itwasfoundthatthemacroporous

SnO2/Ccompositeisstableandresistanttopulverizationuponcycling.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

Carbongraphitehasbeenthemostpopularanodematerialin useforLi-ion batteriesdue toitsmoderatecost, longcyclelife and negligible volumechange duringbattery cycling [1]. How-ever, due to its limited theoretical capacity to 372mAhg−1 or 833mAhmL−1,othermaterialsarebeingsoughtout;amongthem aremetalsthatcanreversiblyalloywithlithiumsuchassilicon (SiLi4.4,4200mAhg−1),tin(SnLi4.4,993mAhg−1),antimony(SbLi3, 660mAhg−1),andaluminium(LiAl,994mAhg−1)[1].Thesemetal alloysarepromisinganodematerialsduetotheirlithiumuptakeat lowpotentialandthreetotenfoldhighertheoreticalcapacities thangraphite. However,themajor problemwiththese materi-alsistheextremely largevolumechange(250–400%) uponthe alloying/dealloyingreactionwithlithium[1].Itcauses mechani-calcracks,pulverizationandlossofelectronicconductivityamong theparticlesandthecurrentcollector.Itresultsinanextremely poorbatterycyclelife[1–3].

One approach to prevent pulverization during the battery cyclingistominimizetheparticlesizeinmultiphasealloymatrices

[4]alongwiththeuseofbindersthatcanaccommodatevolume changes,suchassodiumcarboxymethylcellulose(NaCMC)[5]or styrenebutadienerubber(SBR)[6].Anotherapproachwouldbeto useaninertmatrixsuchasLi2OasinthecaseofSnO2.Itreacts withlithiuminatwo-stepprocess,firstviaanirreversible reac-tionwhereSnO2 isreducedintoSnthatthenfurtherreactswith

∗ Correspondingauthor.Tel.:+16139494184;fax:+16139912384. E-mailaddress:Yaser.Abu-Lebdeh@nrc-cnrc.gc.ca(Y.Abu-Lebdeh).

lithium byformingatin–lithium alloy[7].Asaresult, theLi2O matrixpreventsseverevolumechangeandkeepstheSnin nano-sizedform.AsreportedbyBrousseetal.[8],thesizeoftheparticles playsacrucialroleinthecaseoftinoxide,assmaller(nano) par-ticlesareabletobetteraccommodatetheabsolutevolumechange thanlarger(micro)ones.PristineSnO2nanoparticlesorcomposites usuallyshowamediumcapacityaround350–450mAhg−1atarate ofC/5[9–13].Bymaking3Dflower-shapedSnO2nanostructures, acapacityof670mAhg−1wasobtainedatarateofC/8.However, buildinguptheLi2Onetworkcouldnotpreventcompletevolume changes ofSn,leading topulverization.Otheralternativeshave beenintroduced,suchascoatingNi–SnontoCunano-rods[14],and sphericallyporousmulti-deckcageSnO2 [15].Otherapproaches includedispersionofSnO2particlesontoacarbonmaterial[13,16], or carboncoating ofSnO2 particles [17].Using a layer-by-layer technique to obtain carbon nanotubes as a substrate for SnO2 nanotubes (50wt%),Yang et al.[18] obtaineda specific capac-ityof450mAhg−1.Recently,researchgroupsstartedworkingon graphene/SnO2 compositesasawaytobetteraccommodatethe volume change;SnO2 nanoparticleswouldbetrapped between layersofgraphene,asshowninthefollowingRefs.[19–24].

Three-dimensionallyorderedmacroporous(3DOM)materials havebeenusedforavarietyofapplicationsinchemicaland bio-chemical sensors[26–28],photonicbandgapmaterials[29–31]

andnanofabrication[32].Thesynthesisofthistypeofmaterials involvestheuseofacolloidaltemplate[25].3DOMmaterial syn-thesiswasadaptedinthisworktoobtainanorderedcarbon-coated porousSnO2thatwouldpreventthesignificantvolumechangeand Snpulverization duringbattery cycling.In a battery,thehighly orderedmacroporousmaterialshouldhavegreatersurfacein

con-0378-7753/$–seefrontmatter.Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2011.07.061

(3)

9732 C.-H.Yimetal./JournalofPowerSources196 (2011) 9731–9736

tactwiththeelectrolyteandleadtobetterlithiumdiffusionintothe electrodematerial,andthusfastercharge/dischargerate.Porous SnO2templated-structureshaveimprovedalotofthereversible capacityandalsotheratecapabilityofSnO2electrodes,asshown byKimandCho[33];theyobtainedcapacitiesof775mAhg−1at C,whichisalmostthetheoreticalreversiblecapacityofSnO2.At higherrates,acapacity upto730mAhg−1 wasobtainedat10C, which is 93% of thetheoretical reversible capacity. The use of polystyrene(PS)asanorganiccolloidaltemplatenotonlymade itpossibletomakeacarboncoatedmacroporousSnO2/C compos-itebutalsotoobtainahighcarboncontentduetothenatureofthe thermaldecompositionofPS.Highcarboncontentwillimprovethe electronicconductivityoftheelectrodeandthuscompensatefor theinsulatingnatureofLi2O.Poly(methylmethacrylate)(PMMA) colloidsareanothercommontemplatetosynthesize3DOM crys-tals.However,depolymerisationofPMMAduringsinteringsteps reducestheamountofcarbonspreadoverSnO2/C[34].Therefore thePScolloidscanbeconsideredbettercandidatetodisperseSnO2 particlesintothecarbonmacroporousmaterial.

Ingeneral,3DOMmaterialsaresynthesizedbyinfiltrationof precursorsolutionontoatemplate[35–37].Inthiswork,weused adifferentapproachbymakingaSnO2/PScompositebymeansof ahydrothermalreaction.Thiswasfollowedbyacalcinationstep at600◦CinargoninordertodecomposethePScolloidsandform aporouscarbonmatrixsurroundingtheSnO2nanoparticles.The performanceofthemacroporousSnO2/Ccompositeandpristine SnO2nanoparticleswascomparedinlithiumhalfcellbatteryusing sodiumcarboxymethylcellulose(NaCMC)asbinder.

2. Materialsandmethods 2.1. Syntheses

PScolloidsweresynthesizedbyemulsion polymerization,as describedbyHollandetal.[25].Thestyrenemonomerwasobtained from Sigma–Aldrich (≥99% Reagentplus) and waspurged with nitrogenpriortouse.Then,50mLofstyrenewasaddedto425mL ofde-ionizedwater,whichwasalsopurgedwithnitrogen.The mix-turewasheatedto70◦C.Toinitializethepolymerization,25mLof nitrogenpurged0.1MK2S2O8(Sigma–Aldrich,99%)aqueous solu-tionwasaddedtothemixture.Thesolutionwaskeptat70◦Cfor 24hundernitrogen.ThePScolloids werewashedwithethanol (CommercialAlcoholsInc.,95%)andcentrifugedat10,000rpmfor 1htoobtaintheorderedorganictemplate.Thisstepwasrepeated threetimestoremovetheinorganicimpurities.

Tinoxidewassynthesizedbymeansofahydrothermalreaction. First,0.356gofSnCl2·2H2O(Fisher,98.4%)wasdissolvedin50mLof de-ionizedwaterand50mLofethanol.Then,0.240gofPScolloids wereaddedtothesolutionandmixedfor24husingmagnetic stir-ringtohomogenizeanddispersethePScolloidsinthesolution.The beakercontainingthesolutionwascoveredwithaparafilmto pre-ventwater/ethanolevaporation.Theresultantmilkysolutionwas putintoanautoclavereactor(Parr,BombNo.4744)for6hat120◦C. Afterthesynthesis,theautoclavereactorcontainingthesolution waslefttocooltoroomtemperature.Theresultingsolutionwas centrifugedtoorderthePScolloidsandbuildtheSnO2/PS compos-ite.Theobtainedpowderwaswashedthreetimeswithethanol, andthencalcinatedunderargon.Thefirstsinteringstepwas con-ductedat260◦Cfor3h,whilethesecondsinteringwasconducted at600◦Cforanother3h.SincethemeltingpointofPSis240C,the firstsinteringat260◦CensuredthatPSmelteddownfromthe crys-tallizedSnO2phase.Aslowheatingrateof2◦Cmin−1wasused.The calcinationwasperformedunderargoninordertoobtainacarbon coatingontotheSnO2nanocomposite(SnO2/C).Thesamesynthetic

procedurewasfollowedbutwithouttheadditionofthePStemplate topreparethenon-templatedpristineSnO2nanoparticles. 2.2. Characterizationofcompositematerials

PowderX-raydiffractionwascarriedoutbetween15◦and85◦ (2angles) usingaBrukerAXSD8diffractometerwitha CoK␣ sourcewith35kVand45mAofpower,adivergenceangleof0.3◦, astepsizeof0.027◦,andanacquisitiontimeof1sperstep.The patternswereanalyzedbytheRietveldrefinementmethod[38]

usingthesoftwareTOPASv4.2fromBrukerAXS[39].Thecrystallite sizesweredeterminedusingthefundamentalparameterapproach methoddevelopedbyChearyandCoelho[40].Themorphologyof thematerialwascharacterizedbyscanningelectronmicroscopy (SEM)usingaJEOL840A.Thermalgravimetricanalysis(TGA)was performedtoquantifytheamountofcarbonpresentintheSnO2/C composite.ATGA2950TAinstrumentwasused.Thecompositewas heatedat10◦Cmin−1upto110Cfor30mintoremovemoisture containedinthematerialandthenheatedcontinuouslyupto800◦C inairinordertooxidizethecarbonfromthecomposite.

Furtherelectrochemicalcharacterizationwasperformedusing a 2325-type coin cell. Because of the interest in SnO2/C com-posite,onlyhalf cellswithlithium asa counter electrodewere used.Theelectrode waspreparedfroma slurrymadeof75wt% activematerial,5wt%carbonSuperS(Timcalgraphiteand Car-bon,Switzerland),5wt%carbongraphiteE-KS4(KG,Lonza G+T, Switzerland)and15wt%sodiumcarboxymethylcellulose(NaCMC, Calbiochem)asabinder.NaCMCwasusedasa5wt%solution dis-solvedindoubledistilledH2O.Theslurrywascastontoacopper foilcurrentcollectorthatwascleanedusinga 2.5%HClsolution inwater.Thecastwaspreparedusinganautomateddoctorblade spreaderanddriedovernightinaconvectionovenat85◦C,and thenina vacuumovenovernightat80◦C.Individualelectrodes (Ø=12.5mm)were punched out, dried at 80◦C under vacuum overnight,pressedundera pressureof0.5metric ton,andwere usedaspositiveelectrodes.Alithiumdisk(Ø=16.5mm)wasused asanegativeelectrode(counterelectrodeandreferenceelectrode). 70␮Lof1MLiPF6inEC:DMC(1:1byvol.)wasusedaselectrolyte andspreadoveradoublelayerofthepolypropyleneseparators. Thebatterieswereassembledinanargon-filleddrybox.Thecells werecycledgalvanostaticallyatC/12usinganArbinbatterycycler andtestedusingcyclicvoltammetrytechniques.Cyclic voltamme-trywascarriedoutusingaBiologicVMP3potentiostatandswept at0.1mVs−1between5mVand1.5Vforfivecycles.

3. Resultsanddiscussion

Atwo-stepsynthesiswasnecessarytoachieveamacroscopic porousstructureofcarbon-coatedSnO2andthecarbonnetworkin whichtheSnO2nanoparticlesaredispersed.PScolloidswereused toobtaintheporousmorphology.Thechallengeherewasto syn-thesizeSnO2withoutdestroyingthePScolloids.Toachievethis,a hydrothermalreactionwasused.First,thetinprecursor (SnCl2) hadtoundergooxidation reactionata temperaturelowerthan 240◦CtopreventthemeltingofPS. Moreover,theorganic tem-platehadtobecalcinedunderoxygen-freeatmospheretoobtaina carboncoating.Thus,thehydrothermalreactionfollowedby calci-nationunderargonwastotallyadequate.Duringthecentrifugation step,thePScolloidswereorderedandthevoidsamongthe col-loidswerefilledwiththeSnO2nanoparticles.Fig.1showstheSEM micrographofthepreparedanddriedSnO2/PScomposite.ThePS colloidsareorderedandtheirintegrityispreserved.Fig.2shows theRietveldrefinementoftheXRDpatternoftheSnO2/PS com-posite.Thefirstbroadpeakaround23◦2correspondstothePS reflection.TheotherpeakscorrespondtotheSnO2rutileP42/mnm

(4)

Fig.1.SEMmicrographsofthecentrifugedanddriedSnO2/PScomposite synthe-sizedviaahydrothermalreaction.Inset:SEMmicrographofthePScolloidsusedfor thesynthesis.

Fig.2.RietveldrefinementoftheX-raydiffractionpatternofthecentrifugedand driedSnO2/PScompositesynthesizedviaahydrothermalreaction.

Table1

LatticeparametersofSnO2beforeandafterremovaloforganictemplate.

a( ˚A) c( ˚A) SnO2/PS Synthesized 4.753(8) 3.249(6) Ref.[44] 4.73 3.18 Crystalsize(nm) 3.2(2) SnO2/C Synthesized 4.7424(8) 3.1873(6) Ref.[44] 4.73 3.18 Crystalsize(nm) 6.37(4) Sn Synthesized 5.831(9) 3.13(1) Ref.[45] 5.83 3.18

Crystalsize(nm) N/A

structure:31◦(110),40(101)and61(211).Thelattice parame-tersandcrystallitesizeareshowninTable1.Thelatticeparameter valuesslightlydeviatefromthereferencevaluesduetothe amor-phousnaturefortheobtainedmaterial.Crystallitesizebelow5nm hasbeencalculated.Itisimportanttonotethatnootherphases wereobservedontheXRDpatterns.

Fig.3. SEMmicrographofthemacroporousSnO2/Ccompositeafterthecalcination ofthetemplateunderargonat260◦Cfor3h,and600Cfor3h.

Fig.4. RietveldrefinementoftheX-raydiffractionpatternofthemacroporous SnO2/Ccompositeaftercalcinationofthetemplateunderargonat260◦Cfor3h, and600◦Cfor3h.

TheresultingSnO2/PScompositeswerecalcinedunderargon in order toobtainporousand carbon-coated SnO2.The porous morphology wasachievedby a slowheating rateat 2◦Cmin−1 andsinteringattwodifferenttemperaturesinordertocontrolthe decompositionofPS.Fig.3showstheSEMmicrographafterthe cal-cinationofthePStemplate.ThefingerprintofthePScolloidscan beobservedasasphericalporousmorphology.Arandomlyordered butinterconnectedmacroporousopenstructurewasobtained,very differentthana3DOM.Mostofthepores’diameterrangesfrom300 to500nm,whichcorrespondstothesizeofthePScolloids. How-ever,somevoidsarebiggerthanthesizeofthePScolloidsthatcould beduetothevolatiledecompositionofPScolloidsortheabsence ofSnO2nanoparticlesbetweensomePScolloidsbeforethe calcina-tionstep.Thedarkareasoftheimageareduetotheunevensurface oftheSnO2/Ccomposite,wheretheSnO2isabsentpriortothe cal-cinations.AlsoduetothefactthatSnO2islessconductive,SnO2 comesoutasbrighterareaintheSEMimage.

Fig. 4 shows the Rietveld refinement of the pattern of the finalmacroporousSnO2/Ccomposite.Twocrystallinephasesare observed:SnO2andSn.TheappearanceofSnaftercalcinationis believedtobetheresultofthereducingatmosphere.This orig-inatesfromthecalcinationatelevatedtemperatureofPSunder

(5)

9734 C.-H.Yimetal./JournalofPowerSources196 (2011) 9731–9736

Fig.5.ThermogravimetricanalysisofthemacroporousSnO2/Ccompositeafter calcinationofthetemplateunderargonat260◦Cfor3h,and600Cfor3h.The measurementwasdoneunderairat10◦Cmin−1.

Fig.6. Cyclicvoltammogramsofahalf-cellmeasuredbetween0.005Vand1.5V at0.1mVs−1ofthemacroporousSnO2/Ccompositeafterthecalcinationsteps.Li metalwasusedascounterandreferenceelectrode.

argon,whichprovidesreducingconditions,leadingtothe reduc-tionofsomeSn4+ofSnO

2toSn0.Asaresult,1.1wt%ofcrystalline Snwasestimatedviaacomputinganalysis(Topasv4.2).Table1

showsthelatticeparametersandthecrystallitesizeobtainedfrom theXRDpatternofthesinteredSnO2/Ccomposite.Lattice param-etersareinagreementwiththereferencedvalues(Table1).Due tothehighcalcinationtemperature,growthinthecrystallitesize wasobservedfromlessthan5nmupto6.37(4)nm.TheBET sur-faceareaofthecompositewas54.7m2g−1,whichisverysimilar towhatisreportedbyLytleetal.(55m2g−1)[35].

ToestimatetheamountofcarboninthesynthesizedSnO2/C composite,TGAwasconductedontheresultingmaterial.Asshown in Fig.5, continuousweight loss wasobserved when the tem-peraturewas raisedup to110◦C;it corresponds totheloss of water.Thetemperaturewasmaintainedat110◦Cfor30minin ordertoremoveanymoisture.Thetemperaturewasthenincreased to800◦Cat10Cmin−1.Thesecondweightloss(8.3%)observed between350and 450◦C wastheresultofthedecompositionof carbonfromtheSnO2/Ccomposite.Whenconsideringthatthere is1.1wt%ofSn,0.2%weightgainoccurredduetotheoxidationof

Fig.7. VoltageprofileofthefirstfivecyclesofthemacroporousSnO2/Ccomposite. ArateofC/12wasused.

Fig.8.DischargecapacityofthemacroporousSnO2/Ccompositeandthepristine SnO2nanoparticles.ThecolumbicefficiencyofthemacroporousSnO2/Ccomposite isalsorepresented.

Sn.Asaresult,0.2wt%shouldbeaddedtothe8.3%weightlossto moreaccuratelyestimatetheamountofcarboninthesynthesized SnO2/Ccomposite.ThetotalamountofcarbonresidueinSnO2/C compositeisthencanbeestimatedas8.5wt%.

Fig.6showsthecyclicvoltammograms(CVs)ofthe macrop-orousSnO2/Ccomposite.TheirreversiblereductionofSnO2toSn (blackline)isobservedonthefirstcycle.Thesmallcathodicpeak around1.25V(peakA)andthepeakat0.65V(peakB)vs.Li/Li+are duetothepartialreductionofSnO2toelementSnandthesolid electrolyteinterface(SEI)formationduringthefirstdischarge[41]. SEIformationiscausedbythedecompositionoftheelectrolyteand thelithiumsaltatthesurfaceoftheelectrode,andbothpeaks dis-appearafterthefirstcycle.Thecathodicpeaksbelow0.3V(peakb) areduetotheformationoftheLixSnalloy(0≤x≤4.4).Thenoise inthesepeaksis duetothemulti-stagelithiumintercalationof LixSnalloys[42].Theanodicpeakat0.6V(peakb′)correspondsto

thede-alloyingreactionofLixSn(0≤x≤4.4).Thesetworeactions arefullyreversible.Anadditionalreversibleprocessisobservedat 1.25V(peaka′)and1.0V(peaka).Thisprocessisbelievedtobe associatedwiththerecovery,tosomeextent,ofsometinoxides (SnO2orSnO)[42,43].

(6)

UsingthecompositiondeterminedviaTGAandXRD,the the-oreticalcapacityvalueofthemacroporousSnO2/Ccompositewas estimatedat732mAhg−1.Areversiblecapacityof150mAhg−1was usedforthecarboncoating,assumingitisablackcarbon.In the-ory,SnO2 exhibitafirstdischargecapacityof1494mAhg−1 and areversibledischargecapacityof782mAhg−1.Thereweremany attemptstosynthesize3DOMSnO2,however,onlyLytleetal.[35] andWangetal.[36]performedelectrochemicalcharacterizations.

Fig.7shows thevoltageprofileofthefirstfive cyclesof ahalf cellmadeusingthemacroporousSnO2/Ccomposite;thecellwas cycledatC/12.Thefirstcycleshowsafirstdischargecapacityof 1705mAhg−1.Thisvaluecorrespondstotheirreversiblereduction ofSnO2 toSn,theformationofLi2O,andthepartiallithiationof thecarboncoating.Snthenfurtherreactedwithlithiumtoform a tin–lithiumalloy. Thesereactionsareshown in thefollowing equations:

SnO2+4Li++4e−→Sn+2Li2O (1) Sn+xLi++xe−↔ SnLix(0≤x≤4.4) (2) 6C+xLi++xe−↔C6Lix(0≤x≤1) (3) Thefirstdischargecurvecontainsseveralfluctuationsdueto noiseoriginatedfromtheequipment.Thechargeisrepresented byaslopingplateauaround0.5Vvs.Li/Li+.Theirreversible capac-ityobservedinthefirstcycleis800mAhg−1,or47%ofthefirst dischargecapacity[13].Afterwards,cyclesfourandfivearerather stable,suggestinggoodcapacityretention.

Fig.8showsthedischargecapacitiesofthemacroporousSnO2/C compositeandthepristineSnO2nanoparticlespreparedwithout PStemplate as wellas the columbicefficiency of the macrop-orousSnO2/Ccompositeelectrode.Aspreviouslydiscussed,alarge irreversiblecapacityisobservedforthefirstcycleduetothe irre-versiblereductionofSnO2toSnandtheformationoftheSEI.The macroporousSnO2/Ccomposite showedafirstdischarge capac-ity of 1705mAhg−1 with 47% of irreversible capacity whereas theSnO2nanoparticlesshowsalowerfirstdischargecapacityof 1150mAhg−1withanirreversibilityof37%.Thelargerirreversible capacityobservedforthemacroporousSnO2/Ccompositeisdueto thecarboncoatingandalsoduetothelargersurfaceareathatleads tomoreSEIformation.Forthefirstsevencycles,astable capac-ityof900mAhg−1 wasobserved.Aftera12-hrest,thecapacity startedfading.Areversiblecapacity of607mAhg−1 isobserved after55cycles.Thecolumbicefficiencyisquitestablearound98% startingatcycle8.ThemacroporousSnO2/Ccompositeshowed bet-tercapacityretentionthanthepristineSnO2nanoparticleswhich exhibitsacapacityofonly300mAhg−1after55cycles.Wangetal. reportedfirstdischargecapacitiesaround1500–1600mAhg−1and reversible capacities of 150mAhg−1 and 330mAhg−1 after 55 cyclesat current rates of50 and 100mAg−1, respectively [36]. Thesevaluesaremuchlowerthantheonesobtainedinthepresent studywhichwebelieveisduetothedifferenceintheamountof carbonpresentinthecomposite.Moreover,Wangetal.reported acarboncontentof62wt%whereasitisonly8.5wt%inourcase

[36].Itisimportanttohavecarboninthecompositetoprovide electronicconductivity,buttheblack carbonobtaineddoesnot providehighcapacitystorage,soitisimportanttokeepits con-tentlowinordertoobtainbetterperformance.3DOMSnO2from Wangetal.hadlesscapacityfadeduetothehighlyordered struc-ture,butlowercapacityduetothehighcarboncontentcompared toourmaterial.

4. Conclusions

Inthepresentwork,amacroporousSnO2/Ccompositeanode material was synthesized using an organic template-assisted

hydrothermalsynthesis.Acontentof8.5wt%ofcarbonwas deter-minedinthecomposite.AsverifiedbySEM,aftercalcinations,pores of300–500nmindiameterwereobserved.ArutileSnO2crystalline phasewasobtainedbyXRDwithtracesofSnmetal.Thematerial performance,characterizedinhalfcells,suggeststhatnano-sized porousSnO2matrixmaterialisstableandresistantto pulveriza-tionduringcycling.After55 cycles,themacroporouscomposite had a capacity of 607mAhg−1, whereas the SnO

2 nanoparti-clewithoutPStemplateshowedonlyhalfthecapacityreaching 300mAhg−1.

References

[1] G.-A.Nazri,G.Pistoia,LithiumBatteries:ScienceandTechnology,Kluwer Aca-demicPublisher,Boston/Dordrecht/NewYork/London,2003.

[2]J.Li,R.B.Lewis,J.R.Dahn,ElectrochemicalandSolid-StateLetters10(2007) A17–A20.

[3]U.Kasavajjula,C.Wang,A.J.Appleby,JournalofPowerSources163(2007) 1003–1039.

[4]J.O.Besenhard,J.Yang,M.Winter,JournalofPowerSources68(1997)87–90. [5]S.D.Beattie,D.Larcher,M.Morcrette,B.Simon,J.M.Tarascon,Journalofthe

ElectrochemicalSociety155(2008)A158–A163.

[6] H.Buqa,M.Holzapfel,F.Krumeich,C.Veit,P.Novák,JournalofPowerSources 161(2006)617–622.

[7]I.A.Courtney,J.R.Dahn,JournaloftheElectrochemicalSociety144(1997) 2045–2052.

[8] T.Brousse,O.Crosnier,J.Santos-Pe ˜na,I.Sandu,P.Fragnaud,D.M.Schleich,in:N. Kumagai,S.Komaba(Eds.),MaterialsChemistryinLithiumBatteries,Research Signpost,Kerala,2002.

[9]S.H.Ng,D.I.dosSantos,S.Y.Chew,D.Wexler,J.Wang,S.X.Dou,H.K.Liu, Elec-trochemistryCommunications9(2007)915–919.

[10]Y.-C.Chen,J.-M.Chen,Y.-H.Huang,Y.-R.Lee,H.C.Shih,SurfaceandCoatings Technology202(2007)1313–1318.

[11]Y.Wang,F.Su,J.Y.Lee,X.S.Zhao,ChemistryofMaterials18(2009)1347– 1353.

[12] V.Subramanian,W.W.Burke,H.Zhu,B.Wei,J.Phys.Chem.C112(2008) 4550–4556.

[13]F.M.Courtel,E.A.Baranova,Y.Abu-Lebdeh,I.J.Davidson,JournalofPower Sources195(2010)2355–2361.

[14] J.Hassoun,S.Panero,P.Simon,P.L.Taberna,B.Scrosati,AdvancedMaterials19 (2007)1632–1635.

[15]Y.Yu,C.H.Chen,Y.Shi,AdvancedMaterials19(2007)993–997.

[16] J.Y.Lee,R.Zhang,Z.Liu,ElectrochemicalandSolid-StateLetters 3(2000) 167–170.

[17]T.Moon,C.Kim,S.T.Hwang,B.Park,ElectrochemicalandSolid-StateLetters (2006)9.

[18] N.Du,H.Zhang,B.Chen,X.Ma,X.Huang,J.Tu,D.Yang,MaterialsResearch Bulletin44(2009)211–215.

[19]Z.Du,X.Yin,M.Zhang,Q.Hao,Y.Wang,T.Wang,MaterialsLetters64(2010) 2076–2079.

[20] J.Yao,X.Shen,B.Wang,H.Liu,G.Wang,ElectrochemistryCommunications11 (2009)1849–1852.

[21]Z.Wang,H.Zhang,N.Li,Z.Shi,Z.Gu,G.Cao,NanoResearch3(2010)748– 756.

[22] S.-M.Paek,E.Yoo,I.Honma,NanoLetters9(2008)72–75. [23]X.Wang,X.Zhou,K.Yao,J.Zhang,Z.Liu,Carbon49(2011)133–139. [24]S.Liang,X.Zhu,P.Lian,W.Yang,H.Wang,JournalofSolid-StateChemistry184

(2011)1400–1404.

[25]B.T.Holland,C.F.Blanford,T.Do,A.Stein,ChemistryofMaterials11(1999) 795–805.

[26]T.Cassagneau,F.Caruso,AdvancedMaterials14(2002)1629–1633. [27]C.E.Reese,M.E.Baltusavich,J.P.Keim,S.A.Asher,AnalyticalChemistry73(2001)

5038–5042.

[28]J.M.Weissman,H.B.Sunkara,A.S.Tse,S.A.Asher,Science274(1996)959–960. [29]W.Cheng,J.Wang,U.Jonas,G.Fytas,N.Stefanou,NatureMaterials5(2006)

830–836.

[30]J.D.Joannopoulos,P.R.Villeneuve,S.Fan,Nature386(1997)143–149. [31]E.Yablonovitch,ScientificAmerican285(2001)34–41.

[32]U.C.Fischer,H.P.Zingsheim,JournalofVacuumScience&Technology19(1981) 881–885.

[33]H.Kim,J.Cho,JournalofMaterialsChemistry18(2008)771–775. [34] W.R.Zeng,S.F.Li,W.K.Chow,JournalofFireSciences20(2002)401–433. [35]J.C.Lytle,H.Yan,N.S.Ergang,W.H.Smyrl,A.Stein,JournalofMaterials

Chem-istry14(2004)1616–1622.

[36]Z.Wang,M.A.Fierke,A.Stein,JournaloftheElectrochemicalSociety155(2008) A658–A663.

[37]H.Yan,S.Sokolov,J.C.Lytle,A.Stein,F.Zhang,W.H.Smyrl,Journalofthe ElectrochemicalSociety150(2003).

[38] H.Rietveld,ActaCrystallographica22(1967)151–152.

[39] BrukerAXS,DIFFRACPlusTOPAS:TOPAS4.2UserManual,Bruker-AXSGmbH, Karlsruhe,Germany,2008.

(7)

9736 C.-H.Yimetal./JournalofPowerSources196 (2011) 9731–9736

[41]Z.-Q.He,X.-H.Li,L.-Z.Xiong,X.-M.Wu,Z.-B.Xiao,M.-Y.Ma,MaterialsResearch Bulletin40(2005)861–868.

[42]M.Mohamedi,S.J.Lee,D.Takahashi,M.Nishizawa,T.Itoh,I.Uchida, Elec-trochimicaActa46(2001)1161–1168.

[43]T.Brousse,R.Retoux,U.Herterich,D.M.Schleich,JournaloftheElectrochemical Society145(1998)1–4.

[44]T.Maekawa,C.Minagoshi,S.Nakamura,K.Nomura,H.Kageyama,Chemical Sensors24(2008)3.

[45]M.Wolcyrz,R.Kubiak,S.Maciejewski,PhysicaStatusSolidi(B)BasicResearch 107(1981)245–253.

Figure

Fig. 3. SEM micrograph of the macroporous SnO 2 /C composite after the calcination of the template under argon at 260 ◦ C for 3 h, and 600 ◦ C for 3 h.
Fig. 7. Voltage profile of the first five cycles of the macroporous SnO 2 /C composite.

Références

Documents relatifs

Laser pyroly- sis : a method of interest for the controlled synthesis of amorphous or crystalline Si@C nanoparticles - application as anode materials in Li-Ion batteries...

shows the comparison between the experimental and calculated values of the current flow and the temperature at the center and the border of the TiAI sample with the optimized ECR

In contrast, during the search task, neurons began finding the target later than in pop-out, just before the saccade, and in the reverse order: the frontal areas (dlPFC and FEF)

Using the 2D version of the ESPRIT algorithm [38], the complex wavevectors are extracted from the measured harmonic response of a plate (e.g. velocity or displacement field), or

Figure 9 : Simulated macroscopic behavior of the macroporous material for different triaxiality ratio under compression : equivalent von Mises stress as a function of

Similarly to previous case of all reactants dissolved and ECL measured on bare electrodes the increase of luminescence is higher than it would be expected from

Braun DP, Ding J and Dmowski WP (2002) Peritoneal fluid-mediated enhancement of eutopic and ectopic endometrial cell proliferation is dependent on tumor necrosis factor-alpha in

[39] showed that the increase of antibacterial activity is directly related to the increase of active oxygen generated on the surface of particles of oxide nanoparticle, reducing