• Aucun résultat trouvé

THE CVI-PROCESSING OF CERAMIC MATRIX COMPOSITES

N/A
N/A
Protected

Academic year: 2021

Partager "THE CVI-PROCESSING OF CERAMIC MATRIX COMPOSITES"

Copied!
18
0
0

Texte intégral

(1)

HAL Id: jpa-00229549

https://hal.archives-ouvertes.fr/jpa-00229549

Submitted on 1 Jan 1989

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE CVI-PROCESSING OF CERAMIC MATRIX COMPOSITES

R. Naslain, F. Langlais, R. Fedou

To cite this version:

R. Naslain, F. Langlais, R. Fedou. THE CVI-PROCESSING OF CERAMIC MATRIX COMPOS- ITES. Journal de Physique Colloques, 1989, 50 (C5), pp.C5-191-C5-207. �10.1051/jphyscol:1989526�.

�jpa-00229549�

(2)

JOURNAL D E PHYSIQUE

C o l l o q u e C 5 , s u p p l 6 m e n t au n 0 5 , Tome 50, m a i 1 9 8 9

THE CVI-PROCESSING OF CERAMIC MATRIX COMPOSITES

R. NASLAIN, F . LANGLAIS and R. FEDOU

Laboratoire des Composites Thermostructuraux (UM 47-CNRS-SEP-UBI) Europarc, 3 , Avenue Leonard de Vinci, F-33600 Pessac, France

Resume

-

I,es c e r a m i q u e s p e u v e n t , d a n s d e s c o n d i t i o n s p a r t i c u l i e r e s , e t r e dkpos6es b p a r t i r d e p r e c u r s e u r s gazeux a u s e i n d e s u b s t r a t s p o r e u x . Ce p r o c 6 d 6 , d e s i g n e p a r i n f i l t r a t i o n c h i m i q u e e n p h a s e v a p e u r (CVI) e s t p a r t i c u l i e r e m e n t i n d i q u e pour l ' e l a b o r a t i o n d e s m a t e r i a u x c o m p o s i t e s b m a t r i c e c e r a m i q u e (CMC). Le r e m p l i s s a g e d ' u n p o r e p a r CV1 r e s u l t e d e deux phenomenes : ( i ) une r e a c t i o n d e s u r f a c e e t ( i i ) un t r a n s f e r t d e masse d e s r e a c t i f s e t d e s p r o d u i t s d a n s l a p h a s e g a z e u s e . En CV1 i s o t h e r m e / i s o b a r e , l e s t r a n s f e r t s d e masse se f o n t uniquement p a r d i f f u s i o n . I1 e n r e s u l t e q u e l a CV1 d o i t &tre c o n d u i t e b a s s e t e m p e r a t u r e e t p r e s s i o n r e d u i t e p o u r d o n n e r un d6pBt homogene e n B p a i s s e u r l e l o n g d e s p o r e s . En CV1 f o r c 6 e , les t r a n s f e r t s d e masse se f o n t p a r c o n v e x i o n f o r c e e d u e a un g r a d i e n t d e p r e s s i o n . De p l u s un g r a d i e n t i n v e r s e d e t e m p e r a t u r e est a p p l i q u e . I1 e n r e s u l t e une v i t e s s e d e dBp6t beaucoup p l u s & l e v e e . La f a i s a b i l i t e du p r o c e d e CV1 e s t e t a b l i e pour d i v e r s e s m a t r i c e s i n c l u a n t l e c a r b o n e e t S i c .

A b s t r a c t

-

Under s p e c i f i c c o n d i t i o n s , c e r a m i c s c a n b e d e p o s i t e d from g a s e o u s p r e c u r s o r s w i t h i n p o r o u s s u b s t r a t e s . T h i s t e c h n i q u e , r e f e r r e d t o a s c h e m i c a l v a p o r i n f i l t r a t i o n (CVI) is p a r t i c u l a r l y s u i t e d t o t h e p r e p a r a t i o n o f c e r a m i c m a t r i x c o m p o s i t e s (CMC). P o r e f i l l i n g by CV1 r e s u l t s from two s i m u l t a n e o u s phenomena : ( i ) a s u r f a c e r e a c t i o n and ( i i ) mass t r a n s f e r s o f t h e r e a c t a n t s and p r o d u c t s i n t h e g a s p h a s e . I n i s o t h e r m a l / i s o b a r i c CVI, mass t r a n s f e r s o c c u r o n l y by d i f f u s i o n . A s a r e s u l t . ICVI h a s t o b e p e r f o r m e d a t low t e m p e r a t u r e s and u n d e r r e d u c e d p r e s s u r e s i n o r d e r t o l e a d t o a d e p o s i t homogeneous i n t h i c k n e s s a l o n g t h e p o r e s . I n forced-CVI, mass t r a n s f e r s a r e by f o r c e d c o n v e c t i o n d u e t o a p r e s s u r e g r a d i e n t . Moreover, an i n v e r s e t h e r m a l g r a d i e n t i s a p p l i e d r e s u l t i n g b o t h i n a much h i g h e r d e p o s i t i o n r a t e . The f e a s i b i l i t y o f t h e CV1 p r o c e s s i s e s t a b l i s h e d f o r a number o f c e r a m i c m a t r i c e s i n c l u d i n g c a r b o n and S i c .

1

-

INTRODUCTION

Ceramic m a t e r i a l s a r e known f o r t h e i r r e f r a c t o r y c h a r a c t e r , t h e i r m e c h a n i c a l p r o p e r t i e s ( s t i f f n e s s , s t r e n g t h , wear r e s i s t a n c e ) b o t h a t a m b i e n t and h i g h t e m p e r a t u r e s , t h e i r low d e n s i t y a n d , i n many c a s e s , t h e i r r e s i s t a n c e t o s e v e r e c h e m i c a l e n v i r o n m e n t s ( e . g . o x y d i z i n g a t m o s p h e r e s a t h i g h t e m p e r a t u r e s ) . They a r e a l r e a d y w i d e l y u s e d i n many f i e l d s . e . g . a s c o a t i n g s r e s i s t a n t t o wear o r / a n d o x y d a t i o n . On t h e o t h e r h a n d , t h e i r u s e a s p r i m a r y s t r u c t u r a l p a r L s , e . g . i n advanced r e c i p r o c a L i n g e n g i n e s o r g a s t u r b i n e s , h a s been l i m i t e d up t o now by t h e i r b r i t t l e c h a r a c t e r . I t h a s been e s t a b l i s h e d , r a t h e r r e c e n t l y t h a t t h e t o u g h n e s s and r e l i a b i l i t y o f s t r u c t u r a l c e r a m i c s ( e . g . S i C , Si3N4, Si02-based g l a s s - c e r a m i c s , o x i d e s ) c a n b e d r a m a t i c a l l y improved by a p p l y i n g t o c e r a m i c s t h e c o n c e p t o f f i b e r - r e i n f o r c e m e n t . A s a m a t t e r o f f a c t , c e r a m i c m a t r i x c o m p o s i t e s (CMC) may e x h i b i t t o u g h n e s s c o m p a r a b l e t o t h a t o f l i g h t a e r o n a u t i c a l a l l o y s ( i . e . K I ~ v a l u e s o f

t h e o r d e r o f 30-50 MPa m$) when t h e y a r e c o r r e c t l y p r o c e s s e d / l - 4 / .

The p r o c e s s i n g o f s t r u c t u r a l c e r a m i c s i s known t o b e a d i f f i c u l t s u b j e c t i n m a t e r i a l s e n g i n e e r i n g . On t h e o n e h a n d , c e r a n i c m a t e r i a l s a r e c h a r a c t e r i z e d by a m e c h a n i c a l S e h a v i o r which i s v e r y s e n s i t i v e t o d e f e c t s even o f v e r y s m a l l s i z e ( i . e . o f t h e o r d e r o f a few pm and e v e n l e s s ) and t h u s , s h o u l d b e p r o c e s s e d v e r y c a r e f u l l y . On t h e o t h e r hand, c e r a m i c s a r e v e r y r e f r a c t o r y m a t e r i a l s ( m e l t i n g p o i n t s o f t e n h i g h e r t h a n 2 5 0 o 0 c ) , a f e a t u r e which p r e c l u d e s t h e i r p r o c e s s i n g and f o r m i n g i n t h e m o l t e n s t a t e . F u r t h e r m o r e , t h e y u s u a l l y d o n o t e x h i b i t any p l a s t i c i t y a t low o r medium t e m p e r a t u r e s ( a l t h o u g h s u p e r p l a s t i c c e r a m i c s h a v e b e e n r e c e n t l y m e n t i o n e d ) . T h u s , many c e r a m i c s ( e . g . c o v a l e n t S i c , Si3N4. B4C) c a n b e s i n t e r e d o n l y a t h i g h t e m p e r a t u r e s o r / a n d w i t h s i n t e r i n g a i d s .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1989526

(3)

(25-192 JOURNAL DE PHYSIQUE

The main i n t e r e s t o f t h e chemical v a p o r p r o c e s s i n g r o u t e s l i e s i n t h e f a c t t h a t they allow t h e d e p o s i t i o n o f ceramics a t medium and even low t e m p e r a t u r e s , depending on t h e n a t u r e o f t h e a c t i v a t i o n mechanisms ( t y p i c a l l y 1 0 0 0 ' ~ f o r t h e r m a l l y a c t i v a t e d , .CVD and 3 0 0 - 5 0 0 ~ ~ f o r plasma a s s i s t e d CVD), whatever t h e m e l t i n g p o i n t and thermal s t a b i l i t y of t h e m a t e r i a l s . T h e r e f o r e , t h e CVD o f ceramics can be performed on a v a r i e t y o f s u b s t r a t e s i n c l u d i n g t h o s e with a l i m i t e d thermal s t a b i l i t y ( e . g . e l e c t r o n i c components, t h e r m a l l y t r e a t e d s t e e l s and a l l o y s , g l a s s e s , e t c . . . ) . Moreover, s i n c e i n CVD t h e s t a r t i n g m a t e r i a l s a r e gaseous s p e c i e s , a n o t h e r advantage o f t h e chemical v a p o r p r o c e s s i n g r o u t e s l i e s i n t h e f a c t t h a t t h e y may r e s u l t i n v e r y p u r e ceramics ( g a s and l i q u i d s a r e e a s i l y o b t a i n e d w i t h a h i g h d e g r e e of p u r i t y ) . F i n a l l y , CVD-processing may l e a d t o s o l i d s w i t h f i n e g r a i n m i c r o s t r u c t u r e s and t h u s w i t h good mechanical p r o p e r t i e s .

The advantages which have been mentioned above e x p l a i n why chemical vapor d e p o s i t i o n has been among t h e f i r s t p r o c e s s i n g r o u t e s s e l e c t e d f o r t h e p r e p a r a t i o n of CMC / 5 , 6 / . A s a m a t t e r o f f a c t , ceramic f i b e r s , e . g . carbon o r Sic-based f i b e r s , a r e v e r y s t r o n g and s t i f f b u t : ( i ) t h e i r d i a m e t e r i s v e r y s m a l l ( i . e . of t h e o r d e r of 1 0 pm and o f t e n l e s s ) and ( i i ) t h e y a r e v e r y s e n s i t i v e t o environmental e f f e c t s ( e . g . t o s u r f a c e d e f e c t s r e s u l t i n g from h a n d l i n g , t o t e m p e r a t u r e and t o o x y d a t i o n ) . Obviously, t a k i n g i n t o account t h e n a t u r e of ceramic f i b e r s , CMC s h o u l d be p r e p a r e d a c c o r d i n g t o s o f t p r o c e s s i n g r o u t e s a requirement which p r e c l u d e s t h e u s e of high t e m p e r a t u r e s ( e . g . s i n t e r i n g ) and a b r a s i v e p r o c e s s e s ( e . g . p r e s s i n g ) .

One of t h e o b j e c t i v e s of t h e p r e s e n t c o n t r i b u t i o n is t o show t h a t t h e s o - c a l l e d chemical vapor i n f i l t r a t i o n (CVI) p r o c e s s , which i s d i r e c t l y d e r i v e d from CVD, i s w e l l s u i t e d t o t h e s p e c i f i c r e q u i r e m e n t s o f t h e e l a b o r a t i o n of CMC. Inasmuch a s t h e s t a r t i n g m a t e r i a l i s u s u a l l y h e r e a porous preform made o f woven f i b e r s , a n o t h e r o b j e c t i v e of t h e p r e s e n t c o n t r i b u t i o n i s t o show how t h e d e p o s i t i o n p a r a m e t e r s commonly used i n CVD have t o be modified t o f a v o r i n - d e p t h d e p o s i t i o n ( i . e . t h e d e p o s i t i o n i n t h e p o r e network of t h e s u b s t r n t e ) o v e r e x t e r n a l s u r f a c e c o a t i n g i n o r d e r t o l e a d t o a f u l l y d e n s i f i e d m a t e r i a l . F i n n l l y , some i n f o r m a t i o n on t h e p r a c t i c a l a s p e c t s of CVI, t h e main p r o p e r t i e s of C V I - processed CMC and examples o f a p p l i c a t i o n w i l l be g i v e n .

2

-

BASIS O F THE CVI-PROCESS 2 . 1

-

D e f i n i t i o n

C V 1 i s a p r o c e s s i n g technique according t o which a s o l i d ( e . g . a ceramic m a t e r i a l ) i s d e p o s i t e d , w i t h i n t h e p o r e network o f a heated s u b s t r a t e , from a chemical r e a c t i o n t a k i n g p l a c e between gaseous s p e c i e s which flow ( e i t h e r by d i f f u s i o n o r c o n v e c t i o n ) i n t h e p o r e s . C V 1 can be i n p r i n c i p l e a p p l i e d t o any g i v e n porous s u b s t r a t e a s l o n g a s : ( i ) t h e p o r e s a r e i n t e r c o n n e c t e d and l a r g e enough i n d i a m e t e r and ( i i ) t h e s u b s t r a t e i s s t a b l e t h e r m a l l y and c h e m i c a l l y under t h e C V 1 c o n d i t i o n s . The aim i n C V 1 i s u s u a l l y t o d e n s i f y a s completely a s p o s s i b l e , t h e s u b s t r a t e b u t t h e p r o c e s s can a l s o b e stopped a t any d e s i r e d s t a t e o f d e n s i f i c a t i o n /7/.

To understand t h e s p e c i f i c r e q u i r e m e n t s o f t h e CVI-processing of porous s u b s t r a t e s , i t may be u s e f u l f i r s t t o r e c a l l b r i e f l y some of t h e f e a t u r e s of CVD i t s e l f .

2 . 2

-

B a s i s o f CVD

Tn CVD, o s o l i d ( e . g . a c c m m i c ) is formed a s t h e r e s u l t o f a chemical r e a c t i o n t a k i n g p l a c e between gaseous s o u r c e s p e c i e s ( t h e p r e c u r s o r ) , t h e o t h e r p r o d u c t s o f t h e r e a c t i o n b e i n g gaseous under t h e CVD c o n d i t i o n s . T a b l e I g i v e s a few examples o f o v e r a l l chemical r e a c t i o n s commonly used f o r t h e d e p o s i t i o n o f c e r a m i c s . A s a m a t t e r o f f a c t , a v a r i e t y of s o u r c e s p e c i e s a r e a v a i l a b l e f o r most c o v a l e n t and i o n o - c o v a l e n t c e r a m i c s . H a l i d e s a r e o f t e n s e l e c t e d , f o r economical c o n s i d e r a t i o n s , b u t o r g a n o m e t a l l i c s p e c i e s a r e used a s w e l l . On t h e c o n t r a r y , CVD i s n o t well s u i t e d t o t h e formation o f i o n i c o x i d e s ( e . g . CaO o r M@) f o r l a c k of s o u r c e s p e c i e s ( e . g . a l k a l i n e e a r t h c h l o r i d e s a r e gaseous o n l y a t high t e m p e r a t u r e s ) .

(4)

T a b l e I : Examples of o v e r a l l chemical r e a c t i o n s commonly used f o r t h e f o r m a t i o n o f ceramics by CVD/CVI

BF3 ( o r BC13) (g) + NH3(g)

-.

BNls) + 3HF(or

The chemical r e a c t i o n which l e a d s t o t h e d e p o s i t i o n of t h e s o l i d i s u s u a l l y n o t a s simple as t h o s e given i n t a b l e I : ( i ) i n t e r m e d i a t e s and by-products a r e o f t e n formed and ( i i ) r e a c t i o n s a r e o f t e n l i m i t e d . T h e r e f o r e , t h e d e p o s i t i o n o f a g i v e n ceramic may be t h e r e s u l t o f a v e r y complex heterogeneous chemical r e a c t i o n . A computerized thermodynamic approach i s f r e q u e n t l y used t o d e r i v e t h e main f e a t u r e s of a given CVD system, i . e . t h e n a t u r e and r e l a t i v e amounts of t h e gaseous and condensed s p e c i e s p r e s e n t a t e q u i l i b r i u m and t h u s t h e t h e o r e t i c a l y i e l d s , a s a f u n c t i o n of t h e CVD-parameters ( t e m p e r a t u r e , p r e s s u r e and f e e d g a s c o m p o s i t i o n ) , assuming t h a t e q u i l i b r i u m i s reached i n t h e CVD f u r n a c e (which i s n o t n e c e s s a r i l y t h e c a s e ) . An example of such a t r e a t m e n t i s given i n f i g . 1 f o r t h e CVD o f S i c from CH3SiC13/H2 mixtures /5/ whereas many o t h e r s a r e a v a i l a b l e from l i t e r a t u r e /8-IQ/. It c l e a r l y a p p e a r s from f i g . 1 t h a t t h e d e p o s i t , f o r a given temperature and p r e s s u r e , i s e i t h e r a s i n g l e phase o r a mixture of two phases ( c o d e p o s i t s ) depending on t h e i n i t i a l composition ( a = [H2]/[CH3SiC13] r a t i o ) . Moreover, a number of gaseous by-products a r e formed (e.g. s i l i c o n s u b - c h l o r i d e s , hydrocarbons, s i l a n e s ) which lower t h e y i e l d i n s o l i d /15/.

A s shown i n f i g . 2 a t h e mechanism a c c o r d i n g t o which a s o l i d i s d e p o s i t e d on a s u b s t r a t e is complex and c o n s i s t s of a t l e a s t t h r e e s t e p s : ( i ) t h e s o u r c e s p e c i e s d i f f u s e through a boundary l a y e r s u r r o u n d i n g t h e s u b s t r a t e , ( 2 ) t h e s o u r c e s p e c i e s a f t e r a d s o r p t i o n on t h e subsLraLe r e a c t among Lhemsclvcs t o g i v e r i s c t o t h c s o l i d and t o ndsorbcd gascous r e a c t i o n p r o d u c t s and f i n a l l y ( 3 ) t h e l a t t e r a f t e r b e i n g desorbed from t h e s u b s t r a t e d i f f u s e s through t h e boundary l a y e r . T h e r e f o r e , t h e d e p o s i t i o n r a t e may be c o n t r o l l e d e i t h e r by mass t r a n s f e r phenomena ( s t e p s ( 1 ) and ( 3 ) ) o r by t h e k i n e t i c s o f s u r f a c e phenomena ( s t e p ( 2 ) ) . S i n c e t h e s e two d i f f e r e n t phenomena do n o t obey t h e same laws with r e s p e c t t o t e m p e r a t u r e , p r e s s u r e and g a s flow, a t r a n s i t i o n between a domain where d e p o s i t i o n i s r a t e - c o n t r o l l e d by s u r f a c e phenomenon k i n e t i c s t o a domain where i t i s r a t e - c o n t r o l l e d by mass t r a n s f e r i s o f t e n observed on t h e V = f ( X ) c u r v e s (where V i s t h e d e p o s i t i o n r a t e and X one of t h e CVD-parmeters): An example o f such a t r a n s i t i o n i s given i n f i g .

3

f o r t h e d e p o s i t i o n of QC f r o a BC13-CH4-Hz /16/.

The chemical r e a c t i o n g i v i n g r i s e t o t h e d e p o s i t i o n of' t h e s o l i d s l ~ o u l d be a c t i v a t e d . I n most c a s e s and p a r t i c u l a r l y when t h e s u b s t r a t e i s s t a b l e enough, t h e a c t i v a t i o n i s o b t a i n e d by h e a t i n g t h e s u b s t r a t e t o a high enough t e m p e r a t u r e , i . e . 8 0 0 - 1 2 0 0 ' ~ f o r most i n o r g a n i c s o u r c e s p e c i e s and even much lower t e m p e r a t u r e s ( e . g . 4 0 0 - 7 0 0 ~ ~ ) when

(5)

JOURNAL DE PHYSIQUE

-1 0 1

2

3

4 5

6

7

8

Log alp

h

a (H2/CH3SiC13

1

F i g . 1 : CH3SiC13/H2 CVD/CVI system. C a l c u l a t e d thermodynamic y i e l d s f o r t h e s o l i d p h a s e s , as a f u n c t i o n o f a = [H2]/[MTS] f o r v a r i o u s t e m p e r a t u r e s from /15/

-

feed gas feed gas

I

heated substrate I ( a 1

steps 1,3,4,5 :mass transfers

by

diffusion step 2 : chemical reaction

boundary layer surface deposit

F i g . 2 : The d i f f e r e n t s t e p s i n CVD ( a ) and C V 1 ( b )

(6)

F i g . 3 : Thermal v a r i a t i o n s of t h e d e p o s i t i o n r a t e of B4C from BC13-CH4-Hz showing a t r a n s i t i o n from a mass t r a n s f e r r a t e c o n t r o l l e d regime t o a regime r a t e c o n t r o l l e d by s u r f a c e r e a c t i o n k i n e t i c s 1161

o r g a n o m e t a l l i c p r e c u r s o r s a r e used. For s p e c i f i c a p p l i c a t i o n s , o t h e r k i n d s of a c t i v a t i o n may be p r e f e r r e d ( a s i n plasma a s s i s t e d CVD) / 7 / .

The m i c r o s t r u c t u r e of t h e d e p o s i t depends mainly on t h e n a t u r e o f t h e s u b s t r a t e (which may c o n t r o l t h e i n i t i a l n u c l e a t i o n mechanism) and t h e CVD-conditions ( p a r t i c u l a r l y t h e s u p e r s a t u r a t i o n ) . F a c e t t e d d e p o s i t s , well-developed columnar d e p o s i t s , a s w e l l a s f i n e g r a i n m i c r o s t r u c t u r e s a r e common, t h e l a t t e r b e i n g t h e most i n t e r e s t i n g a s f a r a s mechanical p r o p e r t i e s a r e concerned / 7 / .

2 . 3

-

Fundamentals of t h e CVI-process 2.3.1- I s o t h e z m a l / i s o b a r i c CV1 (ICVI)

The d e p o s i t i o n o f a s o l i d on t h e w a l l o f a p o r e w i t h a view t o f i l l , a s completely a s p o s s i b l e , t h a t p o r e i s s t i l l more complex and appears t o be p o s s i b l e o n l y under s p e c i f i c d e p o s i t i o n c o n d i t i o n s . I n i s o t h e r m a l / i s o b a r i c C V 1 (no t e m p e r a t u r e / p r e s s u r e g r a d i e n t s a l o n g t h e p o r e ) , t h e gaseous r e a c t a n t s and p r o d u c t s a r e t r a n s p o r t e d a l o n g t h e pore o n l y by d i f f u s i o n due t o c o n c e n t r a t i o n g r a d i e n t s between t h e e n t r a n c e and t h e bottom of t h e pore. Thus, a s shown i n f i g . 2 b , two new s t e p s must be added t o t h e t h r e e s t e p s a l r e a d y mentioned f o r CVD : ( i ) a f t e r having d i f f u s e d through t h e e x t e r n a l boundary l a y e r ( s t e p 1) t h e r e a c t a n t s must d i f f u s e along t h e pore l e n g t h ( s t e p 4 ) i n o r d e r t o r e a c h any p o i n t of t h e i n n e r s u r f a c e of t h e p o r e where t h e chemical r e a c t i o n g i v i n g r i s e t o t h e s o l i d - d e p o s i t takes p l a c e ( s t e p 2 ) and ( i i ) t h e gaseous by-products r e s u l t i n g from t h e

(7)

C5-196 JOURNAL

DE

PHYSIQUE

d e p o s i t i o n r e a c t i o n must d i f f u s e i n t h e o p p o s i t e d i r e c t i o n , f i r s t a l o n g t h e pore l e n g t h towards t h e p o r e e n t r a n c e ( s t e p 5 ) and f i n a l l y a c r o s s t h e e x t e r n a l boundary l a y e r ( s t e p

3)

/17/.

From t h e above d i s c u s s i o n o f t h e k i n e t i c s o f CVD i t seems q u i t e obvious t h a t C V 1 should be performed under c o n d i t i o n s where t h e d e p o s i t i o n p r o c e s s i s r a t e - l i m i t e d by s u r f a c e phenomenon k i n e t i c s ( s t e p 2 ) and n o t by mass t r a n s f e r o f t h e r e a c t a n t s / p r o d u c t s by d i f f u s i o n i n t h e vapor phase ( s t e p s 1 , 3 , 4 and 5 ) . I f t h i s c o n d i t i o n i s n o t f u l f i l l e d , t h e d e p o s i t i o n on t h e e x t e r n a l s u r f a c e of t h e s u b s t r a t e and n e a r t h e p o r e e n t r a n c e w i l l be favored w i t h r e s p e c t t o t h a t t a k i n g p l a c e on t h e p o r e i n n e r s u r f a c e f a r from t h e p o r e e n t r a n c e , r e s u l t i n g i n an e a r l y s e a l i n g of t h e p o r e (which c o u l d be no l o n g e r d e n s i f i e d ) . T h e r e f o r e , i t i s imperative t h a t I C V I be performed a t low t e m p e r a t u r e s and p r e s s u r e s . U n f o r t u n a t e l y , under such c o n d i t i o n s : ( i ) t h e thermodynamic y i e l d i n s o l i d i s o f t e n low f o r many common CVD systems and ( i i ) t h e d e p o s i t i o n r a t e i s slow / 8 , 1 7 / .

The f i l l i n g o f a p o r e by I C V I i n v o l v e s two competing phenomena : ( i ) t h e mass t r a n s f e r s of t h e gaseous s p e c i e s a l o n g t h e p o r e , governed by d i f f u s i o n , which f e e d t h e r e a c t i o n s i t e s of t h e p o r e w a l l w i t h r e a c t a n t s and c o n v e r s e l y e v a c u a t e t h e gaseous p r o d u c t s ( s t e p s 4 and

5)

and ( i i ) t h e s u r f a c e r e a c t i o n which a b s o r b s t h e former and r e l e a s e s t h e l a t t e r ( s t e p 2 ) . The r e s u l t o f t h e c o m p e t i t i o n c a n b e a s s e s s e d by c o n s i d e r i n g d i m e n s i o n l e s s numbers which i n v o l v e t h e k i n e t i c c o n s t a n t of t h e s u r f a c e r e a c t i o n ks, an e f f e c t i v e d i f f u s i o n c o e f f i c i e n t De and a parameter r e p r e s e n t a t i v e of t h e pore geometry ( e . g . i t s r a d i u s R o r t h e L ~ / R r a t i o where L i s t h e p o r e l e n g t h ) / 6 , 19-21/. Two approaches w i l l be d i s c u s s e d assuming : ( i ) a f i r s t o r d e r r e a c t i o n , e . g . t h a t of f o r m a t i o n of S i c from CH3SiC13 mixed w i t h hydrogen and, ( i i ) a pore o f c y l i n d r i c a l geometry.

I n t h e approach proposed by Van den Breckel e t a l . /18/ f o r t h e CVD o f c e r a m i c s w i t h i n c y l i n d r i c a l t u b e s o f s m a l l d i a m e t e r s ( i . e . 0 . 1 <d< 1 mm) and t h e n extended by J . Y . Rossignol e t a l . /8/ t o porous f i b e r preforms with p o r e s of much s m a l l e r d i a m e t e r s ( 1 < d <

500 pm), t h e d i m e n s i o n l e s s number which has been s e l e c t e d i s t h e Sherwood number Sh (which i s independent o f both t h e r e a c t i o n o r d e r and c o n c e n t r a t i o n s i n t h e gas phase, f o r a f i r s t o r d e r r e a c t i o n ) :

where ks and D, depend on t h e d e p o s i t i o n c o n d i t i o n s , a s f o l l o w s :

with ko : frequency f a c t o r , E : a c t i v a t i o n energy and R* : t h e p e r f e c t g a s c o n s t a n t . Generally s p e a k i n g , t h e e x p r e s s i o n which has t o b e used f o r De s h o u l d i n c l u d e both t h e Fick d i f f u s i o n c o e f f i c i e n t DF and t h e Knudsen d i f f u s i o n c o e f f i c i e n t DK, which can be combined a c c o r d i n g t o t h e f o l l o w i n g e q u a t i o n :

For p o r e s of r a t h e r l a r g e d i a m e t e r s , Knudsen d i f f u s i o n c a n be n e g l e c t e d with r e s p e c t t o Fick d i f f u s i o n and D,, which i s equal t o DF i n a f i r s t approximation, i s known t o depend on both T and P f o r a g i v e n gaseous s p e c i e s , a c c o r d i n g t o t h e f o l l o w i n g e q u a t i o n :

where Do i s a c o n s t a n t and 1.5 < m < 2. I n such a c a s e , by combining e q u a t i o n s ( 1 ) . ( 2 ) and ( 4 ) . t h e Sherwood number can be r e w r i t t e n , a s a f u n c t i o n o f P , T and R , a s follows :

Sh

- .

P

.

exp (-E/R*T)

-

Do Tm

The a b s o l u t e v a l u e of Sh governs t h e morphology of t h e d e p o s i t i n t h e p o r e . Small v a l u e s of Sh, which correspond t o experiments performed a t low T and P f o r a p o r e of given

(8)

r a d i u s R, y i e l d more uniform d e p o s i t s a l o n g t h e p o r e l e n g t h /18/.

On t h e o t h e r hand, f o r p o r e s of s m a l l d i a m e t e r s ( t y p i c a l l y , 2R

<

10pm) Knudsen d i f , f u s i o n can no l o n g e r b e n e g l e c t e d ( i t can even be t h e o n l y mass t r a n s f e r mechanism f o r pore of very s m a l l d i a m e t e r s ) . Under such c o n d i t i o n s , both DF and DK must be taken i n t o account and e q u a t i o n ( 3 ) must be used f o r t h e c a l c u l a t i o n of D,, DK b e i n g g i v e n a c c o r d i n g t o t h e k i n e t i c t h e o r y o f g a s e s by :

f o r a gaseous s p e c i e s of molar mass M i n a p o r e o f r a d i u s R . I t i s worthy of n o t e t h a t DK does n o t depend on t h e t o t a l p r e s s u r e P. A s a r e s u l t , t h e e x p r e s s i o n f o r Sh i s more complex t h a n ( 5 ) b u t , g e n e r a l l y s p e a k i n g , t h e c o n c l u s i o n s drawn above remain v a l i d ( a t l e a s t a t a high enough t o t a l p r e s s u r e ) .

I n o r d e r t o i l l u s t r a t e t h e e f f e c t of T, P and R on t h e d e p o s i t p r o f i l e i n a c y l i n d r i c a l p o r e , a c a l c u l a t i o n h a s been done, on t h e b a s i s o f t h e Van den B r e c k e l / R o s s i g n o l model / 8 , 18/ f o r a symmetrical s t r a i g h t p o r e open a t b o t h e n d s , o f l e n g t h L = 1 0 mm, a c t i n g a s s u b s t r a t e f o r t h e d e p o s i t i o n of S i c from CH3SiC13/H2 p r e c u r s o r / 2 2 / . The c a l c u l a t i o n was done a c c o r d i n g t o an i n c r e m e n t a l procedure t o t a k e i n t o account t h e f a c t t h a t t h e p o r e e n t r a n c e r a d i u s r e g u l a r l y d e c r e a s e s v s time i n a I C V I experiment f i n a l l y becoming n i l when t h e pore i s s e a l e d by t h e d e p o s i t . whereas i n t h e o r i g i n a l Van den Brekel model /18/

t h e d e p o s i t t h i c k n e s s i s assumed t o remain s m a l l w i t h r e s p e c t t o t h e p o r e r a d i u s . For t h e i t e r a t i o n s t e p i , t h e r a d i u s o f t h e p o r e a t a d e p t h z ( t h e o r i g i n b e i n g t h e pore e n t r a n c e ) , i . e . r ( i , z ) , i s obtained by s u b t r a c t i n g t h e t h i c k n e s s of s o l i d G ( i , z ) ) c a l c u l a t e d a c c o r d i n g t o t h e Van den B r e k e l ' s model from t h a t c a l c u l a t e d f o r t h e s t e p i - l , i . e . r ( i - l , z ) :

where from /18/ :

with G ( i , O ) a s t h e t h i c k n e s s of s o l i d d e p o s i t e d a t z = 0 f o r s t e p i i n a p o r e assumed, i n a f i r s t approximation, t o be c y l i n d r i c a l and of r a d i u s R ( i ) . The i t e r a t i o n procedure i s stopped a t s t e p p , when t h e p o r e is s e a l e d , a t i t s e n t r a n c e s . by t h e d e p o s i t , i . e . when r ( p . 0 ) = 0 o r e ( p . 0 ) = R . The k i n e t i c d a t a f o r t h e CH3SiC1 /H2 system were taken from Schoch e t a l . 231. DK was c a l c u l a t e d a c c o r d i n g t o e q u a t i o n

(36)

and found t o be e q u a l t o DK = 7.95 R T s m i - l f o r t h e CH3SiCl3 molecule whereas Dp was c a l c u l a t e d , f o r t h e CH3SiC13- H2 m i x t u r e s , a c c o r d i n g t o an e q u a t i o n o f type ( 4 )

,

DF = 5.59 1 0 - 5 ( ~ ) 3 / 2 ( ~ ) - 1 cm2. S-l / 2 4 / . The d e p o s i t p r o f i l e s a r e shown i n f i g . 4 and 5 f o r v a r i o u s v a l u e s of t h e pore d i a m e t e r (100 and l p m ) , t e m p e r a t u r e (800 ; 900 ; 1000 and 1 1 0 0 ' ~ ) and t o t a l p r e s s u r e ( 2 ; 20 and 100 k P a ) .

A s e x p e c t e d , t h e r e s u l t s o f t h e c a l c u l a t i o n show t h a t t h e t h i c k n e s s homogeneity of t h e d e p o s i t i s e x c e l l e n t when temperature and t o t a l p r e s s u r e a r e low enough ( e . g . T = 800 - 9 0 0 ' ~ and P = 2

-

20 kPa) a t l e a s t when t h e p o r e d i a m e t e r i s l a r g e (2R = 100 pm), i . e . f o r low Sherwood numbers ( e q u a t i o n ( 5 ) ) . On t h e c o n t r a r y , r a i s i n g b o t h T and P t e n d s t o f a v o r d e p o s i t i o n n e a r t h e p o r e e n t r a n c e . T h i s f e a t u r e is s t i l l more e v i d e n t f o r p o r e s of s m a l l d i a m e t e r s ( f i g . 4b and 5 b ) . A s a n example, almost no d e p o s i t i o n occurs i n a pore of 1 pm i n d i a m e t e r beyond L/10 from p o r e e n t r a n c e , f o r T = 1 0 0 0 ' ~ and P = 20 kPa ( f i g 4 b ) . Lowering t e m p e r a t u r e t o 8 0 0 ~ ~ o n l y s l i g h t l y improves t h e d e p o s i t p r o f i l e ( f i g . 4 b ) whereas l o w e r i n g t o t a l p r e s s u r e t o 2 kPa h a s no e f f e c t (inasmuch a s mass t r a n s f e r s a r e

thought t o b e a l r e a d y l i m i t e d by Knudsen d i f f u s i o n a t 20 kPa) ( f i g . 5 b ) .

I n a somewhat d i f f e r e n t approach based on t h e common f e a t u r e s t h a t e x i s t between I C V I and heterogeneous g a s c a t a l y s i s w i t h i n a porous c a t a l y s t . , F i t z e r and h i s coworkers have chosen t o u s e a n o t h e r d i m e n s i o n l e s s number, t h e second Damkohler number Da11 ( o r T h i e l e

(9)

JOURNAL DE PHYSIQUE

2 3

depth (mm)

2 3

depth (mm)

Fig. 4 : Computed in-pore deposit thickness profiles for various deposition temperatures and two pore diameters (i.e. 2R = 100 pm and 2R = lpm)

(10)

depth (mm)

. .

Y

U) U)

Fig.

5

: Computed in-gore d e p o s i t thickness p r o f i l e s f o r various t o t a l p r e s s u r e s and two pore diameters ( i . e . 2R = 100 pm and 2R = 1 pm)

=

U

20

5 .-

10

- 100

CH3SiC13/ H2

- 2R= 100 pm T = 900" C

I I I I

0 1 2 3 4 5

depth (mm)

(11)

JOURNAL

DE

PHYSIQUE

number G) d e f i n e d a s f o l l o w s f o r a f i r s t o r d e r r e a c t i o n / 6 , 19-21, 251 :

and which is, @S a m a t t e r o f f a c t , c l o s e l y r e l a t e d t o t h e Sherwood number a s emphasized by Fedou e t a l . /22/. F i t z e r e t a l . d e f i n e d an e f f e c t i v e n e s s f a c t o r r\ (which p l a y s a r o l e s i m i l a r t o t h e G ( i . z ) / G ( i . o ) r a t i o i n t h e p r e c e e d i n g model) a s t h e r a t i o between t h e r a t e of i n - p o r e d e p o s i t i o n and t h a t o f e x t e r n a l s u r f a c e d e p o s i t i o n . The rt f a c t o r i s r e l a t e d t o t h e d i m e n s i o n l e s s numbers by :

q : t a n h ~ a ; $ D ~ I I

.

t a n h G O

I

theoretical

-1

I

800 900 ("C) 1000 impregnation temperature

F i g . 6 : The model o f F i t z e r e t a l . : ( a ) v a r i a t i o n s of t h e e f f e c t i v e n e s s f a c t o r a s a f u n c t i o n o f t h e T h i e l e number ; ( b ) , V a r i a t i o n s o f t h e maximum d e p t h of impregnation a s a f u n c t i o n o f t h e impregnation t e m p e r a t u r e /26/

The v a r i a t i o n s o f q a s a f u n c t i o n o f O = ~ a a r e shown i n f i g . 6 a . I n o r d e r t o f a v o r ~ ~ f i n - p o r e d e p o s i t i o n . q s h o u l d be a s c l o s e a s p o s s i b l e t o u n i t y . The c u r v e shows t h a t t h i s c o n d i t i o n , e x p r e s s e d a s 0.95 <q

<

1, i s f u l f i l l e d when ~ a

<

~0.4. When combined with ~ 3 e q u a t i o n (g), t h i s c o n d i t i o n d e f i n e s a maximum d e p t h f o r impregnation. L, max :

L max

<

0.4

RD,

3

[

2k.I

The a u t h o r s have c a l c u l a t e d L max f o r ( i ) model c y l i n d r i c a l p o r e s ( c l o s e d a t one end) of l a r g e d i a m e t e r s (0.4 < R < 1 m m ) and ( i i ) porous g r a p h i t e s w i t h mean p o r e d i a m e t e r s r a n g i n g from 1 t o 20 pm, f i l l e d by ICVI w i t h S i c d e p o s i t e d from CH3SiC13/H2 under c o n d i t i o n s c o r r e s p o n d i n g t o t h e regime r a t e - l i m i t e d by s u r f a c e r e a c t i o n . T h e r e s u l t s of t h e i r c a l c u l a t i o n s a s w e l l a s t h e i r e x p e r i m e n t a l d a t a a r e shown i n f i g . 6b f o r p o r e s o f s m a l l d i a m e t e r s / 2 6 / . L max a p p e a r s t o i n c r e a s e when t e m p e r a t u r e d e c r e a s e s and p o r e d i a m e t e r i n c r e a s e s , a f e a t u r e which is i n agreement w i t h t h e Van den B r e c k e l / R o s s i g n o l model, a s d i s c u s s e d above.

(12)

2 . 3 . 2

-

Forced f l o w / t h e r m a l g r a d i e n t CV1 (FCVI)

I n CVI, t h e mass t r a n s f e r s o f r e a c t a n t s and p r o d u c t s a l o n g t h e p o r e a r e due only t o d i f f u s i o n w i t h t h e r e s u l t t h a t d e p o s i t i o n should be performed a t low t e m p e r a t u r e and p r e s s u r e i n o r d e r t o o b t a i n a d e p o s i t uniform i n t h i c k n e s s a l o n g t h e p o r e . Under such c o n d i t i o n s , t h e r a t e of i n f i l t r a t i o n i s n e c e s s a r i l y slow.

An a l t e r n a t i v e p r o c e s s , r e f e r r e d t o a s FCVI, h a s been worked o u t by Caputo e t a l . f o r t h e i n f i l t r a t i o n of S i c and Si3N4 m a t r i c e s i n d i f f e r e n t porous media, i n which t h e mass t r a n s f e r s a r e by f o r c e d c o n v e c t i o n r e s u l t i n g from a p r e s s u r e g r a d i e n t /27-29/. A s shown s c h e m a t i c a l l y i n f i g . 7 , t h e r e a c t a n t s a r e f o r c e d t o flow a l o n g t h e p o r e under a high p r e s s u r e (P1 = 100 t o 200 kPa) w h i l e t h e p r o d u c t s (and t h e u n r e a c t e d s p e c i e s ) a r e evacuated a t a lower p r e s s u r e P2. Moreover, s i n c e t h e g a s phase i s d e p l e t e d i n r e a c t a n t s a s i t flows i n t h e p o r e ( d u e t o t h e chemical r e a c t i o n t a k i n g p l a c e on t h e p o r e w a l l ) , an i n v e r s e thermal g r a d i e n t i s a p p l i e d along t h e pore. S i n c e a s d i s c u s s e d above, t h e s u r f a c e phenomena g i v i n g r i s e t o t h e d e p o s i t a r e t h e r m a l l y a c t i v a t e d ( e q u a t i o n ( 2 ) ) . t h e e f f e c t of t h e t e m p e r a t u r e i n c r e a s e may compensate, under optimized c o n d i t i o n s , t h a t of t h e g a s phase d e p l e t i o n i n r e a c t a n t s .

The competing e f f e c t s of t h e f o r c e d g a s flow and thermal g r a d i e n t on t h e d e p o s i t p r o f i l e have been j u s t i f i e d t h e o r e t i c a l l y , by S t a r r , f o r random s h o r t f i b e r preforms i n f i l t r a t e d with S i c d e p o s i t e d from CH3SiC13/H2 p r e c u r s o r , assuming a f i r s t o r d e r r e a c t i o n / 3 0 / . When T1 = T2 = 1 2 0 0 ' ~ (no thermal g r a d i e n t ) , d e p o s i t i o n i s l i m i t e d t o .the v i c i n i t y of t h e preform s u r f a c e through which t h e r e a c t a n t s a r e i n j e c t e d , due t o a v e r y r a p i d d e p l e t i o n of t h e g a s p h a s e o i n r e a c t a n t s . Furthermore, t h e d e p o s i t profi1.e a s shown i n f i g . 8, i s s i m i l a r t o t h a t c a l c u l a t e d f o r T = 1 1 0 0 ~ ~ a c c o r d i n g t o t h e Van den Breckel/Hossignol model ( f i g . 4.

5 ) .

On t h e c o n t r a r y , when T1 i s lowered t o ~ O O ' C , t h e d e p o s i t t a k e s p l a c e n e a r t h e o p p o s i t e s u r f a c e of t h e preform (maintained a t 1 2 0 0 ~ ~ ) s i n c e t h e g a s phase d e p l e t i o n i s now very l i m i t e d . F i n a l l y . a d e p o s i t o f almost uniform t h i c k n e s s i s o b t a i n e d when T1 i s a d j u s t e d t o about 1 0 0 0 ~ ~ .

One of t h e main advantage o f t h e FCVI p r o c e s s l i e s i n t h e f a c t t h a t t h e i n f i l t r a t i o n time n e c e s s a r y t o r e a c h a g i v e n s t a t e o f d e n s i f i c a t i o n f o r a g i v e n porous s u b s t r a t e i s reduced by one o r d e r o f magnitude w i t h r e s p e c t t o t h a t r e q u i r e d i n I C V I due t o ( i ) f a s t e r mass t r a n s f e r s ( f o r c e d c o n v e c t i o n ) and ( i i ) h i g h e r d e p o s i t i o n t e m p e r a t u r e s ( l i m i t e d only by t h e s t a b i l i t y o f t h e p r e f o r m s ) . On t h e o t h e r hand, t h e FCVI p r o c e s s h a s a l s o i m p o r t a n t drawbacks which w i l l b e d i s c u s s e d i n t h e n e x t s e c t i o n .

3

-

PRACTICAL ASPECTS OF THE CV1 PROCESS 3.1

-

Preforms

I n t h e C V 1 p r o c e s s i n g o f CMC, one of t h e i m p o r t a n t s t a r t i n g m a t e r i a l s i s t h e f i b r o u s preform ( t h e o t h e r b e i n g t h e gaseous p r e c u r s o r of t h e m a t r i x ) s i n c e i t s n a t u r e d i r e c t l y governs : ( i ) t h e volume f r a c t i o n s of f i b e r and m a t r i x i n t h e composite a s w e l l a s ( i i )

t h e f i b e r o r i e n t a t i o n and d e g r e e of a n i s o t r o p y . The f i b e r s a v a i l a b l e f o r t h e r e i n f o r c e m e n t o f ceramic m a t r i c e s a r e l i m i t e d t o carbon and S i c - o r Al2O3- based f i b e r s . From a mechanical and thermal s t a b i l i t y p o i n t o f view. t h e b e s t a r e t h e former b u t , u n f o r t u n a t e l y , t h e u s e o f carbon f i b e r s a t high Lemperaturcs i s l i m i tcd Lo aLmospheres which do n o t c o n t a i n oxygen u n l e s s a p r o t e c t i v e c o a t i n g , such a s S i c , has been d e p o s i t e d on t h e f i b e r s u r f a c e ( e . g . by CVD) / 3 1 / . I n t h e preform, t h e f i b e r s a r e e i t h e r s h o r t

(chopped f i b e r s o r w h i s k e r s ) o r continuous (woven o r non-woven).

A v e r y i m p o r t a n t parameter o f t h e preform i s i t s p o r o s i t y . On t h e b a s i s of t h e d i s c u s s i o n p r e s e n t e d i n s e c t i o n 2 , t h e p o r o s i t y of t h e preform s h o u l d o b v i o u s l y b e made of open i n t e r c o n n e c t e d p o r e s of l a r g e enough d i a m e t e r s ( i . e . r a n g i n g between a few pm and a few 100 pm). I n o r d e r t o allow an e a s y d i f f u s i o n / f l o w of t h e gaseous p r e c u r s o r , t h e pore spectrum of t h e preform must c o n t a i n a high enough p e r c e n t a g e o f p o r e s of l a r g e d i a m e t e r s .

S h o r t f i b e r preforms can b e made a c c o r d i n g t o t h e s l u r r y molding p r o c e s s /29/. Chopped f i b e r s ( o r w h i s k e r s ) a r e f i r s t suspended i n a l i q u i d c o n t a i n i n g a b i n d e r ( e . g . a p o l y c a r b o s i l a n e f o r a S i c m a t r i x ) . The s l u r r y i s then vacuum f i l t e r e d t o form a d i s k ( o r

(13)

JOURNAL DE PHYSIQUE

F i g .

temperature pressure

infiltrated cdmposite fibrous preform

~ n - p o r e mass transfers

coating

!l as pressure P,

7 : The CV1 p r o c e s s : ( a ) t h e t e m p e r a t u r e and p r e s s u r e g r a d i e n t s a l o n g t h e p o r e ; ( b ) t h e e x p e r i m e n t a l set u p ( s c h e m a t i c ) /27-29/

TI temperature ("C) T2=1200

I

T. L. S tarr, 1987

C

Q) d

C 0

position

F i g . 8 : The model o f S t a r r : d e p o s i t i o n p r o f i l e s f o r v a r i o u s v a l u e s o f T1 (T2 b e i n g e q u a l t o 1200'~) / 3 0 /

(14)

any o t h e r g i v e n s h a p e ) which, a f t e r p r e s s i n g ( i n d i e s o r between p l a t e s ) and s i n t e r i n g , r e s u l t s i n a preform w i t h a f i b e r volume f r a c t i o n r a n g i n g between 15-25

5.

F e l t s a r e a l s o a v a i l a b l e on t h e market f o r mostcommon ceramic f i b e r s .

2D-preforms, made of a s t a c k o f f a b r i c s , a r e t h e most commonly used f i b r o u s preforms due t o : ( i ) t h e i r h i g h f i b e r volume f r a c t i o n s ( i . e . t y p i c a l l y 40-45 5 ) . ( i i ) t h e i r pore s p e c t r a v e r y w e l l s u i t e d t o C V 1 and ( i i i ) t h e i r e a s y p r e p a r a t i o n . I n t h e s o - c a l l e d dry preforms, t h e f a b r i c s a r e p r e s s e d t o g e t h e r w i t h a ceramic t o o l (which i s withdrawn a f t e r t h e f i r s t CV1 t r e a t m e n t ) . I n c o n s o l i d a t e d preforms, t h e f a b r i c s a r e bonded t o g e t h e r with an o r g a n i c o r o r g a n o m e t a l l i c b i n d e r ( e . g . a p o l y c a r b o s i l a n e ) t h a t a f t e r p y r o l y s i s w i l l y i e l d a s m a l l amount o f a ceramic m a t r i x , p r i o r t o t h e CVI-treatment. More complex nD preforms ( w i t h n

>

2 , n b e i n g t h e number of f i b e r o r i e n t a t i o n s ) can b e p r e p a r e d a c c o r d i n g t o a s i m i l a r procedure /3. 29, 32/.

F i n a l l y , ID-preforms a r e made from a l i g n e d f i b e r tows ( m a i n t a i n e d t o g e t h e r , a s s a i d above, e i t h e r w i t h a ceramic t o o l o r w i t h a b i n d e r ) . T h e i r main advantage l i e s i n t h e f a c t t h a t s t i l l h i g h e r f i b e r volume f r a c t i o n s can be achieved ( e . g . 50-60 X ) . On t h e o t h e r hand, i n s u c h p r e f o r m s , t h e p o r e s a r e e s s e n t i a l l y u n i d i r e c t i o n a l and d i f f i c u l t t o d e n s i f y . C r o s s p l y preforms a r e made a c c o r d i n g t o t h e same p r o c e s s i n g t e c h n i q u e .

3 . 2

-

D e n s i f i c a t i o n o f t h e preform by ICVI

I n ICVI, t h e preforms a r e s e t i n a h o t w a l l i s o t h e r m a l d e p o s i t i o n chamber f e d with a flow of t h e gaseous p r e c u r s o r ( s e e t a b l e I ) under a reduced p r e s s u r e whose v a l u e depends on t h e p o r e spectrum of t h e preform and n a t u r e o f t h e p r e c u r s o r / 3 2 / . A s d i s c u s s e d i n s e c t i o n 2 , t o o h i g h a t e m p e r a t u r e and a p r e s s u r e r a p i d l y r e s u l t i n an e a r l y p o r e s e a l i n g . T h e r e f o r e , t h e d e p o s i t i o n p a r a m e t e r s s h o u l d b e c o n t r o l l e d v e r y c a r e f u l l y d u r i n g t h e whole i n f i l t r a t i o n p r o c e s s . T a b l e I1 g i v e s t h e CVI-parameters f o r some ceramic m a t r i c e s f o r l a b - s c a l e a p p a r a t u s (most porous s u b s t r a t e s a r e 2D p r e f o r m s ) . The u n r e a c t e d s o u r c e s p e c i e s and t h e gaseous r e a c t i o n p r o d u c t s a r e pumped through t r a p s (most of t h e s e s p e c i e s being c o r r o s i v e when h a l i d e p r e c u r s o r s a r e u s e d ) .

T a b l e 11 : D e p o s i t i o n p a r a m e t e r s f o r t h e I C V I o r FCVI of ceramic m a t r i c e s i n porous s u b s t r a t e s .

Matrix P r e c u r s o r Temperature ( OC)

P r e s s u r e ( @ a ) 10

-

100

3 1

- 5

1 - 5

1 - 5 2 - 3 1 - 5

1

100

-

200

l

l l -

P r e c u r s o r Composition H2 : MTS = 5

-

1 0

-

BC13 : H2 = 1 BC13 : CH4 = 4 H2 : CH4 = 1 0

H2 : C02 = 1 H2 : C02 = 1 H2 : MTS = l 0

C V I - type and r e f e r e n c e

I C V I /g/

I C V I 1331 I C V I /34/

FCVI /27, 281 FCVI /28/

(15)

JOURNAL DE PHYSIQUE

F i g . 9 : K i n e t i c s o f d e n s i f i c a t i o n o f a porous 2D-C-C preform by B4C shown on a semi- l o g a r i t h m i c s c a l e (Mo : maximum mass o f B4C c o r r e s p o n d i n g t o a t o t a l f i l l i n g of t h e p o r o s i t y ; MP : mass o f B4C d e p o s i t e d i n t h e p o r e s ; MS : mass o f B4C d e p o s i t e d on t h e e x t e r n a l s u r f a c e ) . I n s e r t : k i n e t i c s o f d e n s i f i c a t i o n shown on an a r i t h m e t i c s c a l e /16/

A s d i s c u s s e d i n s e c t i o n 2 and shown i n f i g . 9 ( i n s e r t ) , t h e r a t e of i n f i l t r a t i o n i n ICVI is slow /16, I T / . Furthermore, i t d e c r e a s e s r e g u l a r l y a s t h e i n f i l t r a t i o n proceeds ( t h e p o r e s becoming narrower, mass t r a n s f e r s by d i f f u s i o n , f o r g i v e n T, P, a r e more and more d i f f i c u l t ) . When t h e i n f i l t r a t i o n p a r a m e t e r s a r e p r o p e r l y o p t i m i z e d , t h e i n i t i a l open p o r o s i t y can b e a l m o s t t o t a l l y f i l l e d w i t h t h e ceramic d e p o s i t (down t o a r e s i d u a l p o r o s i t y o f 5-10 ,%) w i t h o u t s u r f a c e machining. However, i n o r d e r t o reduce t h e i n f i l t r a t i o n d u r a t i o n , i t may b e p r e f e r a b l e f o r economical c o n s i d e r a t i o n s t o re-open t h e p o r e s o r e n l a r g e t h e p o r e e n t r a n c e s by s u r f a c e machining o f t h e preforms. A s e a l i n g of t h e p o r e s is e a s i l y i d e n t i f i e d from a semi l o g - p l o t o f t h e v a r i a t i o n s o f t h e r e s i d u a l p o r o s i t y v s time ( d e v i a t i o n from a s t r a i g h t l i n e ) .

Even under o p t i m i z e d i n f i l t r a t i o n c o n d i t i o n s , t h e t h i c k n e s s o f t h e ceramic m a t r i x d e p o s i t e d i n t h e p o r e s i s u s u a l l y h i g h e r n e a r t h e e x t e r n a l s u r f a c e o f t h e preforms than i n t h e c o r e (due t o t h e d e p l e t i o n o f t h e g a s phase i n s o u r c e s p e c i e s , a s d i s c u s s e d i n s e c t i o n 2 ) . T h e r e f o r e , t h e r e is u s u a l l y ( i ) a d e n s i t y g r a d i e n t i n CMC o b t a i n e d by CV1

( t h e d e n s i t y b e i n g h i g h e r n e a r t h e e x t e r n a l s u r f a c e ) and ( i i ) some r e s i d u a l p o r o s i t y . The n a t u r e o f t h e m a t r i x o b t a i n e d by CV1 can b e e a s i l y modified by changing t h a t o f t h e p r e c u r s o r i n j e c t e d i n t h e i n f i l t r a t i o n chamber. A s an example, t h e i n t e r p h a s e m a t e r i a l , i . e . pyrocarbon o r hex-BN ( u s e d t o c o n t r o l t h e f i b e r - m a t r i x bonding and p r o t e c t t h e f i b e r s a g a i n s t t h e n o t c h e f f e c t a r i s i n g from t h e m i c r o c r a c k i n g o f t h e m a t r i x , when t h e composite i s loaded at" a high enough s t r e s s ) i s d e p o s i t e d f i r s t a s a t h i n l a y e r (from hydrocarbon o r BF3 ( o r BC13)/NH3 p r e c u r s o r s ) . Then t h e ceramic m a t r i x i t s e l f i s d e p o s i t e d by changing t h e p r e c u r s o r ( e . g . CH3SiC13/H2 f o r S i c ) . F i n a l l y a c o a t i n g ( d e p o s i t e d under CVD c o n d i t i o n s ) may b e a p p l i e d t o improve t h e r e s i s t a n c e o f t h e composite w i t h r e s p e c t t o

(16)

t h e environmental e f f e c t s .

F i n a l l y , an i m p o r t a n t advantage o f t h e I C V I p r o c e s s i n g o f CMC l i e s i n t h e f a c t t h a t a l a r g e number o f preforms even o f complex s h a p e s can b e t r e a t e d s i m u l t a n e o u s l y i n t h e same i n f i l t r a t i o n chamber ( t h e number b e i n g l i m i t e d o n l y by s p a c e c o n s i d e r a t i o n s ) . This advantage compensates t h e low i n f i l t r a t i o n r a t e s due t o mass t r a n s f e r s by d i f f u s i o n . 3.3

-

D e n s i f i c a t i o n o f t h e preform by FCVI

A s shown s c h e m a t i c a l l y i n f i g . 7b, i n FCVI each preform has t o b e s e t i n a s p e c i f i c h o l d e r i n o r d e r t o g e n e r a t e t h e thermal g r a d i e n t and t o f o r c e t h e f e e d g a s t o flow i n t h e pore network under p r e s s u r e . A t t h e beginning o f a r u n , t h e r e a c t a n t s flow both a x i a l l y and r a d i a l l y i n t h e preform. However. t h e upper s u r f a c e o f t h e preform becomes r a p i d l y c o a t e d due t o t h e h i g h T2 t e m p e r a t u r e v a l u e ( t y p i c a l l y 1 1 0 0 - 1 2 0 0 ~ ~ f o r S i c d e p o s i t e d from CHjSiC13/H2). T h e r e f o r e , under s u c h c o n d i t i o n s t h e f e e d g a s must flow r a d i a l l y t o t h e void around t h e preform and e s c a p e through h o l e s i n t h e r e t a i n i n g r i n g . Moreover, s i n c e i n t h e p a r t i c u l a r c a s e o f S i c t h e d e p o s i t e d m a t r i x i s a good h e a t c o n d u c t o r , t h e h o t r e g i o n of t h e preform a t T2 moves from t h e t o p toward t h e bottom and c i r c u m f e r e n c e / 2 7 - 29/.

The p r e s s u r e which h a s t o b e a p p l i e d t o f o r c e t h e f e e d g a s t o flow a c r o s s t h e preform depends on t h e p o r e geometry and spectrum. P1 v a l u e s o f t h e o r d e r o f 100-200 kPa a r e r e p o r t e d f o r t h e i n f i l t r a t i o n of s a y 2D-Sic ( N i c a l o n ) preforms by S i c d e p o s i t e d from ClI3SiC13/H2 /27-29/.

The main advantage o f FCVI is t o s h o r t e n , by one o r d e r of magnitude, t h e d e n s i f i c a t i o n d u r a t i o n f o r a g i v e n preform w i t h r e s p e c t t o ICVI, due t o ( i ) h i g h e r d e p o s i t i o n t e m p e r a t u r e s and ( i i ) f a s t e r mass t r a n s f e r s of t h e r e a c t a n t s and p r o d u c t s by f o r c e d convection. However, t h e i n c r e a s e i n d e p o s i t i o n t e m p e r a t u r e may be l i m i t e d by t h e thermal s t a b i l i t y o f t h e f i b e r s . T h i s i s t y p i c a l l y t h e c a s e f o r t h e ex-polycarbosilane f i b e r s

(e.g. Nicalon f i b e r s ) whose m i c r o s t r u c t u r e begins t o c o a r s e n a t 1100'~ ( w i t h a lowering of t h e f a i l u r e s t r e n g t h ) . Under such c o n d i t i o n s , t h e o n l y advantage of t h e FCVI p r o c e s s is r e l a t e d t o f a s t e r mass t r a n s f e r s o f t h e gaseous s p e c i e s r e s u l t i n g from forced convection.

4 -

M A I N PROPERTIES AND APPLICATIONS OF CVI-PROCESSED CMC

The main i n t e r e s t o f f i b e r r e i n f o r c e d ceramics l i e s i n t h e i r n o n - b r i t t l e mechanical behavior and improved r e l i a b i l i t y with r e s p e c t t o t h e i r u n r e i n f o r c e d c o u n t e r p a r t s , a s shown i n f i g . 1 0 /3. 4, 28,

35/.

However. t h i s n o n - b r i t t l e c h a r a c t e r i s observed o n l y f o r well-processed m a t e r i a l s , i.e. when : ( i ) t h e f i b e r s a r e n o t damaged d u r i n g t h e composite p r o c e s s i n g , ( i i ) t h e f i b e r s are o n l y weakly bonded t o t h e m a t r i x through a s o f t i n t e r p h a s e (e.g. a t h i n l a y e r o f pyrocarbon o r hex-BN) and ( i i i ) b o t h t h e f i b e r s and t h e i r i n t e r p h a s e s a r e p r o t e c t e d a g a i n s t environmental e f f e c t s e . g . by p r o t e c t i v e c o a t i n g s . Under s u c h c o n d i t i o n s . f i b r o u s ceramic m a t r i x composites : ( i ) obey a non l i n e a r s t r e s s - s t r a i n law ( f i g . 1 0 a ) and ( i i ) e x h i b i t b o t h a h i g h r e s i s t a n c e t o c r a c k p r o p a g a t i o n and a h i g h f a i l u r e energy ( f i g . l o b and 1 0 c ) due t o d i f f e r e n t damaging mechanisms ( e . g . m a t r i x m i c r o c r a c k i n g , f i b e r - m a t r i x debonding and f r i c t i o n , f i b e r p u l l o u t ) which a b s o r b energy. It i s worthy o f n o t e t h a t t h e p r o c e s s i n g r e q u i r e m e n t s mentioned above a r e p e r f e c t l y f u l f i l l e d by t h e C V 1 t e c h n i q u e .

Although t h e f e a s i b i l i t y o f t h e CVI-process h a s been e s t a b l i s h e d f o r d i f f e r e n t m a t r i c e s , t h e o n l y m a t e r i a l s which a r e produced on an i n d u s t r i a l b a s i s a r e carbon-carbon, on t h e one hand, and C-Sic o r S i c - S i c on t h e o t h e r hand. A s f a r a s we know. most of them a r e processed a c c o r d i n g t o t h e I C V I p r o c e s s . t h e low i n f i l t r a t i o n r a t e s b e i n g compensated by t h e f a c t t h a t l a r g e numbers o f p a r t s can b e s i m u l t a n e o u s l y t r e a t e d , a s d i s c u s s e d i n s e c t i o n 2 and

3 .

Carbon-carbon p a r t s a r e used i n r o c k e t e n g i n e s , h e a t s h i e l d s , b r a k e d i s k s and p r o s t h e t i c d e v i c e s . Sic-based composites a r e used i n g a s t u r b i n e s , r e u s a b l e thermal p r o t e c t i o n s and more g e n e r a l l y s p e a k i n g f o r s t r u c t u r a l p a r t s used a t high t e m p e r a t u r e s and under atmospheres c o n t a i n i n g oxygen.

(17)

JOURNAL

DE

PHYSIQUE

strain

(%l

10000

7500

5000

2500

300 1

0 2 4 6

propagation

of

damage(mm1 Fig. 10 : The non-brittle behavior of Sic-Sic fibrous composites at room temperature : (a) stress-strain curve in tension / 3 / , (b) resistance to crack propagation / 4 /

strain (%l

Fig. 10 : (c) stress-strain curve in

3

point-bending /27, 28/

(18)

REFERENCES

/ l / Prewo, K.M., Brennan, J . J . and Layden, G.K., Ceram. B u l l . , 65/2 (1986) 305

/2/ N a s l a i n , R . . Rossignol, J.Y., Q u e n i s s e t , J.M., and L a n g l a i s , F . . i n " I n t r o d u c t i o n aux Materiaux Composites" v o l . 2

-

M a t r i c e s M e t a l l i q u e s e t Ceramiques ( N a s l a i n , R . , e d . ) , chap. 1 8 , pp. 439-491, C o e d i t i o n CNRS/IMC, Bordeaux, 1985

/3/ B e r n h a r t . G . , Lamicq, P. and Mace, J . , L ' i n d u s t r i e Ceramique 790/1 (1985) 51

/4/ Lamicq, P . J . , B e r n h a r t , G.A., Dauchier, M . M . and Mace, J . G .

.

Ceram. B u l l . , 65/2 (1986) 336

/5/ C h r i s t i n . F . , N a s l a i n . R., and Bernard. C., P r o c . 7 t h I n t . Conf. CVD (Sedwick, T.0 and L y d t i n , H., e d s ) , The Electrochem. S o c . , P r i n c e t o n , 1979, pp. 499-514

/6/ F i t z e r , E., Hagen. D., and S t r o h m e i e r , H . . R e v . I n t . Hautes Temper. R e f r a c t . , 17 (1980) 23

/7/ S t i n t o n , D.P., Besmann, T.M., and Lowden, R.A., Ceram. B u l l . , 67/2 (1988) 350

/8/ R o s s i g n o l . J . Y . , L a n g l a i s , F . , and N a s l a i n , R., Proc. 9 t h I n t . Conf. CVD (Robinson, MC. D. e t a l . . e d s . ) , The Electrochem. S o c . , Pennington, 1984, pp. 5967614

/9/ Hannache, H . . N a s l a i n , R . . and Bernard, C., J . Less-common Met., 9 5 (1983) 221 /10/ L h e r m i t t e - S e b i r e , I . , Colmet, R., N a s l a i n , R., and Bernard, C., J . Less-common Met.,

118 (1986) 8 3

/11/ Minet, J . , L a n g l a i s , F . . N a s l a i n , R . . and Bernard, C . , J. Less-common Met., 119 (1986) 219

/12/ Fischman, G.S. and Tetuskey, W.T., J . Amer. Ceram. S o c . , 68/4 (1985) 185

/13/ Bernard, C . . D e n i e l , Y . , Jacquot, A., Vay, P ; , and D u c a r r o i r , M., J . Less-common Met. , 40 (1975) 165

/14/ D u c a r r o i r . M., Jaymes, M., Bernard, C . . and D e n i e l , Y . , J . Less-common Met., 40 (1975) 173

/15/ Prebende, C., L a n g l a i s , F . , N a s l a i n , R., and Bernard, C . . J.Less-common Met., ( t o be p u b l i s h e d )

/16/ Hannache, H . . L a n g l a i s , F . . and N a s l a i n , R., P r o c . 5 t h European Conf. CVD ( C a r l s s o n J . 0 and Lindstrom, J . , e d s . ) , pp. 219-233, Uppsala, Sweden, 1985

/IT/ N a s l a i n , R . , and L a n g l a i s , F . , Mater. S c i . , R e s . , 20 (1986) 145

/18/ Van Den B r e k e l . C.H.J.. F o n v i l l e , R.M.M., Van D e r Straten, P. J.M. and Verspui. G . , Proc. 8 t h I n t . Conf. CVD-Paris (Blocher. J.M. e t a l . e d s . ) , The Electrochem. Soc. , Pennington, 1981, pp. 142-156

/ l g /

F i t z e r , E . , Proc. I n t . Symp. F a c t o r s i n D e n s i f i c a t i o n and S i n t e r i n g of Oxide and Non-oxide Ceramics, Hakone, J a p a n , 1978, pp 40-76

/20/ F i t z e r , E. and Hegen, D., Angew Chem. I n t . Ed. E n g l . , 18 (1979) 295

/21/ F i t z e r , E.. F r i t z , N., and Gadow, R . . P r o c . Adv. Ceram. Mater., Yokohama, Oct. 1983 (Somiya, S . , e d . ) . KTK S c i e n t i f i c , Tokyo, 1985

/22/ Fedou, R . . L a n g l a i s , F. and N a s l a i n . R., J . Less-common M e t . ( t o be p u b l i s h e d )

/23/ Schoch, G . , F r i t z , W., and F i t z e r , E . , Techn. R e p t . , EURAM C o n t r a c t MAIE/0018/C, 1988

/24/ B i r d , R.B.. S t w a r t . W.E., and L i g h t f o o t . E.N., T r a n s p o r t Phenomena (Wiley, e d . ) . New York, 1960

/25/ T h i e l e , E.W., I n d . and E n g i n e e r i n g Chem., 31/7 (1939) 916 /26/ F i t z e r , E . , and Gadow, R., Ceram. B u l l . , 65/2 (1986) 326

/27/ S t i n t o n , D.P., Caputo, A.J. and Lowden, R.A., Ceram. B u l l . , 65/2 (1986) 347

/28/ Caputo, A . J . . Lackey, W.J. and S t i n t o n , D.P., Proc. 9 t h Ann. Conf. Composites and Adv. Ceram. MaLer., Cocoa Beach, F1. (Gnc, F.D.. e d . ) , T h e Amer. Cernm. S o c . , Columbus, Ohio, 1985, pp. 694-706

/29/ Caputo, A . J . , Lowden, R . A . and S t i n t o n , D.P., ORNL/TM-9651, J u n e 1985, a v a i l a b l e from NTIS, US Dept. Commerce, S p r i n g f i e l d , VA, r e f . A03

/30/ S t a r r . T.L., Proc. 1 0 t h I n t . Conf. CVD-Honolulu (G.W. C u l l e n , e d . ) , The Electrochem.

S o c . , 1987, pp. 1147-1155

/31/ V i n c e n t , H., Bonnetot, B . , Bouix, J . , Mourichoux, H., and Vincent, C., t h i s volume /32/ N a s l a i n . R., Rossignol. J . Y . , Hagenmuller. P . . C h r i s t i n , F . , Heraud, L . , and Choury,

J . J . , Rev. Chimie M i n e r a l e , 18 (1981) 544

/33/ Colmet, R., L h e r m i t t e - S e b i r e , I . , and N a s l a i n , R., Adv. Ceram. M a t e r . , 13812 (1986) 221

/34/ Minet, J . , L a n g l a i s , F . , and N a s l a i n , R., Composites S c i . Technology ( t o be p u b l i s h e d )

/35/ Bouquet, M., B i r b i s , J.M.. Q u e n i s s e t , J.M., and N a s l a i n , R . . Proc. 6 t h I n t . Conf.

Composite Mater. London (Matthews e t a l . . e d s . ) E l s e v i e r Applied S c i . , London, 2 (1987) 48

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to