• Aucun résultat trouvé

An approach of incoherence of mathematical arguments

N/A
N/A
Protected

Academic year: 2021

Partager "An approach of incoherence of mathematical arguments"

Copied!
43
0
0

Texte intégral

(1)

HAL Id: hal-01489276

https://hal.archives-ouvertes.fr/hal-01489276

Preprint submitted on 14 Mar 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An approach of incoherence of mathematical arguments

Jamel Ghanouchi

To cite this version:

(2)

An approach of incoherence of mathematical arguments

Jamel Ghanouchi

ECOLE SUPERIEURE DE SCIENCES ET TECHNIQUES DE TUNIS Marsa 2070, Tunisia

jamel.ghanouchi@topnet.tn

Abstract

(3)

Lemma 1 If U, X, Y verify U = X + Y , then u, x, y, z as defined verify (1) and (2) which follow

(4)
(5)

Because

∀x2, y2rational, ∃z2 rational verifyin

1 z2 = 1 x2 + 1 y2

Until infinity. For i

(xi+ yi) = (√xi+1+√yi+1)2 > xi+1+ yi+1 >0

And xi+ yi rational for i > 2

xi =√xi+1(√xi+1+√yi+1) > xi+1 >0

xi rational for i > 2

yi =√yi+1(√xi+1+√yi+1) > yi+1 >0

yirational for i > 2

zi =

xiyi

xi+ yi

=√xi+1yi+1 > zi+1 =

xi+1yi+1

xi+1+ yi+1

>0

zi rational for i > 1 and

(6)

Proof of lemma 2 By induction x=√x2(√x2+√y2) =√x2(x + y)12 x2 = x 2 x+ y Also y2 = y2 x+ y

The lemma is verified for i = 2. If it is true for i, from (3) and (4) xi =√xi+1(√xi+1+√yi+1) = √xi+1(xi+ yi)

(7)

And j=i−2 Y j=0 (x(2j)+ y(2j)) = (x (2i−1) − y(2i−1)) x− y Lemma 3 Let x6= y Which means xi 6= yi xi = x(2i−1) x(2i−1) − y(2i−1)(x − y) = U X2i−1 X2i−1 − Y2i−1(X − Y ) And yi = y(2i−1) x(2i−1) − y(2i−1)(x − y) = U Y2i−1 X2i−1 − Y2i−1(X − Y ) ui = xi+ yi = Uc X2i−1 + Y2i−1 X2i−1 − Y2i−1(X − Y ) Lemma 4 xi− yi = x − y As xi− yi = xi+1− yi+1 = x − y

Ghanouchi theorem We will prove that 1z = 1x + 1y and u = x + y imply x = y. We have supposed x − y 6= 0. A priori nothing allows to say that x is different or equal to y. Our reasoning leaded us to x = y, without any condition on x and y. Why this impossible result ? If kUn = k

(8)

y= kUnk jX nj j z = kjX nj j (kU n − kjX nj j ) It is lemma (1) u= x + y And 1 x + 1 y = 1 z

If there is an undecidability, the sequences must lead to an impossibility. It is xy(x − y) = 0 for all x, y. Let us prove that xy(x − y) = 0. As

xi = x2i−1 x2i−1 − y2i−1(x − y) And yi = y2i−1 x2i−1 − y2i−1(x − y) Thus x≥ y ⇒ lim

i−→∞(xi) = x − y, i−→∞lim (yi) = 0

And

y≥ x ⇒ lim

i−→∞(yi) = y − x, i−→∞lim (xi) = 0

The series

In all what follows, we suppose x ≥ y. As √x

iyi = yi−1− yi= xi−1− xi

So

xi− xi+1 =√xi+1yi+1

(9)

If x ≤ y j=∞ X j=2 (√xjyj) = lim i−→∞(x − xi+1) = x

The applications of the series

Hence

j=i

X

j=2

((−1)j√xjyj) = x − x2− (x2− x3) + (x3− x4) − ... + (−1)i(xi−1− xi)

= x − 2x2+ 2x3− ... + 2(−1)i−1xi−1+ (−1)i+1xi

(10)
(11)

= A − B + y + x − y − lim i−→∞((−1) i+1(x − y)) = A − B + A + B + (x − y) lim i−→∞((1 − (−1) i+1)) = 2A + (x − y) lim i−→∞((1 − (−1) i+1)) Also i = 2k + 1 U1 = U = 2A + 2(x − y); U2= V = 2A i= 2k U1 = V = 2A; U2 = U = 2A + 2(x − y) U3 = 2 lim i−→∞( j=i X j=1 ((−1)j+1yj)) = A − B + y = 2A U4+ 2y = 2 lim i−→∞( j=i−1 X j=1 ((−1)j+1yj)) = A − B + y = 2A Let U1− U2− 2x = 2(x − y) lim i−→∞((−1) i+1) i= 2k + 1 U1− 2x = U4 U2= U3− 2x

U1+U2+2x = U3+U4+2x = 2(A−B)+2x = 2U1+2y−2x = 2U2+6x−2y = 4A+2(2x−y) = 2U3+2x−2y = 2U4+2

= 4A + 2x − 2y = 4A + 6x − 2y But U1(U2+ 2x) = 4A2+ 4A(x − y) U3(U4+ 2y) = 4A2 U1(U2+ 2x) = U1(U1− 2(x − y) lim i−→∞((−1) i+1))

= (2U1+ 2y − 2(x − y) limi−→∞((−1)

i+1))2

4 + (U1+ U2+ 2x + 2(y − x))(x − y)

= (2U1+ 2y − 2(x − y) limi−→∞((−1)

i+1))2

4 +(2U1+2y−2(x−y) limi−→∞((−1)

i+1))(x−y)

= (U1+y)2+(x−y)2−2(U1+y)(x−y) lim i−→∞((−1) i+1)+(2U 1+2y−2(x−y) lim i−→∞((−1) i+1))(x−y) = U12− 2U1(x − y) lim i−→∞((−1) i+1))

= U12+ y2+ 2yU1+ (x − y)2+ 2(U1+ y)(x − y)(1 − lim i−→∞((−1) i+1))+ −2(x − y)2 lim i−→∞((−1) i+1) y2+ 2U1(x − y) + 2yU1+ (x − y)2− 2(x − y)2 lim i−→∞((−1) i+1)+

+2y(x − y)(1 − lim

i−→∞((−1)

(12)

i= 2k + 1

y2+ 2xU1+ (x − y)2− 2(x − y)2 = 0

y2+ 2xU1− (x − y)2= 0 = 2xU1− x2+ 2xy

U1 = U = 2A + 2(x − y) = A − B + 2x − y = −2B + 2x

y2+ 2x(2A + 2(x − y)) − (x − y)2= 0 y2+ 4xA + 4x(x − y) − (x − y)2 = 0

= 4xA − 2xy + 3x2 = 0

= 4x(y − B) − 2xy + 3x2= 2xy + 3x2− 4xB = 0 2xU1 = 4xA + 4x(x − y) = 2xy − 3x2+ 4x2− 4xy = x2− 2xy

or 2U1 = x − 2y = 4A + 4(x − y) 4A = −3x + 2y = 4y − 4B 4B = 2y + 3x 2U2 = 4A = −3x + 2y 4U1+ 4U2 = −4x = 4U3+ 4U4 = 4A − 4B = −6x It means x= 0 As it is impossible, x = y. A= lim k−→∞( j=k X j=1 (√x2jy2j)) B = lim k−→∞( j=k X j=1 (√x2j+1y2j+1)) U1 = 2 lim k−→∞( j=i+1 X j=1 ((−1)j+1xj)) = A − B + x + (−1)i+1(x − y) U2 = 2 lim k−→∞( j=i X j=2

((−1)j+1xj)) = A−B−x−(−1)i+1(x−y) = U1−2x−2(−1)i+1(x−y)

(13)

But

U12+ U1(2(B − A) − 2x + 2y) − 2xU3+ (B − A)2+ y2= 0

U22+ U2(2(B − A) + 2x − 2y) + 2xU4+ (B − A)2+ y2= 0

U1 = A − B + x − y ±p(A − B + x − y)2+ 2xU3− (A − B)2− y2

U2 = A − B + y − x ±p(A − B + y − x)2− 2xU4− (A − B)2− y2

= A − B + y − x ±px2− 2xy + 2(A − B)(y − x) − 2xU

4 = A − B + y − 2x

Hence

x2= x2− 2xy + 2(A − B)(y − x) − 2x(A − B − y) Thus

(A − B)(2y − 4x) = 0 Another proof :

U1 = A − B + x − y ±p(x − y)2+ 2(x − y)(A − B) + 2xU3− y2 = 2x − y

U2 = A − B + y − x ±p(x − y)2+ 2(y − x)(A − B) − 2xU4− y2 = y − 2x

U12− U22+ 2(B − A)(U1− U2) − (2x − 2y)(U1+ U2) − 2x(U3+ U4)

= (U1− U2)(U1+ U2+ 2(B − A)) − 4(2x − y)(A − B) = 0 = 4(y − 2x)(A − B)

And

2A = 2B = y

U1 = 2x − y = y = −U2= U3= −U4

U1U2− U3U4 = (2x − y)(y − 2x) + y2 = −4x(x − y) = −x(U1− U2− 2y)

U1(U2+ 2x) + U2(U1− 2x) + 4xy + 2y2 = 0

= U1(U2+2x)+U2(U1−2x)+2y(2x+y) = 0 = (2x−y)y−y(y−2x)+2y(2x+y) = 0

= 2xy − y2− y2+ 2xy + 4xy + 2y2= 8xy = 0 As it is impossible, it means x − y = 0.

The series are convergent. We have proved lim

i−→∞(xi) = x − y = 0

Let anonther proof :

(14)
(15)

= lim m−→∞((e 1 √ 2m − 1)y 2p−1e− p−1 √ 2m + (e 1 √ 2m − 1) k=m X k=p+1 (y2k−1e− 2k−p−1 √ 2m )) = lim m−→∞((e 1 √ 2m − 1) k=m X k=p+1 (y2k−1e− 2k−p−1 √ 2m )) = lim m−→∞(A) = limm−→∞(S) For p+ 1 = m ⇒ lim

m−→∞(A) = limm−→∞(S) = limm−→∞((e

(16)

= lim m−→∞((e 1 √ 2m − 1)x 2p−1e− p−1 √ 2m + (e 1 √ 2m − 1) k=m X k=p+1 (x2k−1e− 2k−p−1 √ 2m )) = lim m−→∞((e 1 √ 2m − 1) k=m X k=p+1 (x2k−1e− 2k−p−1 √ 2m )) = lim m−→∞(A) = limm−→∞(S) For p+ 1 = m ⇒ lim

m−→∞(A) = limm−→∞(S) = limm−→∞((e

1 √ 2m − 1)x 2m−1e− m √ 2m) = 0 Consequently lim m−→∞((e 1 √ 2m − 1) k=m X k=1 (x2k−1e− 2k √ 2m)) = 0 We deduce 0 < lim m−→∞( k=2m X k=1 ((−1)k+1xke− k √ 2m)) = lim m−→∞( k=2m X k=1 ((−1)k+1xke− k √ 2m)) = lim m−→∞( k=m X k=1 (√x2ky2ke−√2k 2m)) < lim m−→∞( k=m X k=1 (√x2ky2k)) < lim m−→∞( k=2m X k=1 (√xkyk)) = y Thus lim m−→∞( k=2m X k=1 ((−1)k+1(xk− yk)e− k √ 2m)) = 0 = lim m−→∞((x − y) k=2m X k=1 (e−√k 2m)) = lim m−→∞((x − y)e −√1 2m1 − e −√2m 1 + e− 1 √ 2m ) = x − y 2 = 0 And x − y = 0 Let us recapitulate xi> xi+1, yi > yi+1 ⇒ x = y

xi = xi+1 = xi+1+ √xi+1yi+1 ⇒ xy = 0

yi = yi+1 = yi+1+ √xi+1yi+1 ⇒ xy = 0

(17)

Another proof : let A= j=i−1 Y j=1 (xj+ yj xj ) = x xi B= j=i−1 Y j=1 (xj+ yj yj ) = y yi A − B = j=i−1 Y j=1 (xj+ yj xj ) − j=i−1 Y j=1 (xj+ yj yj ) = (x 2i−1 − y2i−1)x (x − y)x2i−1 − (x2i−1− y2i−1)y (x − y)y2i−1 = (xy 2i−1 − yx2i−1)(x2i−1 − y2i−1) (x − y)x2i−1y2i−1

= ((x − y)y

2i−1

+ y(y2i−1− x2i−1))(x2i−1 − y2i−1) (x − y)x2i−1y2i−1

= 1

x2i−1 −

y(x2i−1− y2i−1)2 (x − y)x2i−1y2i−1

= 1 x2i−1 − x − y x AB A= 1 x2i−1 + B(1 − x − y x A) = x xi = 1 x2i−1 + y yi(1 − x − y xi ) xyi = xiyi x2i−1 + y(xi− (xi− yi)) xyi = xiyi x2i−1 + yyi x= xi x2i−1 + y lim

i−→∞(x) = x = limi−→∞(

(18)

A= xB B(x − y) + y

B = yA

x − A(x − y)

A+ B = xB(x − A(x − y)) + yA(B(x − y) + y) (B(x − y) + y)(x − A(x − y)) = x

2B − ABx(x − y) + ABy(x − y) + y2A

(B(x − y) + y)(x − A(x − y)) (x2xiy+ y2xyi− xy(x − y)2)xi

(yxi(x − y) + yyixi)(xxi− x(x − y))

= xyi+ yxi xiyi

(xyi+ yxi)(yxi(x − y) + yyixi)xyi)) = xiyi(x2xiy+ y2xyi− xy(x − y)2)

(xyi+ yxi)(yxi(x − y) + yyixi)x = xi(x2xiy+ y2xyi− xy(x − y)2)

lim

i−→∞((xyi+ yxi)(yxi(x − y) + yyixi)x) = y 2

(x − y)3 = lim

i−→∞(xi(x 2x

iy+ y2xyi− xy(x − y)2)) = (x−y)2(x2y −xy(x−y)) = xy2(x−y)2

Thus x − y = 0. Another : A+ B = j=i−1 Y j=1 (xj+ yj)( 1 Qj=i−1 j=1 (xj) + Qj=i−11 j=1 (yj) ) = j=i−1 Y j=1 (xj+ yj)( x x2i−1 + y y2i−1) = j=i−1 Y j=1 (xj+ yj)( xyi+ yxi xiy2i−1 ) = j=i−1 Y j=1 (xj+ yj)((x − 1)yi+ (y − 1)xi + xi+ yi xiy2i−1 ) = j=i Y j=1 (xj+ yj xj )( 1 y2i−1 + j=i−1 Y j=1 (xj+ yj)(x − 1 x2i−1 + y − 1 y2i−1) = x xi+1 ( 1 y2i−1 + x − 1 x ( x xi ) +y − 1 y ( y yi )) = x xi + y yi xxiyi( xiyixi+1 y2i−1 + ( x − 1 x )xxi+1yi+ ( y − 1

y )yxixi+1) − xyixi+1− yxixi+1 = 0 lim i−→∞(xxiyi( xiyixi+1 y2i−1 + ( x − 1 x )xxi+1yi+ ( y − 1

(19)
(20)

And y= x + u′ ⇒ x = x 3(3 + 3y − x x + (x − y)2 x2 ) x − y = 3(x − y) + (y − x)(3xx3 + 3y3 y + (y − x)x3 x2 − (y − x)y3 y2 ) (y − x)(−2 +3xx3 + 3y3 y + (y − x)x3 x2 + (x − y)y3 y2 ) = 0 (y − x)(−2(x + y)(x2+ y2) + 3x3+ 3y3+ (y − x)x2+ (x − y)y2) = 0 = (y − x)(−2x3− 2y3− 2x2y − 2xy2+ 2x3+ 2y3+ x2y+ xy2) = 0 = (y − x)(−x2y − xy2) = 0 Another proof, if x ≥ y let di= xyii, for an n

(21)

And xi− 1 ≥ x − y = xi− yi ⇒ yi≥ 1 Or yi= yi xi− yi(x − y) ≥ 1 ⇒ yi(x − y) ≥ x − y ⇒ limi−→∞ (yi(x − y)) = 0 ≥ x − y ≥ 0

Then x = y. Another proof : as

y2i − x2i = (y − x)(xi+ yi) = (yi+1− xi+1)(xi+1+ yi+1+ 2√xi+1yi+1)

= y2i+1− x2i+1+ 2√xi+1yi+1(yi+1− xi+1)

y

i+1 = Z is solution of

Z4+ 2√xi+1Z3− 2

q

x3i+1Z − x2i+1+ x2i − y2i = 0 And √xi+1= Z′is solution of

Z′4+ 2y i+1Z′3− 2 q yi+13 Z′− y2 i+1+ yi2− x2i = 0 And Z4+ 2Z′Z3 − 2Z′3Z − Z′4+ x2 i − y2i = 0 Also Z′4+ 2ZZ′3− 2Z3Z− Z4+ y2 i − x2i = 0 x2i − yi2= (x − y)(Z+ Z)2 = (x − y)(Z2+ 2Z′Z+ Z′2)

Z4+ 2Z′Z3+ (x − y)Z2+ (−2Z′3+ 2Z(x − y))Z − Z′4+ (x − y)Z′2= 0

(22)

w3+(3 4z ′21 2(x−y))w 2 +(−163 z′43 4z ′2(x−y))w+(− 97 512z ′6 41 128z ′4(x−y)) = 0 512L3− 160(x − y)L2− 9728(x − y)2L −97(x − y) 3 64 − 41 4 (x − y) 3 = 0 32768L3− 10240(x − y)L2− 621992(x − y)2L − 97(x − y)3− 656(x − y)3 = 0 w′3+ (3 4z 21 2(y −x))w ′2+ (− 3 16z 43 4z 2(y −x))w+ (−97 512z 6 41 128z 4(x −y)) = 0 512L′3+ 640(x − y)L′2− 4608(x − y)2L− 261(x − y)3 = 0 p= (− 3 16z ′4 3 4z ′2(x − y)) − ( 3 4z′2−12(x − y))2 3 = −3 8z ′4− z′2(x − y) − 1 12(x − y) 2

L′′is the limit of p in the infinity.

128L′′= −3(x − y)2 − 32(x − y)2−32 3 (x − y) 2 384L′′= −137(x − y)2 q= ( 3 4z′2−12(x − y)) 27 (2( 3 4z ′21 2(x − y)) 2 − 9(− 3 16z ′43 4z ′2(x − y)))+ +(−51297 z′6 41 128z ′4(x − y)2) = 1 16z ′6+10 24z ′4(x − y) − 9 16z ′4(x − y) + 1 24(x − y) 2z′21 4(x − y) 2z′2 1 108(x − y) 3 = 1 16z ′6+ 1 16z ′4(x − y) − 5 24(x − y) 2z′2 1 108(x − y) 3

L′′′is the limit of q in the infinity.

(23)
(24)
(25)

= −(Z2− Z′2)29

8 = 0 The solution is

Z2− Z′2 = y

i+1− xi+1 = y − x = 0

(26)

And lim i−→∞(x 1 22i−1 i ) = lim i−→∞(y 1 22i−1 i ) = 1 Thus 0 < lim i−→∞(x 1 2i−1 i − y 1 2i−1 i ) = 1 − y x < lim i−→∞( ( x−y x 1 2i i −y 1 2i i )(x2i−11 y 1 22i−1 i − y 1 2i−1x 1 22i−1 i ) x2i1y 1 2i ) = 0 Another proof : let

xi= aixi+1= xi+1+ √xi+1yi+1⇒ ai = 1 +

r yi+1

xi+1

= 1 + yi xi

And

yi= biyi+1 = yi+1+√xi+1yi+1⇒ bi = 1 +

rx i+1 yi+1 = 1 +xi yi Or ai= 1 + ai bi = 1 + yi xi And bi= 1 + bi ai = 1 +xi yi With aibi = ai+ bi We have

xi= bi√xi+1yi+1, yi = ai√xi+1yi+1

Let ai= ciai+1, bi = dibi+1 Another proof : if x > y aixi = biyi = xi+ yi 2 − a bi− 2 = yi x, 2 − ai b − 2 = y xi xix yyi − 1 = (b − 2)(bi− 2) (2 − a)(2 − ai) − 1 = xix − yiy yiy = bib − 2bi− 2b − aia+ 2a + 2ai (2 − a)(2 − ai) = (x − y)xi+ y(xi− yi) yiy = (x − y)(xi+ y) yiy = (bi− ai)b + ai(b − a) + 2(a − b) + 2(ai− bi) (2 − a)(2 − ai) = (ai− bi)(2 − b) + (a − b)(2 − ai) (2 − a)(2 − ai) = √x

i+1yi+1x2y2((ai− bi)(2 − b) + (a − b)(2 − ai))

x

(27)

= (y − x)(2 √x

2y2− x) + (y − x)(2√xi+1yi+1− yi)

(2√x2y2− y)(2√xi+1yi+1− yi)

= (y − x)( √x

2(√y2−√x2) + √yi+1(√xi+1−√yi+1))

y

2(√x2−√y2)√yi+1(√xi+1−√yi+1)

= (y − x)(y√y −x

i+1(√xi+1−√yi+1)

+ 1 y2(√x2−√y2)) = (x − y)( xi yiy + 1 yi ) Or (x−y)(y√y x

i+1(√xi+1−√yi+1)−

xi

y√yi+1(√xi+1+ √yi+1)−

1 √y

2(√x2−√y2)−

1 √y

i+1(√xi+1+ √yi+1)

) = 0

= (x − y)( −bix

y(√yi−pbixi+1)√yi

− xi yyi + b y(√y −√bx2) − 1 yi ) = 0 = (x − y)(−bi √y

i(√y −√bx2)x − xi(√yi−pbixi+1)(√y −√bx2)

(√y −√bx2)y(√yi−pbixi+1)yi

+b(√yi−pbixi+1)√yyi− ( √y

i−pbixi+1)(√y −√bx2)y

(√y −√bx2)y(√yi−pbixi+1)yi

) = 0 And (x − y)2( bix √ b√yi √y 2+ √x2 + √ bixi √x

i+1+ √yi+1

(√y −pbx2)+

− b

√ bi

x

i+1+ √yi+1

yy

i+

√ bi

x

i+1+ √yi+1

(√y −pbx2)y) = 0

(x−y)2(pbix

b√yi(√xi+1+√yi+1)+(√y2+√x2)(xi(√y−

p

bx2)−b√yyi+(√y−

p

bx2)y)) = 0

= (x−y)2(x√b(√xi+1+√yi+1)2+(√y2+√x2)(xi(√y−

p bx2)−b√yyi+(√y− p bx2)y)) = 0 = (x−y)2(x√b(xi+yi)+(√y2+√x2)(xi(√y − p bx2)−b√yyi+(√y − p bx2)y)) = 0 (x − y)2(pbx2(xi+ yi) + xi(√y − p bx2) − b√yyi+ (√y − p bx2)y) = 0 = (x − y)2(pbx2(yi− y) +√y(xi− byi+ y)) = 0 = (x − y)2(pbx2(yi− y) + p by2(xi− byi+ y)) = 0 (x − y)2(√x2(yi− y) +√y2(xi− byi+ y)) = 0 Thus x − y = 0 Another proof, let

x= c(x − y) = d(x + y) c >1

y= (c − 1)(x − y) = (1 − d)(x + y) xi = ci(x − y) = di(xi+ yi)

(28)

di = ci 2ci− 1 ci = di 2di− 1) (2ci− 1)(2di− 1) = 1 But 2ci− 1 = r 2ci− 1 2di− 1 = xi+ yi xi− yi √ 2ci− 1(xi− yi) =p2di− 1(xi+ yi) = xi r xi+ yi xi− yi − √x iyi=√xiyi+ yi r xi− yi xi+ yi 2√xiyi = x2i + yi2 q x2i − y2i lim i−→∞(−2 √x iyi+ x2i + yi2 q x2 i − yi2 ) = 0 = x − y Another way : x2i = xi+1(xi+ yi) = cidi(x2i − y2i) = ci+1(x2i − y2i)

= d2i(xi+ yi)2 = di+1(xi+1+ yi+1)(xi+ yi)

(29)

di+1 = 2d 2 i 2(2di− 1)2+ 1 = 2d 2 i 4d2 i − 4di+ 2 = 2d 2 i 8d2 i − 8di+ 3 4d2i − 4di+ 1 = 0 = (2di− 1)2 2di= 1, thus 2xi = 2di(xi+ yi) = xi+ yi

And x − y = 0. Another proof :

4(2ci−1)(ci−1)2−4(2di−1)(di−1)2 = 8(ci−1)3−8(di−1)3+4(ci−1)2−4(di−1)2 = 4(2ci− 1)(ci− 1 2 − 1 2) 2 − 4(2di− 1)(di− 1 2 − 1 2) 2 = (2ci− 1)(2ci− 1 − 1)2− (2di− 1)(2di− 1 − 1)2 = (2ci− 1)3− (2di− 1)3− 2(2ci− 1)2+ 2(2di− 1)2+ 2ci− 2di = (ci− di)(8(ci− 1)2+ 8(ci− 1)(di− 1) + 8(di− 1)2+ 8cidi− 8) = (2ci− 2di)((2ci− 1)2+ 1 + (2di− 1)2− 2(2ci− 2di)(4cidi− 2) + 2(ci− di) = (ci− di)(2(2ci− 1)2+ 2 + 2(2di− 1)2− 16cidi+ 8 + 2) Or (ci−di)(2(2ci−1)2+2(2di−1)2−16cidi+12−8c2i−32cidi−8d2i−16+8cidi−8−8cidi+8) = 0 = (ci− di)(8c2i + 8d2i − 16cidi+ 4 − 48cidi− 8c2i − 8d2i + 4) = 0 = 8(ci− di)(−8cidi+ 1) = 0

Thus ci− di = 0 or y = 0, impossible : x − y = 0. Another proof :

(30)

= 24 r ((ci− di)2 4 (ci− 1)(1 − di) =p2(ci− di) 4 p(ci− 1)(di− 1) A=q4 c6i(2ci− 1)3+ 4 q c4i(2ci− 1)2d2i(2di− 1)+ 4 q c2i(2ci− 1)d4i(2di− 1)2+ 4 q d6i(2di− 1)3 = q4 c6i(2ci− 1)3+ 4 q c4i(2ci− 1)d2i + 4 q c2id4i(2di− 1) + 4 q d6i(2di− 1)3 = q4 c6i(2ci− 1)3+ 4 q c6i(2di− 1) + 4 q d6i(2ci− 1) + 4 q d6i(2di− 1)3 =q4 c6i(2ci− 1)( 4 p(2ci− 1)2+ 4 p(2di− 1)2)+ 4 q d6i(2di− 1)( 4 p(2ci− 1)2+ 4 p(2di− 1)2) A(q4 c2i(2ci− 1) − 4 q d2i(2di− 1)) = c2i(2ci− 1) − d2i(2di− 1) = (ci− di)(2c2i + 2d2i) = Ap2(ci− di) 4 p(ci− 1)(di− 1) = (ci− di) A 4 √ cidi (ci− di)(2c2i + 2d2i) 4 p cidi= 2(ci− di)(4 q c6i(2di− 1) + 4 q d6i(2ci− 1)) Thus (ci− di)4 q c6i(2ci− 1)(p(2c4 i− 1)2−p(2d4 i− 1)2) = (ci− di)4 q d6i(2di− 1)(p(2c4 i− 1)2−p(2d4 i− 1)2)

It means ci− di= 0. As it is impossible, x = y. Another proof :

ci = c2i−1 c2i−1 − (c − 1)2i−1 ci− 1 = (c − 1) 2i−1 c2i−1 − (c − 1)2i−1

(31)

= 1 (c2i − (c − 1)2i )(2ci+1− 1) (2ci− 1)(2ci+1− 1) = 1 c22i−1 (1 −yi+1 xi+1)(1 − yi xi) lim i−→∞((2ci− 1)(2ci+1− 1)) = 1 = 1 c22i−1 = 0 Impossible ! It means x − y = 0. ci+ di− 1 di− ci+ 1 = x 2 i + yi2 x2 i − y2i − 2xiyi = 1 + y2i x2 i 1 −y2i x2 i − 2 yi xi = 1 + ci+1−1 ci+1 1 − ci+1−1 ci+1 − 2 ci−1 ci = 2ci+1− 1 1 − 2ci+1+ 2ci+1ci = −1 + 2 ci+1 ci 1 − 2ci+1+ 2ci+1ci = −1 + 2c ci+1(x − y) i(x − y) − 2ci+1ci(x − y) + 2ci+1(x − y) = −1 + 2x xi+1 i− 2xi+1ci+ 2xi+1 = −1 + 2 √x i+1 √x

i+1+ √yi+1− 2ci√xi+1+ 2√xi+1

= −1 + 2

x

i+1

(3 − 2ci)√xi+1+ √yi+1

= (2ci− 1) √x

i+1−√yi+1

(3 − 2ci)√xi+1+ √yi+1

(32)

lim

i−→∞(x 4

i − x3i − 3x3iyi+ xiyi3+ 3x2iyi− y3i − 2xiyi2+ 3x2iyi2)

= (x − y)3(x − y − 1) = 0

Thus x − y = 0. Another proof : if x 6= y, ∀x1 = p1, y1= q1, ∃r1verifying

(33)

(p1− q1) integer p1=√p2(√p2−√q2) p1integer q1=√q2(√p2−√q2) q1 integer r1= x1y1 x1− y1 =√p2q2 r2 rational And

∀p2, q2rational, ∃r2rational with

1 r2 = 1 q2 − 1 p2

Until infinity. For i

(pi− qi) = (√pi+1−√qi+1)2

And pi− qirational for i > 2

pi =√pi+1(√pi+1−√qi+1)

pirational for i > 2

qi = √qi+1(√pi+1−√qi+1)

(34)

Lemma a We have (pi− qi) = (√pi+1−√qi+1)2 pi = x2 i−1 j=i−2 Y j=0 (x2j− y2j)−1 (5) qi= y2 i−1 j=i−2 Y j=0 (x2j− y2j)−1 (6)

Proof of lemma a By induction

p=√p2(√p2−√q2) =√p2(x − y) 1 2 p2 = x2 x − y Also q2= y2 x − y True for i = 2. If it is true for i, from (5) and (6)

pi=√pi+1(√pi+1−√qi+1) =√pi+1(pi− qi)

(35)

Now let 1 ri = 1 qi − 1 pi

The same calculus will lead to p′ i = x (2i−1) i j=i−2 Y j=0 (x(2i j)− y(2i j))−1 = x(2i) j=i−2 Y j=0 (x(2j+1)− y(2j+1))−1 = xipi Also q′ i = qiyi But p′ iyi = piyixi= qix2i q′ ixi= qixiyi= piy2i p′ iyi+ q′ixi= (p′i+1− q′i+1)xiyi

= (pi+1xi+1− qi+1yi+1)xiyi

= qix2i+piyi2= (pi+1−√pi+1qi+1)(yi+1+√xi+1yi+1)2+(−qi+1+√pi+1qi+1)(xi+1+√xi+1yi+1)2

= (pi+1xi+1− qi+1yi+1)√xi+1yi+1(xi+ yi)

But

(pi+1−√pi+1qi+1)√xi+1+ (−qi+1+√pi+1qi+1)√yi+1 =

pi+1xi+1− qi+1yi+1

x

i+ yi

Thus

((pi+1−√pi+1qi+1)yi+1+ (−qi + 1 −√pi+1qi+1)xi+1)(xi+ yi)

= (pi+1x√i+1− qi+1yi+1 xi+ yi

yi+1x

i+1

(xi+ yi)+

−(−qi+1+√pi+1qi+1)

s y3i+1 xi+1

(xi+ yi)+

+(−qi+1+√pi+1qi+1)xi+1)(xi+ yi)

= (pi+1xi+1− qi+1yi+1)√xi+1yi+1(xi+ yi)

And

(pi+1xi+1− qi+1yi+1)(√xi+1yi+1−

yi+1

xi

)

= (−qi+1+√pi+1qi+1)(xi+1−

(36)

(xi+1− yi+12 xi+1 )(√xi+1yi+1− yi+1 xi ) = (−yxi+1 i+1 + ry i+1 xi+1 )(xi+1− s y3 i+1 xi+1 ) Or (xi+1− yi+12 xi+1 )(√xi+1− √y i+1 xi ) = (− √y i+1 xi+1 + s 1 xi+1 )(xi+1− s yi+13 xi+1 ) In the infinity p(x − y)3=x − y = 0 In the limits lim

i−→∞(pi) = L, i−→∞lim (qi) = L ′

From

pi = pi+1−√pi+1qi+1, qi = −qi+1+√pi+1qi+1

We deduce L= L −√LL′, L= −L+LL⇒ L= 0 But pi+ qi = pi+1− qi+1 pi−1+ qi−1= pi− qi ... p2+ q2 = p3− q3 p+ q = x + y = p2− q2

qi+ qi−1+ ... + q2+ q + p = pi+1− qi+1− qi− qi−1− ... − q2

qi+1+ 2qi+ 2qi−1+ ... + 2q2+ q = pi+1− p

(37)

2p4k−1+ 2p4k−2+ ... + 2p2 = p4k+p4k−1+p4k−2+p4k−3+...+p3+p2−p−q4k−q4k−1+q4k−2+q4k−3−q4k−4−...−q4−q3+q2+q Thus −p4k+p4k−1+p4k−2+...+p2−p = −(q4k+q4k−1)+(q4k−2+q4k−3)−...−(q4+q3)+q2+q And we pose −(q4k+ q4k−1) + (q4k−2+ q4k−3) + ... − (q4+ q3) + q2+ q = u4k = −p4k+ p4k−1+ ... + p2− p And v4k= −(q4k+ q4k−1) + q4k−2+ q4k−3 Hence u4k= v4k+ v4(k−1)+ ... + v1 Or u4k− u4(k−1) = v4k = −p4k+ p4k−1+ p4k−2+ p4k−3+ ... − p − (−p4k−4+ p4k−5+ ... − p) = −p4k+ p4k−1+ p4k−2+ p4k−3+ 2p4k−4 And lim k−→∞(v4k) = 0 = 4L We deduce lim i−→∞(pi− qi) = L − L ′= 0 = lim −→∞( x2i−1− y2i−1 Qj=i−2 j=1 (x2 j − y2j )) = lim i−→∞((x − y) j=i−2 Y j=0 (x 2j + y2j x2j − y2j)) ≥ x − y ≥ 0 Or x − y = 0. Another proof : pi = x2i−1 Qj=i−2 j=0 (x2 j − y2j ) = x 2i−1 (x − y) (x − y)Qj=i−2 j=0 (x2 j − y2j ) i= 2k

(x − y)(x − y)(x2− y2)(x4− y4)...(x2i−2 − y2i−2) = (x2+ y2− 2xy)(x2− y2)(x4− y4)...(x2i−2− y2i−2) = (x4− y4− 2xy(x2− y2))(x4− y4)...(x2i−2− y2i−2)

(38)

= (x16−y16−2x4y4(x8−y8)−2xy(x2−y2)(x4−y4)(x8−y8)(x16−y16)...(x2i−2−y2i−2) = (x25+ y25− 2x24y24− 2x22y22(x8− y8)(x16− y16) − 2xy(x2− y2)...(x16− y16))... = x2i−1 + y2i−1− 2 j=i−2 X j=0 (x2jy2j k=i−2 Y k=j ((x2k− y2k))) pi = x − y 1 +yi xi − 2 Pj=i−2 j=0 ( yj+1 xj+1 Qk=i−2 k=j (1 − yk+1 xk+1)) = x − y 1 + yi xi − 2 Pj=i−2 j=0 ( yj+1 xj+1 Qk=i−2 k=j (xx−yk+1)) xk+1> xi−1 x − y xk+1 < x − y xi−1 pi< x − y 1 +yi xi − 2 Pj=i−2 j=0 ( y(x−y)i−2−j xi−1−j i−1 ) pi< x − y 1 + yi xi − 2 y xi−1( 1−(x−y xi−1)i−1 1−xi−1x−y ) lim i−→∞(

1 − (xx−yi−1)i−1

(39)
(40)

Another approach Let us suppose that for every complex number x ; x, for which, for every p1, p2, b. We can pose for p1and p2numbers verifying p1> p2.

2x = p1+ p2+ 2b

b depends of p1and p2. Then

x= p1+ p2

2 + b

And for all x, p1, p2, exists y whose expression is

y= p1− p2 2 + b We pose        x1= p1+ 2b x2= p2− 2b x3= p2+ 2b x4= p1− 2b ⇒            x= p1+p2 2 + b = p1+x2 2 + 2b = x1+p2 2 = x1+x2 2 + b = p1+x3 2 = x1+x3 2 − b = x4+x3 2 + b = x4+x2 2 + 3b y= p1−p2 2 + b = p1−x2 2 = x1−p2 2 = x1−x2 2 − b = p1−x3 2 + 2b = x1−x3 2 + b = x4−x3 2 + 3b = x4−x2 2 + b x1+ x2 = p1+ p2

LEMMA 1 The following formula            x= p1+p2 2 + b = p1+x2 2 + 2b = x1+p2 2 = x1+x2 2 + b = p1+x3 2 = x1+x3 2 − b = x4+x3 2 + b = x4+x2 2 + 3b y= p1−p2 2 + b = p1−x2 2 = x1−p2 2 = x1−x2 2 − b = p1−x3 2 + 2b = x1−x2 3 + b = x4−x2 3 + 3b = x4−x2 2 + b x1+ x2 = p1+ p2

imply that ∃p1, p2prime numbers which verify

b= 0 .

(41)

if

kk′ = 0 ⇒ b = 0

we will suppose

kk′ 6= 0

But ∀x, y, ∃φ verifying x = φy

(42)
(43)

Hence 4α2+ 4β2+ 16 + 8αβ + 16α + 16β = 4α2+ 4β2− 8αβ Or αβ+ α + β + 1) = 0 = (α + 1)(β + 1) It means b = 0. And 2x = p1+ p2

Thus α = β = −1. b can not be different of zero. If

(x1− x2)(x1+ x3) = 0 ⇒ (x4+ x2)(x4− x3) 6= 0 let ( x4+x2 p1+p2 = p1+p2−4b p1+p2 = 1 − 4b p1+p2 p1+p2 x4+x2 = x4+x2+4b x4+x2 = 1 + 4b x4+x2 we pose ( 2k + 1 = 1 −p14b+p2 2k′+ 1 = 1 + 4b x4+x2 let ( x4−x3 p1−p2 = p1−p2−4b p1−p2 = 1 − 4b p1−p2 p1−p2 x4−x3 = x4−x3+4b x4−x3 = 1 + 4b x4−x3 we pose ( 2m + 1 = 1 − p14b−p2 2m′+ 1 = 1 + 4b x4−x3 ⇒ x = p1+3p2 4 = p1+p2 2 or p1+p2 2 = p1+p2 4 and x = p1 = p2 or p1 = p2 = 0 it is impossible, then (x1− x2)(x1+ x3) 6= 0 and b= 0

Conclusion Our approach of whatever equation allowed us to prove that for every x, y, then x − y = 0.

Références

[1] Darmon, H. and Granville, A. "On the Equations and ." Bull. London Math. Soc. , 27, 513-543 (1995).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to