• Aucun résultat trouvé

MARTENSITIC TRANSFORMATION AND ELASTIC CONSTANTS

N/A
N/A
Protected

Academic year: 2021

Partager "MARTENSITIC TRANSFORMATION AND ELASTIC CONSTANTS"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00225332

https://hal.archives-ouvertes.fr/jpa-00225332

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

MARTENSITIC TRANSFORMATION AND ELASTIC

CONSTANTS

T. Suzuki

To cite this version:

(2)

JOURNAL DE PHYSIQUE

Colloque ClO, supplement au n012, Tome 46, ddcembre 1985 page C10-581

MARTENSITIC TRANSFORMATION AND ELASTIC CONSTANTS

T. SUZUKI

Institute

of

Applied Physics, University

of

Tsukuba, Sakura, Ibaraki

305,

Japan

A b s t r a c t

-

The d e f o r m a t i o n energy b a r r i e r f o r t h e m a r t e n s i t i c t r a n s f o r m a t i o n i s e s t i m a t e d f r o m t h e d a t a o f t h e e l a s t i c c o n s t a n t s . The d e f o r m a t i o n energy b a r r i e r f o r B.C.C + F.C.C m a r t e n s i t i c t r a n s f o r m a t i o n i s , a t most, o f t h e o r d e r

of t h e t h e r m a l energy a t room temperature. The d e f o r m a t i o n energy b a r r i e r between B.C.C. and F.C.C can be surmounted by thermal energy a t t e m p e r a t u r e s h i g h e r t h a n MS. The m a r t e n s i t i c t r a n s f o r m a t i o n i s proposed t o be u n d e r s t o o d as t h e f r e e z i n g process o f t h e n o n - l i n e a r l a t t i c e v i b r a t i o n , i.e. s o l i t o n s , i n s t e a d o f t h e s o f t phonons.

I

-

INTRODUCTION

M a r t e n s i t i c t r a n s f o r m a t i o n can be d e s c r i b e d as t h e s e l f generated f i n i t e d e f o r m a t i o n of t h e l a t t i c e . The second o r d e r e l a s t i c c o n s t a n t s a r e d e f i n e d as t h e second

d e r i v a t i v e o f t h e d e f o r m a t i o n energy w i t h r e s p e c t t o t h e d e f o r m a t i o n parameter o f t h e l a t t i c e . Hence, t h e anomaly o f t h e second o r d e r e l a s t i c c o n s t a n t s a s s o c i a t e d w i t h t h e m a r t e n s i t i c t r a n s f o r m a t i o n may be expected. The c o m b i n a t i o n o f e l a s t i c con- s t a n t s , C'=(C11-C12)/2, o f some a l l o y s such as In-Ta i s known t o decrease as t h e temperature approaches Ms, t h e m a r t e n s i t i c t r a n s f o r m a t i o n s t a r t temperature, i t s t i l l s t a y s p o s i t i v e a t Ms. Then, t h e q u e s t i o n a r i s e s why t h e l a t t i c e deforms i t s e l f , w h i l e t h e second o r d e r e l a s t i c c o n s t a n t i s d e f i n i t e l y p o s i t i v e .

I t must be remembered t h a t t h e second o r d e r e l a s t i c c o n s t a n t s o n l y g i v e t h e t e s t c r i t e r i o n f o r t h e s t a b i l i t y o f t h e l a t t i c e w i t h r e s p e c t t o t h e i n f i n i t e s i m a l and u n i f o r m d e f o r m a t i o n . The c r i t e r i o n f o r t h e s t a b i l i t y o f t h e l a t t i c e w i t h r e s p e c t t o t h e i n f i n i t e s i m a l and n o n - u n i f o r m d e f o r m a t i o n i s g i v e n by t h e phonon d i s p e r s i o n r e l a t i o n s h i p . The d i f f u s i o n - l e s s second o r d e r s t r u c t u r a l t r a n s f o r m a t i o n observed i n such c r y s t a l s as S r T i 0 3 o r BaTiOg has been e s t a b l i s h e d t o be due t o t h e anomaly i n t h e phonon d i s p e r s i o n r e l a t i o n s h i p , t h e phonon f r e q u e n c y o f a s p e c i f i c wave v e c t o r and p o l a r i z a t i o n become z e r o as t h e t e m p e r a t u r e approaches t h e c r i t i c a l temperature: f r e e z i n g of a s o f t phonon. However, i n t h e case o f m a r t e n s i t i c t r a n s f o r m a t i o n , t h e search f o r a s o f t phonon has always y i e l d e d n e g a t i v e answers /1,2,3/.

A c c o r d i n g l y , t h e t e s t c r i t e r i o n f o r t h e s t a b i l i t y o f t h e m a r t e n s i t i c a l l o y must n o t be t h e one f o r t h e i n f i n i t e s i m a l d e f o r m a t i o n b u t t h e one f o r t h e f i n i t e deformation, u n i f o r m o r non-uniform. T h i s i s c o n s i d e r e d t o be c o n s i s t e n t w i t h t h e f a c t t h a t t h e l a t t i c e d e f o r m a t i o n a s s o c i a t e d w i t h t h e m a r t e n s i t i c t r a n s f o r m a t i o n always has a f i n i t e magnitude.

(3)

(30-582 JOURNAL

DE

PHYSIQUE

I 1

-

FINITE UNIFORM MARTENSITIC TRANSFORMATION

The c r i t e r i o n f o r t h e s t a b i l i t y o f t h e l a t t i c e w i t h r e s p e c t t o a f i n i t e deformation i s o b t a i n e d by s t u d y i n g how t h e l a t t i c e energy increases w i t h the deformation and by comparing t h e maximum value o f t h e deformation energy w i t h a thermal f l u c t u a t i o n energy o r w i t h a s t r a i n energy associated w i t h l a t t i c e d e f e c t . Clapp has c a r r i e d o u t t h e l a t t e r procedure and introduced t h e i d e a o f t h e s t r a i n spinodal /4/. I n t h i s section, t h e s t a b i l i t y o f t h e l a t t i c e w i t h respect t o a h y p o t h e t i c a l u n i f o r m m a r t e n s i t i c t r a n s f o r m a t i o n i s studied.

Suppose t h a t every atom which i s o r i g i n a l l y l o c a t e d a t ( ~ 1 . ~ 2 ~ ~ 3 ) i s d i s p l a c e d by (ul,u2,u3). The displacements (ul,u2,u3) a r e d e f i n e d i n terms o f t h e t r a n s f o r m a t i o n m a t r i x aij and t h e t r a n s f o r m a t i o n parameter E~ as f o l l o w s :

The usual summation convention w i t h respect t o t h e c o o r d i n a t e s u f f i x e s i s assumed i n Eq. (2.1) as w e l l as i n t h e r e s t o f t h e paper. When E ~ = O , t h e t r a n s f o r m a t i o n parameter represents t h e parent phase. When

~ ~ r 1 ,

i t represents t h e m a r t e n s i t i c phase. When O<E,<~, i t represents t h e i n t e r m e d i a t e s t r u c t u r e between t h e parent phase and t h e m a r t e n s i t i c phase. Equation (2.1) w i t h a given m a t r i x am.. d e f i n e s a h y p o t h e t i c a l u n i f o r m m a r t e n s i t i c . t r a n s f o r m a t i o n . For example, t h e BaihJdeformation from t h e B.C.C. s t r u c t u r e t o t h e F.C.C. s t r u c t u r e i s d e f i n e d i n terms o f t h e f o l l o w - i n g t r a n s f o r m a t i o n m a t r i x a.

.

1.i

-

\

0

where ab and af i n d i c a t e the l a t t i c e constants o f t h e B.C.C. and t h e F.C.C. s t r u c - tures, r e s p e c t i v e l y .

The deformation energy p e r u n i t volume i s g i v e n by t h e continuum e l a s t i c i t y theory i n terms o f the s e r i e s expansion o f t h e Lagrangian deformdtion parameter qij and t h e second CijkR and h i g h e r order e l a s t i c constants Cijkemn--- as f o l l o w s :

where t h e Lagrangian deformation parameter i s d e f i n e d as

The Lagrangian deformation parameter f o r t h e h y p o t h e t i c a l u n i f o r m martensi t i c t r a n s f o r m a t i o n i s c a l c u l a t e d by i n s e r t i n g Eq.(2.1) i n t o Eq.(2.4). I t i s given by

(4)

s t r u c t u r e i s e s t i m a t e d t o be 9 . 2 k ~ /5/. However, t h i s i s p r a c t i c a l o n l y when a s i m p l e and r e 1 i a b l e l o c a l p s e u d o p o t e n t i a l i s a v a i l a b l e . A r e a s o n a b l e c o n j e c t u r e a b o u t t h e b e h a v i o r o f t h e d e f o r m a t i o n energy A F ( E ~ ) f o r t h e h y p o t h e t i c a l u n i f o r m m a r t e n s i t i c t r a n s f o r m a t i o n w i l l be made by use o f t h e f o l l o w i n g expression: The f a c t o r s c o n t a i n i n g u i j ' s a r e chosen so t h a t t h e e x p r e s s i o n i s e x a c t f o r t h e h y p o t h e t i c a l u n i f o r m m a r t e n s i t i c d e f o r m a t i o n as f a r as O<cO<<l. The f a c t o r c o n t a i n - i n g E and B i s chosen i n such a way t h a t t h e e x p r e s s i o n has minima a t cO=O and c O = l .

dhen B=2, b o t h minima have equal values. When 6>2, A F ( O ) > A F ( ~ ) . F o r t h e B a i n d e f o r m a t i o n d e f i n e d by Eq.(2.2), Eq.(2.6) i s reduced t o

Thus, t h e h e i g h t o f t h e b a r r i e r d e f o r m a t i o n energy ( p e r u n i t volume) between t h e B.C.C. s t r u c t u r e and t h e F.C.C. s t r u c t u r e i s g i v e n as t h e maximum between E=O and E = l :

For t h e B a i n d e f o r m a t i o n w h i c h conserves volume, a f / a b = 3 f l . Then, t h e h e i g h t o f t h e b a r r i e r ( p e r u n i t volume) between t h B.C.C. and F.C.C. s t r u c t u r e when t h e energy o f b o t h s t r u c t u r e s i s equal, ( c o r r e s p o n d i n g @=2), i s e s t i m a t e d t o be

I n t h i s s e c t i o n , t h e v a l u e o f t h e h e i g h t o f t h e d e f o r m a t i o n energy b a r r i e r i s e s t i m a t e d f o r t h e h y p o t h e t i c a l u n i f o r m m a r t e n s i t i c t r a n s f o r m a t i o n . Any c r y s t a l does n o t t r a n s f o r m u n i f o r m l y i n a macroscopic s c a l e . The h e i g h t o f t h e d e f o r m a t i o n energy b a r r i e r f o r u n i t volume i s enormously l a r g e compared w i t h t h e t h e r m a l f l u c t u a t i o n energy a t room temperature, 3 0 0 k ~ . However, t h e h e i g h t o f t h e d e f o r m a t i o n energy b a r r i e r p e r u n i t c e l l i s n o t l a r g e and sometimes even s m a l l e r t h a n 3 0 0 k ~ . I f one does n o t know how many u n i t c e l l s t r a n s f o r m s s i m u l t a n e o u s l y , one cannot know which d e f o r m a t i o n energy b a r r i e r s h o u l d be compared w i t h t h e thermal f l u c t u a t i o n energy o r w i t h t h e s t r a i n energy a s s o c i a t e d w i t h l a t t i c e d e f e c t . I n o r d e r t o s o l v e t h i s problem, i t becomes necessary t o c a l c u l a t e t h e d e f o r m a t i o n energy i n c r e a s e asso- c i a t e d w i t h t h e f i n i t e n o n - u n i f o r m d e f o r m a t i o n . T h i s i s c a r r i e d o u t i n t h e n e x t s e c t i o n .

I 1 1

-

FINITE NON-UNIFORM MARTENSITIC TRANSFORMATION

(5)

C10-584 JOURNAL DE PHYSIQUE

i s used t o c a l c u l a t e t h e deformation energy. T h i s i s e s s e n t i a l l y equal t o t h e t r i a l f u n c t i o n used by Green and Cahn i n t h e i r unpublished work. The m a t e r i a l o f t h i s s e c t i o n i s based on t h e unpublished work by M. Green and J.W. Cahn.

The deformation energy increase p e r ' u n i t volume due t o t h e non-uniform martensi t i c t r a n s f o r m a t i o n can be estimated i n t h e continuum approximation by c a l c u l a t i n g t h e Lagrangian deformation parameters

(2.4)

from t h e displacement d e f i n e d by

Eq. (3.1)

and i n s e r t i n g them i n t o

Eq.(2.3).

The Lagrangian deformation parameter i s

where ci=Xi/A. I n s e r t i n g

(3.2)

i n t o

(2.3)

and i n t e g r a t i n g over t h e t o t a l volume

o f

the specimen which c o n t a i n s t h e whole area a f f e c t e d by t h e non-uniform m a r t e n s i t f c t r a n s f o r m a t i o n d e f i n e d by

Eq.(3.1),

we o b t a i n

where t h e e x p l i c i t expressions f o r f21,f22,f23,f31,---kan be w r i t t e n down b u t they are n e i t h e r necessary n o r u s e f u l , because t h e numerical values o f h i g h e r order e l a s t i c constants a r e n o t known experimentally. What i s e s s e n t i a l i s t h e f u n c t i o n a l dependence o f t h e i n t e g r a l on A and c0. When A+-, t h e displacement d e f i n e d by

Eq. (3.1)

i s reduced t o t h e h y p o t h e t i c a l u n i f o r m martensi t i c t r a n s f o r m a t i o n d e f i n e d

by

Eq. (2.1).

Accordingly, t h e i n t e g r a t e d expression o f

Eq. (3.3)

should be essen-

t i a l l y i d e n t i c a l t o

Eq.(2.3).

I t should have a maximum f o r a c e r t a i n v a l u e o f E

and then decrease f o r f u r t h e r increase o f E, i f t h e displacement d e f i n e d by

Eq.(3.1)

represent t h e m a r t e n s i t i c transformation. Hence, the i n t e g r a t e d expression o f

Eq.(3.3)

should behave as a f u n c t i o n o f A and e as shown s c h e m a t i c a l l y i n Fig.

1.

The p a r e n t phase i s represented by t h e o r i g i n o f t h e A and E coordinate and t h e

m a r t e n s i t i c phase i s represented by

~ = 1

and A+- i n Fig.

1.

The h e i g h t o f t h e b a r r i e r between t h e p a r e n t phase and the m a r t e n s i t i c phase depends on p a t h between them. We can choose a p a r t i c u l a r p a t h as i n d i c a t e d by t h e b o l d l i n e i n Fig.

1.

The deformation energy b a r r i e r does n o t e x i s t f o r t h i s path. T h i s may sound l i k e a paradox, because t h e m a r t e n s i t i c t r a n s f o r m a t i o n i s considered t o be a t y p i c a l f i r s t order phase transformation.

The argument discussed above i s based on t h e continuum t h e o r y o f e l a s t i c i t y , where the deformation energy increase due t o a f i n i t e deformation i s d e f i n e d by

Eq.(2.3).

(6)

S i m i l a r l y , t h e b e h a v i o r o f t h e f r e e energy as shown i n Fig. 1 s h o u l d be a t l e a s t q u a l i t a t i v e l y r i g h t e x c e p t t h e r e g i o n where A becomes t h e o r d e r o f t h e l a t t i c e spacing. Hence, i t i s concluded t h a t t h e s t a b i l i t y o f t h e l a t t i c e w i t h r e s p e c t t o t h e f i n i t e d e f o r m a t i o n a s s o c i a t e d w i t h t h e m a r t e n s i t i c t r a n s f o r m a t i o n s h o u l d be e s t i m a t e d f r o m t h e b a r r i e r h e i g h t f o r t h e h y p o t h e t i c a l u n i f o r m d e f o r m a t i o n p e r u n i t c e l l . A c c o r d i n g l y , a t l e a s t some cases o f t h e B.C.C+F.C.C. m a r t e n s i t i c t r a n s f o r m a - t i o n , t h e d e f o r m a t i o n energy b a r r i e r i s d e f i n i t e l y s m a l l e r t h a n t h e thermal f l u c t u a - t i o n energy. The q u e s t i o n why t h e m a r t e n s i t i c t r a n s f o r m a t i o n can be f i r s t o r d e r even i n such a case i s d i s c u s s e d i n t h e f o l l o w i n g s

.

Zener has p o i n t e d o u t t h a t t h e B.C.C. c o n f i g u r a t i o n i s a s o r t o f saddle p o i n t con- f i g u r a t i o n between t h e F.C.C o r a n o t h e r c l o s e packed c o n f i g u r a t i o n s /6/. The deformation energy b a r r i e r f r o m t h e 5.C.C t o t h e F.C.C. s t r u c t u r e i s expected t o be small f r o m t h e p i c t u r e i n Z e n e r ' s book. The d i s c u s s i o n i n t h e p r e v i o u s paragraph i n d i c a t e s t h a t i t i s l e s s t h a n t h e thermal f l u c t u a t i o n energy a t l e a s t f o r some o f t h e B.C.C. metal and a l l o y s . I n o t h e r words, t h e B.C.C. c o n f i g u r a t i o n i s m a i n t a i n e d s o l e l y because of t h e l a r g e v i b r a t i o n a l e n t r o p y . When a l a t t i c e t a k e s t h e B.C.C c o n f i g u r a t i o n , atoms i n t h e l a t t i c e have a f i n i t e p r o b a b i l i t y o f t a k i n g b o t h B.C.C and F.C.C. m i c r o s c o p i c c o n f i g u r a t i o n s . These c o n f i g u r a t i o n s o f atoms corresponds t o t h e e x c i t a t i o n o f t h e l a r g e amp1 i tude-non-1 i n e a r - t r a n s v e r s e l a t t i c e waves. The s t a t i s t i c a l mechanics o f t h e n o n - l i n e a r t r a n s v e r s e l a t t i c e wave has been f o r m u l a t e d by Krumhansl and S h r i e f f e r i n t h e i r s o l i t o n model / 7 / . The s o l i t o n i s p i c t u r e d as a t r a n s i t i o n r e g i o n between two e q u i v a l e n t s t r u c t u r e s . I n t h e above cases, t h e s o l i t o n s h o u l d be t h e t r a n s i t i o n r e g i o n between t h e two s t a b l e F.C.C. c o n f i g u r a t i o n s . T h i s i s e x a c t l y t h e t w i n i n t h e m a r t e n s i t i c phase. The f o r m u l a t i o n o f t h e t w i n s t r u c t u r e i n terms o f a model, which i s now i d e n t i f i n e d as t h e Sine-Gordon s o l i t o n e q u a t i o n , has been c a r r i e d o u t by Frenkel and Kontrova / 8 / .

However, one m o d i f i c a t i o n i s necessary b e f o r e t h e s o l i t o n model o f Krumhansl and S h r i e f f e r (K-S s o l i t o n model ) i s a p p l i e d t o t h e B.C.C.+F.C.C. m a r t e n s i t i c t r a n s - f o r m a t i o n . Because t h e two n e i g h b o r i n g s t a b l e c o n f i g u r a t i o n s a r e assumed t o have equal p o t e n t i a l energy and t h e s e c o n f i g u r a t i o n s a r e arranged i n a l i n e a r chain, t h e s t r u c t u r a l t r a n s f o r m a t i o n cannot t a k e p l a c e a t a f i n i t e temperature as d i s c u s s e d i n t h e t e x t o f Landau and L i f s c h i t z

/9/.

I n o t h e r words, e i t h e r . o f t h e t w i n cannot be s t a b l e except a t t h e a b s o l u t e z e r o temperature. I n o r d e r t o remedy t h i s s i t u a t i o n , t h e symmetric double w e l l p o t e n t i a l i n t h e K-S s o l i t o n model i s r e p l a c e d by t h e asymmetric double w e l l p o t e n t i a l . The H a m i l t o n i a n o f t h e model used f o r t h e s t u d y of t h e m a r t e n s i t i c t r a n s f o r m a t i o n i s g i v e n by

Here, m i s t h e mass o f t h e atom i n t h e model and E i n d i c a t e s t h e s t r e n g t h o f t h e

b i a s f i e l d . I t i s t o be n o t i c e d t h a t when E=O, t h e assymmetric p o t e n t i a l o f Eq.(4.1) i s reduced t o t h e symmetric d o u b l e w e l l p o t e n t i a l w i t h a minimum a t Ui=O and a n o t h e r a t Ui=l.

The p a r t i t i o n f u n c t i o n f o r t h i s model Z i s g i v e n as a p r o d u c t o f t h e k i n e t i c energy p a r t Zp and t h e c o n f i g u r a t i o n a l energy p a r t Zu. The k i n e t i c energy p a r t Zp i s g i v e n by

(7)

JOURNAL

DE

PHYSIQUE

where 0 i s l / k T, Y n t h e n - t h e i g e n f u n c t i o n , En t h e n - t h e i g e n v a l u e s o f t h e t r a n s f e r i n t e g r a l equatBon and a i s t h e l a t t i c e s p a c i n g o f t h e model. The f r e e energy o f t h e F i s c a l c u l a t e d f r o m Zp g i v e n by Eq. (4.3)

The e i g e n v a l u e s o f t h e t r a n s f e r i n t e g r a l Equation, Eq. (4.3), a r e o b t a i n e d by use o f t h e a l g o r i t h m d e s c r i b e d by Schneider and S t o l l

/ l o / .

The f r e e energy o f t h e model i s n u m e r i c a l l y c a l c u l a t e d as a f u n c t i o n o f t h e v a l u e s o f E between 0 and 2.0 f o r t h e

v a l u e o f 8=0.2,0.26,0.3 and 0.4 and shown i n F i g . 2. A t s u f f i c i e n t l y h i g h tempera- t u r e , t h e f r e e energy o f t h e model i s minimum when t h e b i a s i s zero. A t l o w e r temperature, t h e model w i t h a f i n i t e v a l u e o f t h e b i a s becomes s t a b l e w i t h r e s p e c t t o t h e model w i t h o u t t h e b i a s . Hence, t h e r e e x i s t s a range o f t e m p e r a t u r e where t h e f r e e energy o f t h e model w i t h o u t b i a s i s equal t o t h a t o f t h e model w i t h t h e b i a s . The model, whose f r e e energy i s shown i n F i g . 2, i s proposed t o r e p r e s e n t t h e mar- t e n s i t i c metal o r a l l o y s . The model w i t h t h e symmetric d o u b l e w e l l (E=O) r e p r e s e n t s t h e p a r e n t phase i n t h e B.C.C.+F.C.C. m a r t e n s i t i c t r a n s f o r m a t i o n . The maximum between symmetric w e l l s corresponds t o t h e B.C.C. c o n f i g u r a t i o n , w h i l e t h e symmetric w e l l s correspond t o t h e F.C.C. c o n f i g u r a t i o n . S t r i c t l y speaking, a s h a l l o w

m e t a s t a b l e minimum may e x i s t around t h e B.C.C. c o n f i g u r a t i o n . B u t t h i s i s con- s i d e r e d t o be n o t so e s s e n t i a l f o r t h e s t a b i l i t y o f t h e B.C.C. c o n f i g u r a t i o n a t h i g h temperature, because t h e d e f o r m a t i o n energy b a r r i e r i s l o w e r t h a n t h e t h e r m a l f l u c t u a t i o n energy. T h i s has been checked o u t b y t h e c a l c u l a t i o n b y M G l l e r and Wilmanski /11/. Hence, i n t h e p r e s e n t d i s c u s s i o n , t h e e x i s t e n c e o f t h e p o s s i b l e p o t e n t i a l minimum i s n e g l e c t e d f o r t h e sake of s i m p l i c i t y . On t h e o t h e r hand, t h e model w i t h t h e asymmetric d o u b l e w e l l ( ~ 4 0 ) corresponds t o t h e twinn'ed m a r t e n s i t i c phase. E i t h e r o f t h e two e q u i v a l e n t F.C.C. c o n f i g u r a t i o n i s s t a b l i t e d by t h e f i n i t e v a l u e o f t h e b i a s E . The b i a s i s c o n s i d e r e d t o be i n t r o d u c e d by t h e m a r t e n s i t i c

t r a n s f o r m a t i o n i t s e l f , because o f t h e f i n i t e amount o f t h e B a i n deformation. T h i s s i t u a t i o n i s c o n s i d e r e d t o be c l o s e l y r e l a t e d t o t h e shape memory e f f e c t o f t h e m a r t e n s i t i c a l l o y s .

A c c o r d i n g t o t h e i n t e r p r e t a t i o n d i s c u s s e d above, t h e b e h a v i o r o f t h e f r e e energy i n Fig. 2 i n d i c a t e s t h a t a t s u f f i c i e n t l y h i g h temperature, t h e p a r e n t phase w i t h o u t s t a b i l i z e d t w i n n e d s t r u c t u r e i s s t a b l e . I t i s t o be n o t e d t h a t a l t h o u g h t h e s t a b i l - i z e d t w i n b o u n d a r i e s a r e n o t p r e s e n t i n t h e p a r e n t phase, t h e s o l i t o n , w h i c h can be i n t e r p r e t e d as t h e moving t w i n boundary, s h o u l d be p r e s e n t i n t h e p a r e n t phase and r e s p o n s i b l e f o r t h e d i f f r a c t i o n e f f e c t such as c e n t r a l peaks d i s c u s s e d i n t h e K-S s o l i t o n model /7/.

(8)

w i t h t h e n u c l e a t i o n d i f f i c u l t y .

On t h e o t h e r hand, t h e a p p r e c i a b l e d i f f e r e n c e between A and M i n t h e F.C.C.+B.C.C. m a r t e n s i t i c t r a n s f o r m a t i o n as observed i n Fe-Ni a l l o y i$ c l e a r f y due t o t h e n u c l e a - t i o n d i f f i c u l t y , which has i t s o r i g i n i n t h e d e f o r m a t i o n energy d i s c u s s e d i n sec- t i o n s 2 and 3. The e x p e r i m e n t a l evidence t h a t t h i s n u c l e a t i o n d i f f i c u l t y i s s u r - mounted by a thermal a c t i v a t i o n process has been p r o v i d e d by t h e c l a s s i c a l e x p e r i - ment by Cech and T u r n b u l l /14/, a l t h o u g h t h e t r a d i t i o n a l e x p l a n a t i o n i s e n t i r e l y d i f f e r e n t .

I n c o n c l u s i o n , t h e m a r t e n s i t i c t r a n s f o r m a t i o n i s proposed t o be understood as t h e s t a b i l i z a t i o n process o f s o l i t o n s , w h i c h e x i s t i n t h e h i g h t e m p e r a t u r e as t h e non- l i n e a r l a t t i c e v i b r a t i o n s and become t h e t w i n boundaries a f t e r s t a b i l i z e d . The c e n t r a l peaks on t h e n e u t r o n i n e l a s t i c s c a t t e r i n g experiment have a l r e a d y been proposed t o be a s s o c i a t e d w i t h t h e presence o f s o l i t o n s . The n o n - l i n e a r i n t e r n a l f r i c t i o n experiment, t h e a u t o m o d u l a t i o n phenomena, has been observed i n m a r t e n s i t i c a l l o y s and has been i n t e r p r e t e d t o t h e t w i n n i n g process a s s o c i a t e d w i t h t h e marten- s i t i c t r a n s f o r m a t i o n /15/.

ACKNOWLEDGEMENT

T h i s paper i s completed w h i l e t h e a u t h o r i s v i s i t i n g t h e Department o f M e t a l l u r g i c a l Engineering, U n i v e r s i t y o f M i s s o u r i - R o l l a w i t h t h e s u p p o r t from t h e N a t i o n a l Science Foundation. The a u t h o r acknowledges t h e s t i m u l a t i n g d i s c u s s i o n w i t h Dr. J.W. Cahn and Dr. M. W u t t i g .

(9)

JOURNAL

DE

PHYSIQUE

Fig. 2

-

The dependence o f t h e f r e e energy on t h e b i a s f i e l d E f o r d i f f e r e n t

temperatures.

REFERENCES

/1/ Shapiro, S.M., and Moss, S.C., Phys. Rev.

B15

(1977) 2776.

/2/ Mori, M., Yamada, Y., and Shirane, G., S o l i d S t a t e Comm.

17

(1975) 127.

/3/ Hoshino, S., Shirane, G., Suezawa, M., and K a j i t a n i , T., Jpn. J. Appl. Phys.

14

(1975) 1233.

/4/ Clapp, P.C., Phys. S t a t u s S o l i d i

578

(1973) 561.

/5/ Suzuki, T., and L e d b e t t e r , H.M., P h i l . Mag.

48

(1983) 83.

/6/ Zener, C., E l a s t i c i t y and A n e l a s t i c i t y , Univ. o f Chicago Press, Chicago, I L . , (1948) 32.

/7/ Krumhansl, J.A., and S h r i e f f e r , J.R., Phys. Rev. (1975) 3535. /8/ Frenkel, J., and Kontrova, T., J. Phys. USSR

1

(1937) 137.

/9/ Landau, L.D., and L i f s c h i t z , E.M., S t a t i s t i c a l Physics, Pergamon, London (1958).

/ l o / Schneider, T., and S t o l l , E., Phys. Rev.

B22

(1980) 1117.

/11/ M u l l e r , I . , and Wilmanski, K., Continuum Models o f D i s c r e t e Systems, N o r t h H o l l a n d (1981) 495.

/12/ T i t c h n e r , A.L., and Bever, M.B., Trans. AIME

200

(1954) 303. /13/ Smialek, J.L., and Hehemann, R.F., Met. Trans. 4 (1973) 1571. /14/ Cech, R.E., and T u r n b u l l , D. ,Trans. AIME

206

(1956) 124.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to