• Aucun résultat trouvé

PEDOT-modified integrated microelectrodes for the detection of ascorbic acid, dopamine and uric acid

N/A
N/A
Protected

Academic year: 2021

Partager "PEDOT-modified integrated microelectrodes for the detection of ascorbic acid, dopamine and uric acid"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: hal-01148710

https://hal.archives-ouvertes.fr/hal-01148710

Submitted on 5 May 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

PEDOT-modified integrated microelectrodes for the

detection of ascorbic acid, dopamine and uric acid

Fadhila Sekli-Belaidi, Aurélie Civélas, Valentina Castagnola, Aliki Tsopela,

Laurent Mazenq, Pierre Gros, Jérôme Launay, Pierre Temple-Boyer

To cite this version:

Fadhila Sekli-Belaidi, Aurélie Civélas, Valentina Castagnola, Aliki Tsopela, Laurent Mazenq, et al..

PEDOT-modified integrated microelectrodes for the detection of ascorbic acid, dopamine and uric

acid. Sensors and Actuators B: Chemical, Elsevier, 2015, 214, pp. 1-9. �10.1016/j.snb.2015.03.005�.

�hal-01148710�

(2)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 13875

To link to this article :

DOI:10.1016/j.snb.2015.03.005

URL :

http://dx.doi.org/10.1016/j.snb.2015.03.005

To cite this version :

Sekli-Belaidi, Fadhila and Civélas, Aurélie and Castagnola,

Valentina and Tsopela, Aliki and Mazenq, Laurent and Gros, Pierre

and Launay, Jérôme and Temple-Boyer, Pierre PEDOT-modified

integrated microelectrodes for the detection of ascorbic acid,

dopamine and uric acid. (2015) Sensors and Actuators B: Chemical,

214. pp. 1-9. ISSN 0925-4005

Any correspondance concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(3)

PEDOT-modified

integrated

microelectrodes

for

the

detection

of

ascorbic

acid,

dopamine

and

uric

acid

F.

Sekli

Belaidi

a,b,c,d

,

A.

Civélas

a,b

,

V.

Castagnola

a,b

,

A.

Tsopela

a,b

,

L.

Mazenq

a,b

,

P.

Gros

c,d

,

J.

Launay

a,b

,

P.

Temple-Boyer

a,b,∗

aCNRS,LAAS,7avenueducolonelRoche,F-31400Toulouse,France bUniversitédeToulouse,UPS,LAAS,F-31400Toulouse,France cUniversitédeToulouse,UPS,INPT,LGC,F-31062Toulouse,France dCNRS,LGC,F-31062Toulouse,France Keywords: Integratedmicroelectrode Electrochemicalmicrocell PEDOT Ascorbicacid Dopamine Uricacid

a

b

s

t

r

a

c

t

Integrated(Pt/PEDOT–Pt–Ag/AgCl)and(Au/PEDOT–Pt–Ag/AgCl)electrochemicalmicrocells(ElecCell) wereelaboratedforthedetectionofascorbicacid,dopamineanduricacidbydifferentialpulse voltam-metry.Specificattentionwasbroughttotheintegrationofpoly(3,4-ethylenedioxythiophene)(PEDOT) filmbyelectropolymerization.Goldandplatinumworkingmicroelectrodeswereinvestigatedwhile usingethylenedioxythiophene(EDOT)electrodepositionprocessesinwateroracetonitrilesolvents.For thethreeantioxidantspecies,best(multi-)detectionpropertieswereobtainedforacetonitrile-based PEDOTfilmsdepositedongoldworkingelectrode.Thus,usingintegrated(Au/PEDOT–Pt–Ag/AgCl) Elec-Cellmicrodevices,analyticalperformancesweredeterminedforascorbicacid,dopamineanduricacid, exhibitinghighselectivity(oxidationpotential:−40,150and280mV,respectively),linear concentra-tionrangefrom0.1to300mM,highsensitivities(0.85,1.65and3.06mA/mMcm2,respectively)andlow detectionlimit(0.2mM,0.1mMand0.05mM,respectively).

1. Introduction

During thelasttwo decades,theareaofsensorshasgreatly

benefited from the development of micro/nanotechnologies in

termofdesign,fabricationanddetectionperformances.Thiswas

alsotrueforchemicalmicrosensorsandelectrochemicalanalysis

forbiosensing applications.Consequently, integrated

microelec-trodeshavebecomewell-acceptedtoolsforclinical,environmental,

chemicaland pharmaceuticalapplicationswithhighspatialand

temporalresolution[1,2].Indeed,theypresentmanyadvantages:

specificity, highsensitivity,fastresponse time, small capacitive

currents,enhancedmasstransport,lowohmicdropallowingtheir

useinlowconductingandhighlyviscousmedia,aswellas

versa-tility.Moreover,comparedtoultra-microelectrodes(UME)sealed

intoglass-capillaries[3–6],theytakeadvantageofmassfabrication

atlowcostthankstotheuseofsilicon-basedmicrotechnologies

[7–9],addressingmanybioanalyticalapplications[10–14].

Never-theless,torealizeasimpleandfunctionalelectrochemicalsensor,

Correspondingauthorat:CNRS,LAAS,7avenueducolonelRoche,F-31400 Toulouse,France.Tel.:+33561336954.

E-mailaddress:temple@laas.fr(P.Temple-Boyer).

microfabricationstrategieshavetoaddresstheproblemsrelatedto

theanalysisofrealsamples,emphasizingonsensitivity,

selectiv-ity,stability,reproducibilityandreliability.Wehaveselectedthis

approachtodevelopanintegratedelectrochemicalmicrosensorfor

thesimultaneousdetectionofascorbicacid(AA),dopamine(Dop)

anduricacid(UA)intheframeofantioxidantspeciesanalysis.

Thedetectionofthesethreeanalytesisofparticularinterestin

clinical,chemical,pathology,foodanalysisandmanyotherfields

[15–17].AAisavitalvitaminpopularlyknownforitsantioxidant

properties and is present in mammalian brain along with

sev-eralneurotransmitteraminessuchasdopamine.Ascorbicacidhas

beenusedforpreventionandtreatmentofcommoncold,

men-talillness,infertilityandcancer[18].Dopamineisanimportant

neurotransmitterformessagetransferincentralnervoussystem

[19].AbnormallevelsofDopleadtoneurologicaldisorderssuchas

ParkinsonismandSchizophrenia[20].Meanwhile,uricacidisthe

primaryfinalproductofpurinemetabolism.Theextreme

abnor-malitiesofUAlevelsleadtosomediseases,suchashypertension,

hyperuricaemia,goutandLesch-Nyandiseases[21].

Inrealbiologicalsamples,AA,DopandUAusuallycoexist,so

thedevelopmentofaccurate,selectiveandsimultaneous

determi-nationmethodsforthesethreeanalytesishighlydesiredespecially

inbiomedicalchemistryandmedicaldiagnostics.AA,DopandUA

(4)

areelectroactivecompoundsandcanbedetectedusing

electroan-alyticaltechniques.Unfortunately,withbareunmodifiedmetallic

electrodes,theyareoxidizedatnearlysamepotentialsandtheir

voltammetricresponsesoverlapmakestheirdiscriminationinreal

samplesverydifficult[22,23].Besides,bareelectrodesoften

suf-ferfromapronouncedfoulingaffectduetotheaccumulationof

oxidizedproductsonelectrode surface.Furthermore,the

modi-fiedelectrodemustbeinsensitivetointerferingchemicalspresent

inbiological media.To overcomethis problem, many

modifica-tionstrategieshavebeenadoptedtolowertheoverpotential,to

increase detectionsensitivity and toimproveselectivity. In the

frameofantioxidant detection,theyhaveledtotherealization

of various modified (micro)electrodes based on quantum dots

[24],nanoparticles[25–27],carbonnanotubes[28–30],graphene

[25–27,29,31–33] and conductive polymers [28,34–36]. Among

them,poly(3,4-ethylenedioxythiophene)(PEDOT)wasoneofthe

widelyusedconductingpolymersforthedetectionofAA,Dopand

UA[37–42].Ithasalowoxidationpotentialandmoderateband

gapwithgoodstabilityandtransparencyintheoxidizedstate,high

electricalconductivity[43],excellentthermalstability,intrinsically

lowthermalconductivityandlowprice[44,45].Inparallel,

elec-tropolymerizationisoneofthemethodsusedforthepreparation

ofpolymerfilmwithgoodquality.Itallowsthereproducible

for-mationoforganicpolymerfilmswithprecisespatialresolution.

Moreover,filmthicknessesareeasilycontrolledbythedeposition

chargeandthepolymerisdirectlyobtainedinhisconductingstate

[46].Thus,electrodepositionprotocolofPEDOTiseasiercompared

toothersstrategiesofelectrodemodifications.Finally,

ethylene-dioxythiophene(EDOT)isacommerciallyavailablemonomerthat

eliminatessynthesissteps.

In theframe of thedetection of antioxidantspecies, PEDOT

acts as a redox mediator responsible for oxidation catalysis.

Sinceascorbicanduric acidsareintheiranionicform(HA−)at

physiological pH,the occurringcatalytic mechanism is globally

givenby[47]:

PEDOTox+HA−→ PEDOTred−+A

PEDOTred−→PEDOTox+H++2e−

Inthecaseofdopaminknowntobeinitscationicformat

phys-iologicalpH,theglobalcatalyticmechanismis[37]:

PEDOTox+Dop→ PEDOTred+DoQ

PEDOTred→PEDOTox+2H++2e−

Our previous works illustrated that PEDOT deposited on

hand-mademicroelectrodeshasgoodcatalyticpropertiesforthe

electrochemicaloxidationof ascorbicanduric acidsandcanbe

usedfortheirsimultaneousdetection[39].Thisworkgoesfurther

towardstechnologicalintegrationandmassfabricationof

PEDOT-basedmicroelectrodes,focusingonthreemaingoals:(i)tostudy

the electropolymerization of PEDOT on thin-film-based

micro-electrodes, (ii) to integrate fully PEDOT-based electrochemical

microcells(ElecCell),and(iii)toanalyzePEDOT-basedElecCell

per-formancesfortheselectivedetectionofantioxidantspecies.Thus,

combiningtheadvantageousfeaturesofsilicon-based

microtech-nologies [23,48] and catalytic properties of PEDOT [46], we

presentedheretheanalyticperformances ofintegrated

electro-chemicalmicrodevicesmodifiedwithPEDOTelectrodepositedin

differentconditionsofpolymerizationforasimultaneousassayof

AA,Dop,andUA.

2. Experimental

2.1. Chemicals

3,4-Ethylenedioxythiophene(EDOT)monomer,poly(sodium

4-styrenesulfonate)(NaPSS),ascorbicacid(AA),dopamine(Dop)and

uricacid(UA)werepurchasedfromSigmaAldrich.

Tetrabutylamm-onium perchlorate (TBAPC), potassium dihydrogenophosphate

KH2PO4,di-potassiumhydrogenophosphateK2PHO4,sodium

chlo-rideNaClandacetonitrileCH3CNwerepurchasedfromAcros.All

reagentswereofanalyticalgradeandusedasreceived.Theaqueous

solutionswerepreparedwithhigh-qualitywater(MilliQgradient

A10system,Millipore,Bedford,MA).Highpurenitrogenwasused

fordeaeration.

2.2. Materials

ElectrochemicalImpedanceSpectroscopy(EIS)measurements

weremadein0.1MNaClsolutionbyapplyinga5mVRMSsine

wavewithfrequenciesrangingfrom10Hzto10kHz.Scanning

elec-tronmicroscopy(SEM)studieswerecarriedoutusingafocused

ionbeam(FIB) HELIOS600iequipmentoperatingat 3kV.

Sam-plesweremountedonadouble-sidedadhesivecarbonandoptical

microscope imageswere then made using a Hirox Microscope

(HI-SCOPEadvancedKH-3000).PEDOTelectropolymerizationand

electrochemicalexperimentswereperformedusingaVMP3

poten-tiostat (Biologic) interfaced to a microcomputer and using the

EC-Labsoftware.

2.3. Electrochemicalmicrocell(ElecCell)fabrication

Integrated(Pt–Pt–Ag/AgCl)and(Au–Pt–Ag/AgCl)

electrochem-ical microcells (ElecCell) were fabricatedon silicon chip using

silicon-based microtechnologies (Fig. 1a) [23]. Oxidized silicon

waferswereusedinordertoensureelectricalinsulationbetween

thedifferentmicroelectrodes(oxidethickness:∼1mm).Then,the

differentthin metallic layers weredeposited byevaporation in

conventional physical vapour deposition(PVD) equipment, and

patternedusingabilayerlift-offprocessinordertoimprove

fab-ricationreproducibility.ThreePVDprocesseswereperformedina

row:firstly,a200nmplatinumlayerwasdepositedona 20nm

titanium underlayer in order to ensure platinum adhesion on

siliconoxide,followedbya800nmgoldanda400nmsilver

lay-ers. Finally,a biocompatible Si3N4 passivation layer(thickness:

100nm)wasdepositedatthewaferlevelandpatternedusing

pho-tolithographytechniques[48].Accordingtothisfinalwafer-level

passivationprocess,thedifferentmetallic layerswereinsulated

electricallyandtheiractivesurfacesweredefinedprecisely.The

goldandplatinumworkingmicroelectrodesweredefinedasdisks

and theirelectroactive areawasapproximately 4.9×10−4mm2

(diameter: 25mm). In contrast, very large silver/silver chloride

referencemicroelectrode(0.02mm2)andplatinumcounter

micro-electrode(1mm2)werefabricated.Afterthesiliconwaferdicing,

(Pt–Pt–Ag)and(Au–Pt–Ag)electrochemicalmicrocellswere

man-ufacturedonsiliconchip(Fig.1a).Thewholechipwasthenplaced

and gluedby an epoxyinsulating glue on a specificallycoated

printedcircuit,wirebondedandpackagedatthesystemlevelusing

asiliconeglop-topinordertobefullycompatiblewithliquidphase

measurement.

Foreachmicrodevice,thesilver/silverchlorideAg/AgCl

pseudo-reference was finally obtained by oxidizing the silver-based

microelectrode in a 0.01M KCl solution. This was performed

bylinearvoltammetry(potentialscan rate:1mV/sbetween0.1

and 0.25V/SCE) using a standard saturated calomel electrode

(SCE) Hg/Hg2Cl2/KClsat as reference. Thus, (Pt–Pt–Ag/AgCl) and

(5)

Fig.1. Opticalmicroscopeimagesof(a)theintegrated(Au-Pt-Ag/AgCl)electrochemicalmicrocell(ElecCell)deviceand(b)theelectrodepositedPEDOTfilmonthegold workingelectrode(solvent:acetonitrile)

2.4. PreparationandcharacterizationofPEDOTmodified

electrode

PEDOT electropolymerization processes were carried out in

organic,i.e.acetonitrile-based,orinorganic,i.e.water-based,

solu-tions.

Fortheorganicacetonitrile-basedprocess,theintegrated

work-ingmicroelectrodesurfacewasmodifiedinadeaeratedacetonitrile

solutioncontaining2.5mMEDOTmonomerand0.1MTBAPCas

supportingelectrolyte[39].Then,polymerizationwasperformed

bycyclicvoltammetryatascanrateof250mV/sbetween0.88and

1.5V.

Fortheinorganicwater-basedprocess,electropolymerization

experiment was performedfrom EDOT(0.1%W/V, 0.01M) and

NaPSS(0.7%W/V)inaqueousdeaeratedsolutions.Such

concentra-tionwaslowerthanEDOTsolubilityinwater(estimatedaround

15mM at 25◦C)to ensureits complete dissolving.Then, cyclic

voltammetrywascarriedbetween−0.9and1.2Vatascanrate

of25mV/s[49].

In bothcases, i.e.acetonitrileorwater solvents, theamount

of PEDOTsynthesizedcorrespondedto thesameanodic charge

of12mC/cm2.Aftertheelectropolymerization,themodified

elec-trodeswererinsedwithacetonitrileand/ordeionizedwaterina

rowtoremoveanyphysicallyadsorbedmonomer(Fig.1b).

2.5. ElectrochemicalexperimentsofPEDOT-basedElecCell

integratedmicrodevice

For the quantitative determination of AA, Dop and UA,

dif-ferential pulse voltammetry (DPV) was investigated since it is

moresensitivethancyclicvoltammetry.Differentialpulse

voltam-mogramswerecollectedinthepotentialrangebetween0.2and

0.4V, witha 50mVamplitude, a 6mVpotentialstep, a 119ms

pulsetime,a 1sinterval timeand a6mV/spotentialscan rate.

Integrated (Au/PEDOT–Pt–Ag/AgCl) and (Pt/PEDOT–Pt–Ag/AgCl)

electrochemicalmicrocellswereusedfortheseDPVexperiments.

For eachof them,goldor platinumPEDOT-modified

microelec-trodes were used as workingelectrodes whereas the platinum

and silver/silverchloridemicroelectrodes wereused ascounter

andpseudo-referenceelectrodes,respectively.Allelectrochemical

experimentswereperformedinaglasscellcontaining100mLof

0.1Mdeaeratedphosphatebuffersolution(PBS,pH=7.0)with

dif-ferentconcentrationsofAA,Dop,andUA.Thestandardaddition

methodwasappliedfordrawingthecalibrationcurvesforeach

specie.Freshlyconcentrated solutionsofAA,Dop, andUAwere

preparedandstoredat4◦C.Thenasmallknownconcentrationof

desiredelementisincreasinglyaddedtoPBSsolutions.Currents

werethenplottedagainsttheaddedconcentrations.Thelimitof

detectionwasestimatedforasignal-tonoise-ratioequaltothree.

3. Resultsanddiscussion

3.1. EffectofEDOTsolvent

Thesolventusedduringtheelectropolymerizationstephasa

keyinfluenceontheconductingpolymersultimateproperties.It

shouldleadtoahighelectricalconductivityandgood

electrochem-icalstabilityagainstdecompositionathighpotentialsrequiredto

oxidizethe monomer.Thus, electrosynthesisof PEDOTis often

performedinorganicsolvent[37,39].Nevertheless,evenifwater

hassomedrawbackssuchashighnucleophilicity,narrow

poten-tialwindowforelectrochemicalstabilityandhighEDOToxidation

potential(higherthantheacetonitrileone),itwasalsousedas

sol-vent forPEDOTelectrodepositioneveniftheEDOTmonomeris

slightlysolubleinaqueoussolution[49,50].Aboveallthese

prob-lems,theselectionofwater asthesynthesismediumwouldbe

self-evidentmerelyfromenvironmental,economicand

biocom-patibilityreasons.

Fig.2aandbshowsthecyclicvoltammogramsrecordedduring

PEDOTelectrogenerationonagoldintegratedmicroelectrode,in

water-basedorinacetonitrile-basedsolutions,respectively.

Simi-larelectrochemicalbehaviourswereobservedforbothsolvents.In

water(Fig.2a),theEDOTmonomeroxidationstartsat0.6Vandthe

anodiccurrentincreasesfromcycletocycleindicatingthepolymer

growth.Then,thePEDOTredoxpropertiesareevidencedat−0.1V.

Theelectropolymerizationpotentialdecreasewasattributedtothe

strongelectrostaticinteractionsbetweenEDOT•+ cationradicals

andPSS−species,facilitatingthepolymerizationprocess[51].

In acetonitrile (Fig. 2b), it is clearly visible that the EDOT

monomeroxidationstarsat1.2Vwhereastheredoxpotentialof

PEDOTisobtainedaround−0.25V.Itisknownthatpeaksposition

ofthepolymerredoxactivityisrelativetop-dopingprocess,leads

todifferencesinconductivityproperties[52],andmightindicate

thatahighermolecularmasspolymerisobtainedwhen

electrosyn-thesisis performed in organicmedium. Thus, even ifa similar

anodicchargeof12mC/cm2waschosenforthePEDOTsynthesis,

thisshouldalsoberesponsibleforsomethicknessandmorphology

discrepanciesforthedifferentPEDOTlayers.

To have further information on PEDOT depositions, they

were characterized by impedancemetry and scanning electron

microscopy(SEM).Comparedtowatersolvent,acetonitrileleadsto

lowerimpedancemodulusandthereforetohigherelectrical

con-ductivity(datanot shown).Such differenceintermofelectrical

(6)

Fig.2.Cyclicvoltammogrammsofelectropolymerizationatgoldworkingmicroelectrodeindeaerated0.1mol/LTBAPCand2.5mmol/LEDOT(a)water-based(potentialscan rate:25mV/s)and(b)acetonitrile-basedsolutions(potentialscanrate:250mV/s).

film.Indeed,theuseofTBAPC,andespeciallytheperchlorateion

ClO4−,aschargecompensationwasshowntogivePEDOTfilmswith

higherdopinglevelandbetterstability[53].

Nevertheless,moresignificantresultswereobtainedbySEM.

Fig. 3a and b presents the different surface morphologies of

PEDOTlayerselectrodepositedongoldmicroelectrodewhileusing

waterandacetonitrilesolvents.Incontrasttowater-basedPEDOT

that forms a cauliflower-type, compact structure,

acetonitrile-based ones show a porous complex structure. To the best of

ourknowledge,theeffectsofsolventonmorphologicalfeatures,

andthecorrelationbetweenthemorphologyof

electropolymer-izedfilmsandtheircatalyticpropertieswereneversystematically

investigated.To explain thesignificantdifferencesbetweenthe

morphologicalpropertiesofPEDOTfilmspreparedinwaterorin

acetonitrile,wecanspeculatethatthesechangesareattributedto

thedifferentintrinsic propertiesofeachsolventthatcontribute

todifferentsolute–solventand/orpolymer–solvent interactions.

Thebestsolventswerefoundtohavehighdipolemoments,low

polarizabilityandhighcapacitytodonateelectrons[54].

Further-more,higherdielectricconstants(∼80forwatercomparedto∼36

foracetonitrile)leadtolowerelectropolymerizationrateandto

morecompactfilms[55].Meanwhile,wecannotexcludethe

fac-torthatthesolubilityofEDOToligomersproducedatinitialstages

ofelectropolymerizationinbothsolventsmightberesponsibleof

suchmorphologicalstructures[56].Certainly,inthevery

begin-ningstageofpolymerization,oxidationofmonomersandcoupling

ofradicalcationstakeplace.Whenthechainlengthofoligomers

is highenough, theyprecipitate onto theelectrode, generating

thefirstpolymernuclei.Atthispoint, thePEDOTdepositionon

theelectrodestarts,i.e.nucleationbegins,andsubsequentlythe

propagationofpolymerchainsandpolymerprecipitationarethe

mainprocesses.Inwater,thepresenceofpoly-styrenesulphonate

(PSS),whichisagoodsolubilizingagentforbothEDOTmonomer

and PEDOTpolymer, facilitates theformation ofrelatively long

polymericchains onsolutionand consequentlysmootherfilms

areobserved.Inacetonitrile,shortoligomersaredepositedonthe

electrode,leadingtoahighnumberofnucleationcentres,which

yield tomoreheterogeneous andvery roughfilmsas observed

inSEM.Finally,sinceitwasshownthatthesurfacemorphology

is influenced by thepolymerization potential[57],

electropoly-merizationathigheroxidationpotential(1.2–1.5V)inacetonitrile

shouldproducesrougherPEDOTfilms.

Themodifiedmicrodeviceswerethereforetestedinan

equimo-larsolutionofAA,DopandUA1mmol/LpH7.0.Resultsareshown

in Fig. 4. It is clear that the PEDOT grown in acetonitrilehas

muchbetterperformancesthanthePEDOTgrowninwater. For

acetonitrile-basedPEDOTlayers,theoxidationpeaksofAA,Dop

andUAappearat−0.04,0.15and0.28V,respectively,andhigher

sensitivitiesareevidenced.Forwater-basedones,oxidationofAA,

DopandUAoccursatmorepositive potentials,i.e.0.125,0.335

and 0.45V, inducing lower sensitivities.Such resultsshouldbe

associated tothe differences betweenPEDOTfilms in terms of

structure, morphologyand electricalconductivity(asshown by

SEMand impedancemetriccharacterizations, seebelow).Inthe

caseofacetonitrile,rougherandmoreporousmorphologiesaswell

ashigherelectricalconductivityprovidelargerelectroactive

sur-face,fasterdiffusionphenomenainandoutthepolymernetwork,

and betteraccessto electroactivesites,enhancingPEDOTfilms

Fig.3. Scanningelectronmicroscopy(SEM)picturesofPEDOTfilmsdepositedon(a)ongoldsurfaceusingwaterassolvent,(b)ongoldsurfaceusingacetonitrileassolvent and(c)onplatinumsurfacewhileusingacetonitrileassolvent

(7)

Fig.4.Differentialpulsevoltammograms(DPV)of(Au/PEDOT–Pt–Ag/AgCl)ElecCell in0.1MPBSpH7.0solutioncontaininganequimolarAA/Dop/UA(1mmol/L):PEDOT electrodepositedinacetonitrilesolution(plainline)orinaqueoussolution(dashed line).

Fig.5.Differentialpulsevoltammograms(DPV)of(Au–Pt–Ag/AgCl)(plainline)and (Pt–Pt–Ag/AgCl)(dashedline)ElecCellin0.1MPBSpH7.0solutioncontainingan equimolarAA/Dop/UAmixture(1mmol/L).

electrocatalytic properties and improving further antioxidant

detectionproperties[47].

Finally, even if water was successfully developed and gave

acceptable results, acetonitrile appears to be the best solvent

forintegratingPEDOT-modifiedelectrochemicalmicrosensorsand

Fig.6.Differentialpulsevoltammograms(DPV)of(Au/PEDOT–Pt–Ag/AgCl)(plain line)and(Pt/PEDOT–Pt–Ag/AgCl)(dashedline)ElecCellin0.1MPBSpH7.0solution containinganequimolarAA/Dop/UAmixture(1mmol/L).

improving PEDOT-based detection performances of antioxidant

speciesintermsofsensitivityandselectivity.

3.2. Effectofworkingelectrodenature

Asdescribed previously in section2.3, theintegrated

work-ingmicroelectrodecanbemadefromplatinumorgold.Previous

worksshowedthatthephysico-chemicalpropertiesoftheanode

metallic material could determinethe natureand the strength

of the bond between the electropolymerizedpolymer and the

electrode,impactingitsresultingproperties[46].So,westudied

the influence of the metal nature on the PEDOT-based

detec-tionproperties.Inthisview,acetonitrilesolventwasusedforthe

electrodepositionofPEDOTfilmsongoldandplatinumworking

surfaces(seesection3.1).Then,theelectrochemicalperformances

ofthePEDOT-modifiedworkingmicroelectrodeswereevaluated

in an equimolarsolution of AA, Dop and UA 1mmol/L pH 7.0.

For comparison, bare gold and platinum integrated

microelec-trodeswerealsostudiedinthesameway.Resultsareshownin

Figs.5and6.

Forbare goldandplatinum microelectrodes,abadlydefined

peakandlowcurrentvaluesareobserved(Fig.5).Such

amperomet-ricresponseswererelatedtocompetitiveoxidationphenomena

betweenAA,DopandUA.Indeed,bystudyingseparatelyeach

ana-lyte(resultnotshown),theirrespectiveoxidationpotentialsappear

at0.26,0.42and0.47Vongoldmicroelectrode,andat0.32,0.28

and0.52Vonplatinummicroelectrode,inagreementwithprevious

results[22,23].

OnPEDOT-basedmicroelectrodesmadefromgoldorplatinum,

threewell-definedoxidationpeaksareobservedcorrespondingto

Table1

Comparisonoftheanalyticalperformancesofdifferentelectrochemical,PEDOT-modified,electrodesforthesimultaneousdetectionofAA,Dop,andUA. Ref. EpvsSCE(mV) Limitofdetection(mM) Linearrange(mM)

AA Dop UA AA Dop UA AA Dop UA

[37] −50 150 365 – 1 1 – 1–30 1–20 [38] −80 120 275 7.4 – – 500–3500 20–80 20–130 [39] −94 – 308 2.5 – 1.5 5–300 – 2–600 [40] 100 250 320 – – – 100–500 100–500 100–500 [41] 3 210 360 10 1.5 2.7 20–1400 12–48 36–216 [42] 69 232 364 400 6 2 400–8000 6–75 2–40 Thiswork −40 150 280 0.2 0.1 0.05 0.5–300 0.2–300 0.1–300

(8)

theoxidationofAA,DopandUA,respectively(Fig.6).Compared

tothebroad and overlapped amperometricresponsesobtained

withbareelectrodes,allaboveresultsclearlyvalidatethecatalytic

activityofPEDOTfortheelectrochemicaloxidationofAA,Dopand

UAby loweringtheoxidation potentialandincreasingthe

cur-rent[37,38,47]. Nevertheless,electrochemical performancesare

stillslightlyloweronplatinumPEDOTmodifiedmicroelectrode:

thepeakpotentialsareshiftedtomorepositivevalues,andmore

preciselyat0.01,0.215and0.34V,respectively(comparedto−0.04,

0.15and0.28V,seesection3.1),andwithlowersensitivities.

Ear-lier,bystudyingtheexperimentalconditionsofpolymerization,we

haveobservedthatthemorphologicalpropertiesofPEDOTfilms

determinetoalargeextentthecatalyticbehaviourfortheassayof

AAandUA[39].So,thiselectrochemicalperformancesdiscrepancy

couldbealsoduetotheelectrical,morphologicalandstructural

propertiesoftheresultingpolymers.Indeed,through

impedance-metriccharacterization,PEDOTsynthesizedongoldisconfirmedto

havethehigherelectricalconductivitycomparedtoplatinumone.

Thesedifferencescanbedueeithertotheintrinsicconductivities

ortotheroughnessofPEDOTfilms[49].Furthermore,SEM

charac-terizationsshowthatacetonitrile-basedPEDOTfilmsdepositedon

platinumsurfaceshowlessporousstructurethanthosedeposited

ongoldsurface(Fig.3bandc).Ontheotherhand,PEDOT

adhe-sionisbestongoldsurfaceduetothestronginteractionsbetween

goldandsulphuratoms[58,59].Thus,comparedtoplatinum-based

ones, (Au/PEDOT–Pt–Ag/AgCl) ElecCell integrated microdevices

are more suitable for the simultaneous electrochemical

deter-mination of antioxidant species at millimolar concentration

levels.

3.3. Analyticalperformances

Accordingtoourpreviousresultsandoptimizations(see

sec-tions3.1and3.2),acetonitrile-basedPEDOTelectrodepositionwas

performedongoldmicroelectrode.Sincesilicon-basedintegration

enablesmassfabrication,theseinvestigationswereperformedfor

fivedifferent(Au/PEDOT–Pt–Ag/AgCl)electrochemicalmicrocells.

Fig.7a–crepresents theDPVresponsesofthePEDOT-modified

microelectrodes to various concentrations of AA, Dop and UA,

respectively. Calibration plots indicatean excellent linearity of

the amperometric responses with AA, Dop and UA

concentra-tions at−0.04, 0.15and 0.28V, respectively(Fig.8).ForAA, an

excellent linear relationship (sensitivity: 0.85mA/mMcm2) was

obtainedin theconcentration range from 0.5 to 300mM, with

a limit of detection estimated at 0.2mM for a signal to noise

ratio of 3. Then, the calibration for dopamin was also found

tobe linear in therange of 0.2–300mM. In this case, a higher

slope(1.65mA/mMcm2)valueandalimitofdetectionof0.1mM

were evidenced. Finally, in the case of UA, a linear

relation-ship was found again in the range of 0.1–300mM with a still

higher sensitivity(3.06mA/mMcm2)and a limit of detection of

0.05mM.Alltheseanalyticalresponsescanberesumedasfollowing

(R2>0.998):

Ascorbic acid detection (oxidation potential: −0.04V):

j(mA/cm2)=24+0.85C

AA(mM);

Dopamine detection (oxidation potential: 0.15V):

j(mA/cm2)=9.7+1.65C

Dop(mM);

Uric acid detection (oxidation potential: 0.28V):

j(mA/cm2)=25+3.06C

UA(mM).

Intermofconcentrationranges,theseresultswerewellsuited

totheassayoftheseanalytesinmedicalfields[60,61].Compared

toworksreportedinliteratureforthesimultaneousdetermination

ofAA,Dop,andUAonPEDOT-modifiedelectrodes,itisworthto

notethatourresultswerebetterorcomparabletomostofthese

Fig.7.Differentialpulsevoltammogramsof(Au/PEDOT-Pt-Ag/AgCl)elecCellin 0.1MPBS(pH7.0) containingdifferentconcentrationsof(a)ascorbicacid,(b) dopamineand(c)uricacid.

electrodes(Table1),althoughanalyteswereusedinexcessformost

ofthem.Finally,withtheintegratedelectrochemicalmicrodevice,it

appearsthatasignificantimprovementinlimitsofdetectionwas

obtainedcomparedtoourpreviousresults[39],makingitmore

(9)

Fig.8.Calibrationcurvesforthethreeanalytes:ascorbicacid,dopamineanduric acid.

3.4. Reproducibilityandstability

Thereproducibilityandstabilityofthesensorwereinvestigated

bysensingstudies.Ternarymixtureofanequimolarsolutionof

AA,DopandUA100mMwasusedforthereproducible

examina-tionsoffivedifferent(Au/PEDOT–Pt–Ag/AgCl)ElecCell.Therelative

standarddeviation(RSD)wasfoundtobelowerthan4.2%forAA,

4.5%forDopand3.2%forUA,suggestingthattheElecCell

technol-ogyreproducibilitywassufficientlygoodtodealwithcalibration.

Thestabilityofoursensorswasexaminedinternarymixtureafter

beingstoredtwoweeksinairorinphosphatebuffersolution(PBS).

Thus,PEDOTmodifiedmicrodevicesretained90%oftheirinitial

sensitivitiestothedifferentantioxidantspeciesstudies(datanot

shown).

4. Conclusion

We have developed fully integrated, PEDOT-based,

electro-chemical microcells (ElecCell) allowing the selective detection

of ascorbic acid, dopamine and uric acid in aqueous media.

PEDOThasbeensuccessfullysynthesizedonintegratedgoldand

platinum microelectrodeswhile usingwater andacetonitrileas

solvent.AccordingtoDPVcharacterization,resultsshowimproved

detectionperformancesintermofsensitivityandselectivityfor

electrodeposited PEDOTlayers, emphasizing good resultsusing

waterassolvent,betterresultsusingacetonitrileassolventand

best results on gold surfaces compared to platinum ones. For

this last and best case, detection properties of ascorbic acid,

dopamineanduricacidwerestudied,exhibitingwell-separated

oxidationphenomena(oxidationpotential:−0.04,0.15and0.28V,

respectively), linear current variations, high sensitivities (0.85,

1.65 and3.06mA/mMcm2,respectively)andlow detectionlimit

(0.2mM,0.1mMand0.05mM,respectively).Asaresult,theElecCell

technologicalplatformisadaptedtothemassfabricationof

PEDOT-modifiedelectrochemicaldevices fortheanalysisofantioxidant

species.Itwasappliedtomodelsolutionsuptonow,butshouldbe

extendedtorealsamplesofbloodseraand/orurinesintheframe

ofclinicaldiagnosisand/orenvironmentalapplications.

Acknowledgements

TheauthorswouldliketothankProfessorMauriceComtat(LGC,

Toulouse)for helpfuldiscussionsandadvices. Thetechnological

realizationsandassociatedresearchworkswerepartlysupported

bytheFrenchRENATECHnetwork.

References

[1]V. Beni, D.W.M. Arrigan, Microelectrode arrays and microfabricated devicesinelectrochemicalstripping analysis,Curr. Anal. Chem.4(2008) 229–241.

[2]O.A.Sadik,A.O.Aluoch,A.Zhou,Statusofbiomolecularrecognitionusing elec-trochemicaltechniques,Biosens.Bioelectron.24(2009)2749–2765.

[3]J.W.Schultze,V.Tsakova,Electrochemicalmicrosystemtechnologies:from fundamentalresearch to technical systems, Electrochim. Acta 44 (1999) 3605–3627.

[4]C. Amatore, S. Arbault, C. Bouton, K. Coffi, J.C. Drapier, H. Ghandour, Y. Tong, Monitoring in real time with a microelectrode the release of reactive oxygen and nitrogen species by a single macrophage stimula-tionbyitsmembranemechanicaldepolarization,ChemBioChem7(2006) 653–661.

[5]A.Ruffien-Ciszak, P.Gros, M.Comtat,A.M.Schmitt,E. Questel,C. Casas, D.Redoules,Explorationoftheglobalantioxidantcapacityofthestratum corneum by cyclic voltammetry, J. Pharm. Biomed. Analysis 40 (2006) 162–167.

[6]J.G.Roberts,J.V.Toups,E.Eyualem,G.S.McCarty,L.A.Sombers,Insituelectrode calibrationstrategyforvoltammetricmeasurementsinvivo,Anal.Chem.85 (2013)11568–11575.

[7]R.S.Pai, K.M. Walsh, M.M. Crain,T.J. Roussel, D.J. Jackson,R.P. Baldwin, R.S.Keynton,J.F.Naber,Fully integratedthree-dimensionalelectrodesfor electrochemicaldetectionin microchips:fabrication,characterization and applications,Anal.Chem.81(2009)4762–4769.

[8]Y.P.Chen,Y.Zhao,J.Chu,S.Y.Liu,W.W.Li,G.Liu,Y.C.Tian,Y.Xiong,H.Q.Yu, Fabricationandcharacterizationofaninnovativesolid-statemicroelectrode, Electrochim.Acta55(2010)5984–5989.

[9]K.Dawson,A.Wahl,S.Barry,C.Barrett,N.Sassiat,Fully-integratedon-chip nano-electrochemicaldevicesforelectroanalyticalapplications,Electrochim. Acta115(2014)239–246.

[10]N.Pereira-Rodriguez,Y.Sakai,T.Fujii,Cell-basedmicrofluidicbiochipforthe electrochemicalreal-timemonitoringofglucoseandoxygen,Sens.Actuators B132(2008)608–613.

[11]M.Miyashita,N.Ito,S.Ikeda,T.Murayama,K.Oguma,J.Kimura,Development ofurineglucosemeterbasedonmicro-planaramperometricbiosensorandits clinicalapplicationforself-monitoringofurineglucose,Biosens.Bioelectron. 24(2009)1336–1340.

[12]S.BenAmor,E.Vanhove,F.SékliBelaïdi,S.Charlot,D.Colin,M.Rigoulet,A. Devin,J.Launay,P.Temple-Boyer,S.Arbault,Enhanceddetectionofhydrogen peroxidewithplatinizedmicroelectrodearraysforanalysesofmitochondria activities,Electrochim.Acta126(2014)171–178.

[13]O.Frey,P.D.vanderWal,S.Spieth,O.Brett,K.Seidl,O.Paul,P.Ruther,R. Zengerle,N.F.deRooij,Biosensormicroprobeswithintegratedmicrofluidic channelsforbi-directionalneurochemicaldetection,J.NeuralEng.8(2011) 1–9.

[14]A.Altuna,L.MenendezdelaPrida,E.Bellistri,G.Gabriel,A.Guilera,J.Berganzo, R.Vila,L.J.Fernandez,SU-8basedmicroprobeswithintegratedplanar elec-trodesforenhancedneuraldepthrecording,Biosens.Bioelectron.37(2012) 1–5.

[15]J.Dawson,P.Jeemon,L.Hetherington,C.Judd,C.Hastie,C.Schulz,W.Sloan,S. Muir,A.Jardine,G.McInnes,D.Morrison,A.F.Dominiczak,S.Padmanabhan,M. Walters,Serumuricacidlevel,longitudinalbloodpressure,renalfunction,and long-termmortalityintreatedhypertensivepatients,Hypertension62(2013) 105–111.

[16]S.S.Rodriguez,K.A.Salazar,N.A.Jara,M.A.Garcia-Robles,F.Perez,L.E.Ferrada, E.Luciano,F.Martinez,F.J.Nualart,Superoxide-dependentuptakeofvitaminC inhumangliomacells,J.Neurochem.127(2013)793–804.

[17]S.D.Cekic,A.Cetinkaya,A.N.Avan,R.Apak,Correlationoftotalantioxidant capacitywithreactiveoxygenspecies(ROS)consumptionmeasuredby oxida-tiveconversion,J.Agric.FoodChem.61(2013)5260–5270.

[18]O.Orrigoni,M.C.DeTullio,Ascorbicacid:muchmorethanjustanantioxidant, Biochim.Biophys.Acta1569(2002)1–9.

[19]R.M.Wightman,L.J.May,A.C.Michael,Detectionofdopaminedynamicsinthe brain,Anal.Chem.60(1988)769A–793A.

[20]C.Martin,TheParkinson’spuzzle:newdevelopmentsinourunderstandingof Parkinson’sdiseasehavegeneratedanumberofpromisingnewtreatmentsfor thisdisablingcondition,Chem.Britain34(1998)40–42.

[21]V.V.S.EswaraDutt,H.A.Mottola,Determinationofuricacidatthemicrogram levelbyakineticprocedurebasedonapseudo-inductionperiod,Anal.Chem. 46(1974)1777–1781.

[22]H.Etnet,M.Knoll,Electrochemicalcharacterizationofuricacidandascorbic acidataplatinumelectrode,Anal.Chim.Acta449(2001)129–134.

[23]C.Christophe,F.SékliBelaïdi,J.Launay,P.Gros,E.Questel,P.Temple-Boyer, Elaborationofintegratedmicroelectrodesforthedetectionofantioxidant species,Sens.ActuatorsB77(2013)350–356.

[24]M.Roushani,M.Shamsipur,H.R.Rajabi,Highlyselectivedetectionofdopamine inthepresenceofascorbicacidanduricacidusingthioglycolicacidcapped CdTequantumdotsmodified electrode,J. Electroanal.Chem.712 (2014) 19–24.

(10)

[25]B.Kaur,T.Pandiyan,B.Satpati,R.Srivastava,Simultaneousandsensitive deter-minationofascorbicacid,dopamine,uricacid,andtryptophanwithsilver nanoparticules-decoratedreducedgrapheneoxidemodifiedelectrode,Colloid Surf.B111(2013)97–106.

[26]X.Wang,M.Wu,W.Tang,Y.Zhu,L.Wang,P.He,Y.Fang,Simultaneous elec-trochemicaldeterminationofascorbicacid,dopamineanduricacidusinga palladiumnanoparticle/graphene/chitosanmodifiedelectrode,J.Electroanal. Chem.695(2013)10–16.

[27]T.Q.Xu,Q.L.Fhang,J.N.Zheng,Z.Y.Lv,J.Wei,A.J.Wang,J.J.Feng,Simultaneous determinationofdopamineanduricacidinthepresenceofascorbicacidusing Ptnanoparticlessupportedonreducedgrapheneoxide,Electrochim.Acta115 (2014)109–115.

[28]E. dePieriTroiani,E.R.Pereira-Filho, R. CensiFaria,Chemometric strate-giestodevelopananocompositeelectrodeforsimultaneousdetermination of ascorbic acid, dopamine, and uric acid, Electroanalysis 23 (2011) 2822–2831.

[29]H.Li,Y.Wang,D.Ye,J.Luo,B.Su,S.Zhang,J.Kong,Anelectrochemicalsensorfor simultaneouslydeterminationofascorbicacid,dopamine,uricacidand trypto-phanbasedonMWNTsbridgedmesocellulargraphenefoamnanocomposite, Talanta127(2014)255–261.

[30]J.Zhan,Z.Zhu,J.Zhu,K.Li,S.Hua,Selectivedeterminationofdopamine,ascorbic acidanduricacidatSDS-MWCNTsmodifiedglassycarbonelectrode,Int.J. Electrochem.Soc.9(2014)1264–1272.

[31]P.Manivel,M.Dhakshnamoorthy,A.Balamurugan,N.Ponpandian,D. Man-galaraj, C. Viswanathan, Conducting polyaniline-graphene oxide fibrous nanocomposites: preparation, characterization and simultaneous electro-chemicaldetectionofascorbicacid,dopamineanduricacid,RSCAdv.3(2013) 14428–14437.

[32]J.Du,R.Yue,F.Ren,Z.Yao,F.Jiang,P.Yang,Y.Du,Novelgrapheneflowers mod-ifiedcarbonfibersforsimultaneousdeterminationofascorbicacid,dopamine anduricacid,Biosens.Bioelectron.53(2014)220–224.

[33]D. Wu,Y. Li,Y.Zhang,P.Wang, Q.Wei,B.Du,Sensitiveelectrochemical sensorforsimultaneousdeterminationofdopamine,ascorbicacid,anduric acidenhancedbyamino-groupfunctionalizedmesoporousFe3O4@graphene sheets,Electrochim.Acta116(2014)244–249.

[34]Y.Li,X.Lin,Simultaneouselectroanalysisofdopamine,ascorbicacidanduric acidbypoly(vinylalcohol)covalentlymodifiedglassycarbonelectrode,Sens. ActuatorsB115(2006)134–139.

[35]M.Mazloum-Ardakani,M.A.Sheikh-Mohseni,A.Benvidi, Electropolymeriza-tionofthinfilmconductingpolymeranditsapplicationforsimultaneous determinationofascorbicacid,dopamineanduricacid,Electroanalysis23 (2011)2822–2831.

[36]J.Samseya,R.Srinivasan,Y.T.Chang,C.W.Tsao,V.S.Vasantha,Fabrication and characterisation of high performance polypyrrole modified microar-ray sensorforascorbic aciddetermination, Anal.Chim.Acta 793 (2013) 11–18.

[37]S.S.Kumar,J.Mathiyarasu,K.L.N.Phani,V.Yegnaraman,Simultaneous deter-minationofdopamineandascorbicacidonpoly(34-ethylenedioxythiophene) modified glassy carbon electrode, J. Solid State Electrochem. 10 (2006) 905–913.

[38]J. Mathiyarasu,S. Senthilkumar, K.L.N. Phani, V. Yegnaraman,PEDOT-Au nanocomposite film for electrochemical sensing, Mater. Lett. 62 (2008) 571–573.

[39]F.SekliBelaidi,P.Temple-Boyer,P.Gros,Voltammetricmicrosensorusing PEDOTmodifiedgoldelectrodeforthesimultaneousassayofascorbicanduric acids,J.Electroanal.Chem.647(2010)159–168.

[40]K.C. Lin, C.Y. Yin, S.M. Chen, Simultaneous determination of AA, DA, and UA based on bipolymers by electropolymerization of luminol and 3,4-ethylenedioxythiophene monomers, Int. J. Electrochem. Sci. 6 (2011) 3951–3965.

[41]S.Yu,C.Luo,L.Wang,H.Peng,Z.Zhu,Poly(3 4-ethylenedioxythiophene)-modified Ni/silicon microchannel plate electrode for the simultaneous determinationofascorbicacid,dopamineanduricacid,Analyst138(2013) 1149–1155.

[42]K.C.Lin,J.Y.Huang,S.M.Chen,Simultaneousdeterminationofascorbicacid, dopamine,uricacidandhydrogenperoxidebasedonco-immobilizationof PEDOTandFADusingmulti-walledcarbonnanotubes,Anal.Methods6(2014) 8321–8327.

[43]L.B.Groenendaal,F.Jonas,D.Freitag,H.Pielartzik,J.R.Reynolds, Poly(3,4-ethylenedioxythiophene)anditsderivatives:past,present,andfuture,Adv. Mater.12(2000)481–494.

[44]R.Jolly,S.Pairis,C.Petrescu,Comparativeageingofthreeelectroconductive polymers,J.Chim.Phys.95(1998)1400–1405.

[45]K.Lerch,F.Jonas,M.Linke,PropertiesandapplicationsofBaytron(PEDT),J. Chim.Phys.95(1998)1506–1509.

[46]J.Roncali,A.Yassar,F.Garnier,Electrosynthesisofhighlyconducting poly(3-methylthiophene)thinfilms,J.Chem.Soc.Chem.Commun.9(1988)581–582.

[47]C.P.Andrieux,J.M.Dumas-Bouchiat,J.M.Savéant,Kineticsofelectrochemical reactionsmediatedbyredoxpolymersfilms,J.Electranal.Chem.169(1984) 9–21.

[48]E.Vanhove,A.Tsopéla,L.Bouscayrol,A.Desmoulin,J.Launay,P.Temple-Boyer, Finalcappingpassivationlayersforlong-lifemicrosensorsinrealfluids,Sens. ActuatorsB178(2013)350–358.

[49]V.Castagnola,C.Bayon,E.Descamps,C.Bergaud,Morphologyandconductivity ofPEDOTlayersproducedbydifferentelectrochemicalroutes,Synth.Metals 189(2014)7–16.

[50]E. Tamburri, S.Orlanducci, F. Toschi,M.L. Terranova,D. Passeri, Growth mechanisms,morphologyandelectroactivityofPEDOTlayersproducedby dif-ferentelectrochemicalroutesinaqueousmedium,Synth.Metals159(2009) 406–414.

[51]J.Bobacka,A.Lewenstam,A.Ivaska,Electrochemicalimpedancespectroscopy ofoxidizedpoly(34-ethylenedioxythiophene)filmelectrodesinaqueous solu-tions,J.Electroanal.Chem.489(2000)17–27.

[52]L.Pigani,B.Zanfrognini,R.Seeber,PEDOT-modifiedmicroelectrodes, prepara-tion,characterisationandanalyticalperformances,Electroanalysis24(2012) 1340–1347.

[53]J.C.Gustafsson,B.Ledberg,O.Inganäs,Insituspectroscopicinvestigations ofelectrochromismandiontransportinapoly(34-ethylendioxythiophene) electrodeinasolidstateelectrochemicalcell,SolidStateIonics69(1994) 145–152.

[54]T.F.Otero,I.Cantero,H.Grande,Solventeffectsonthechargestorageabilityin polypyrrole,Electrochim.Acta44(1999)2053–2059.

[55]R.Kiefer,G.A.Bowmaker,R.P.Cooney,P.A.Kilmartin,J.Travas-Sejdic,Cation drivenactuation forfreestandingPEDOTfilmspreparedfrompropylene carbonate electrolytescontainingTBACF3SO3,Electrochim.Acta53(2008) 2593–2599.

[56]H.J.Ahonen,J.Lukkari,T.Hellstrom,J.Mattila,J.Kankare,Characterisationof poly(34-ethylenedioxythiophene)filmspolymerisedinaqueousmedia,Synth. Metals119(2001)119–120.

[57]S.Patra,K.Parai,N.Munichandraiah,Scanningelectronmicroscopystudiesof PEDOTpreparedbyvariouselectrochemicalroutes,Synth.Metals158(2008) 430–435.

[58]G.E.Poirier,M.J.Tarlov,Molecularorderingandgoldmigrationobservedin butanethiolself-assembledmonolayersusingscanningtunnellingmicroscopy, J.Phys.Chem.A99(1995)10966–10970.

[59]Y.C.Yang,Y.P.Yen,L.Y.Yan,S.L.Yau,K.Itaya,Elucidationofthedeposition pro-cessesandspatialstructuresofalkanethiolandarylthiolmoleculesadsorbed onPt(111)electrodeswithinsituscanningtunnellingmicroscopy,Langmuir 20(2004)10030–10037.

[60]P.Boulanger,J.,Polonovski,F.,Tayeau,P.MandelandG.Biserte,Biochimie Médicale,8thEdition,Masson,Paris,1971.

[61]M.C.Polidori,W.Stahl,O.Eichler,I.Niestroj,H.Sies,Profilesofantioxidantsin humanplasma,FreeRadic.Biol.Med.30(2001)456–462.

Biographies

FadhilaSekliBelaïdiwasbornonFebruary221980.ShereceivedherMaster’s Degreeinprocessandenvironmentalengineeringfromthe“InstitutNationaldes SciencesAppliquéesdeToulouse”(France)in2006.Shejoinedthe“Laboratoire deGénieChimique”(LGC)fromtheUniversityofToulouse(France)in2007.She isworkingonthedevelopmentofelectrochemicalmicrosensorsforchemicaland biochemicaldetection.

AurélieCivélaswasborninAix-en-Provence,France,onJanuary121989.Shejoined the“Laboratoired’Analyseetd’ArchitecturedesSystèmes”(LAAS)ofthe“Centre NationaldelaRechercheScientifique”(CNRS)ofToulousein2012foraoneyear trainingcourse.Sheworkedonthedevelopmentofelectrochemicalmicrosensors forchemicalandbiochemicaldetection.Shereceivedthedegreeinelectronic Engi-neeringfromthein“Chimie-Physique–Electronique”school(Lyon–France)in2014. ValentinaCastagnolawasborninBologna,Italyin1986.Shereceivedthemaster degreeinphotochemistryandmaterialchemistryfromtheUniversityofBologna,in 2011.Shejoinedthe“Laboratoired’Analyseetd’ArchitecturedesSystèmes”ofthe “CentreNationaldelaRechercheScientifique”(LAAS-CNRS),in2011asPhDStudent. Sheiscarryingoutherexperimentalresearchconcerningimplantablemicrodevices fortherecordingoftheneuralactivity.

A.TsopelawasborninAthens,Greecein1988.Shereceivedthemasterdegree inchemicalengineeringfromtheNationalTechnicalUniversityofAthens(NTUA -Greece),in2011.Shejoinedthe“Laboratoired’Analyseetd’Architecturedes Sys-tèmes”ofthe“CentreNationaldelaRechercheScientifique”(LAAS-CNRS),in2011 asPhDStudent.Sheiscarryingoutherexperimentalresearchinthedevelopment ofmicrosensorswithenvironmentalapplications.

LaurentMazenqwasbornonMay30,1982.HejoinedtheLaboratoired’Architecture etd’AnalysedesSystèmesoftheFrenchCentreNationaldelaRechercheScientifique (LAAS-CNRS)in2002.Sincethen,hehasbeenworkingonphotolithographyandon micro/nanotechnologiesprocessrealization.

PierreGroswasbornin1970.Hegraduatedinphysicalchemistryin1992and receivedhisPhDdegreeinChemicalEngineeringin1996attheUniversityPaul SabatierinToulouse.HeisnowProfessorinElectroanalyticalEngineeringinthe ChemicalEngineeringLaboratory(Toulouse-France).Heiscurrentlyworkingonthe developmentofelectrochemical(bio)sensors.

JérômeLaunaywasbornonMarch11,1975.Hereceivedthedegreein elec-tronicengineeringfromtheInstitutNationaldesSciencesAppliquéesdeToulouse” (France)in1998.Hejoinedthe“Laboratoired’Analyseetd’Architecturedes Sys-tèmes”fromtheFrench“CentreNationaldelaRechercheScientifique”(LAAS-CNRS) in1998andreceivedthePhDdegreefromthe“InstitutNationaldesSciences AppliquéesdeToulouse”(France)in2001.In2002,hebecamelectureratthe

(11)

UniversityofToulouse(France).Hisresearchactivitiesincludethedevelopment ofelectrochemicalmicrosensorsforthedetectioninliquidphase.

Pierre Temple-Boyer was born onOctober 25, 1966. He received his Engi-neer’sDegreeinelectronicengineeringfromthe“EcoleSupérieured’Electricité” (Paris–France)in 1990and his Master’sDegree inmicroelectronics from the

UniversityofToulouse (France)in1992.Hejoinedthe“Laboratoired’Analyse etd’ArchitecturedesSystèmes”(LAAS)fromtheFrench“CentreNationaldela RechercheScientifique”(CNRS)in1992andreceivedthePhDdegreefromthe “Insti-tutNationaldesSciencesAppliquéesdeToulouse”(France)in1995.Sincethen,as aCNRSresearcher,hehasworkedatLAASonthedevelopmentofphysicaland chemicalmicrosensors.

Figure

Fig. 1. Optical microscope images of (a) the integrated (Au-Pt-Ag/AgCl) electrochemical microcell (ElecCell) device and (b) the electrodeposited PEDOT film on the gold working electrode (solvent: acetonitrile)
Fig. 2. Cyclic voltammogramms of electropolymerization at gold working microelectrode in deaerated 0.1 mol/L TBAPC and 2.5 mmol/L EDOT (a) water-based (potential scan rate: 25 mV/s) and (b) acetonitrile-based solutions (potential scan rate: 250 mV/s).
Fig. 5. Differential pulse voltammograms (DPV) of (Au–Pt–Ag/AgCl) (plain line) and (Pt–Pt–Ag/AgCl) (dashed line) ElecCell in 0.1 M PBS pH 7.0 solution containing an equimolar AA/Dop/UA mixture (1 mmol/L).
Fig. 7 a–c represents the DPV responses of the PEDOT-modified microelectrodes to various concentrations of AA, Dop and UA, respectively
+2

Références

Documents relatifs

اهب مىهج يتلا ثاءاغحالؤ ًم تغىمجم يه ( : يلً امي تُثابجلا تبانغلل لماش لٍغػح ءاؿغب ًٌمً وبؾ امم ثامىلػالإاو ثادٍغطخلا تخص ًم ضيإخلل تُثابجلا تبانغلاب

prévention et le traitement des symptômes de sevrage sévères, mais les données concer- nant leur efficacité sont plus limitées et moins univoques que pour les benzodiazépines, et

[r]

It is difficult to define a test case using observations alone. There are many ambiguities in terms of how an instructor might want the assignment to be graded. MicroGrader test

Cette tfiche vCrifie le logiciel de traitement de donnCes ou de nomenclatures. En gCnCral, un progi- ciel CDAO compte des entitks ou des cellules en vue de produire une

We now consider our nonparametric models of endogenous selection which allow for non- monotonicity of the instrumental variables to handle a missing mechanism corresponding to R

Une organisation d'agents selon l'adja en e dans l'image. Cette explora- tion a permis aux agents de dé ouvrir leurs voisins dans l'image et ainsi de onstruire les relations d'a

In this paper, the practical lateral resolution of an energy- filtered XPEEM instrument imaging core level electrons is measured using a cross-sectioned epitaxial