• Aucun résultat trouvé

MICROSPECTROSCOPY

N/A
N/A
Protected

Academic year: 2021

Partager "MICROSPECTROSCOPY"

Copied!
14
0
0

Texte intégral

(1)

HAL Id: jpa-00224639

https://hal.archives-ouvertes.fr/jpa-00224639

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MICROSPECTROSCOPY

P. Piera_ski, B. Pansu

To cite this version:

P. Piera_ski, B. Pansu. MICROSPECTROSCOPY. Journal de Physique Colloques, 1985, 46 (C3), pp.C3-281-C3-293. �10.1051/jphyscol:1985322�. �jpa-00224639�

(2)

JOURNAL DE PHYSIQUE

Colloque C3, suppl6ment a u n03, Tome 46, mars 1985 page C3-281

MICROSPECTROSCOPY

P. p i e r a h s k i a n d B. P a n s u

Laboratoire de Physique des Solides, Universi t& Paris-Sud, B8t

.

51 0 ,

91 405 Orsay Ceder, France

Resume - Nous proposons une n o u v e l l e methode d 1 6 t u d e des C r i s t a u x ColloFdaux, l a q u e l l e c o n s i s t e a u t i l i s e r un microscope r 6 f l e c h i s s a n t a s s o c i e avec un mo- nochromateur. Nous avons e n r e g i s t r e des s p e c t r e s des r e f l e t s de Bragg p r o - d u i t s p a r des m o n o c r i s t a u x C.C. e t c.f.c. en c o e x i s t e n c e dans un m6me 6chan- t i l l o n . Nous d i s c u t o n s egalement l e s f r a n g e s d ' i n t e r f e r e n c e p r e s e n t e s s u r l e s s p e c t r e s p r o d u i t s p a r l e s m o n o c r i s t a u x e t i n d i q u o n s comment l e s u t i l i s e r pour d e t e r m i n e r l e s formes c r i s t a l l in e s .

A b s t r a c t - We propose a new niethod o f s t u d y i n g C o l l o i d a l C r y s t a l s . The method c o n s i s t s i n an a s s o c i a t i o n o f a r e f l e c t i n g microscope w i t h a monochromatic i l l u m i n a t i o n . U s i n g t h i s e x p e r i m e n t a l set-up we o b t a i n e d t h e s p e c t r a o f Bragg r e f l e c t i o n s f r o m bcc and f c c s i n g l e c r y s t a l s c o e x i s t i n g i n t h e same sample o f C o l l o i d a l C r y s t a l . tle a l s o p o i n t o u t t h a t shapes o f s i n g l e c r y s t a l s , i n e q u i - l i b r i u m w i t h t h e l i q u i d phase, can be deduced f r o m Pendelltisung f r i n g e s o c c u r - i n g i n s p e c t r a o f Bragg r e f l e c t i o n s .

I - INTRODUCTION

I

-

1

-

I r i d e s c e n c e - a consequence o f a c r y s t a l l i n e o r d e r on c o l l o i d a l s c a l e s ( I 0 ) Aqueous o r nonaqueous suspensions o f p o l y m e r i c , v i r a l o r m i n e r a l p a r t i c l e s , ( 2 " ) Opals, and

( 3 " ) B l u e Phases o f c h o l e s t e r i c l i q u i d c r y s t a l s

a r e t h r e e examples o f systems, where l o n g - r a n g e c r y s t a l l i n e o r d e r o c c u r s on c o l l o i - d a l scales. Although t h i s o r d e r o c c u r s f o r d i f f e r e n t reasons i n t h e s e t h r e e examples, i t s consequences a r e s i m i l a r so f a r as o p t i c a l p r o p e r t i e s o f t h e s e systems a r e con- cerned. The " i r i d e s c e n c e " o f l a r g e samples ( o f a t e s t - t u b e s i z e , shown i n F i g . 1) i s p r o b a b l y t h e most obvious o f t h e s e p r o p e r t i e s and has been mentioned i n a number o f papers on c o l l o i d a l suspensions o r on opals, which a r e a v a i l a b l e i n such l a r g e quan- t i t i e s .

...

W

F i g . 1 - I r i d e s c e n c e o f l a r g e samples o f c o l l o i d a l c r y s t a l s : shadowed

c r y s t a l l i t e s " s p a r k l e w i t h f i r e s o f pure s p e c t r a l c o l o r " .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985322

(3)

C3-282 JOURNAL DE PHYSIQUE

Blue Phases, on t h e o t h e r hand, have been t r a d i t i o n a l l y studied i n very small samples of l i q u i d c r y s t a l s and t h i s a d j e c t i v e has not been used t o q u a l i f y t h e i r external aspect. On1 y very r e c e n t l y , i n experiments on v i s c o e l a s t i c p r o p e r t i e s of Blue Phases / I / , such l a r g e , t e s t - t u b e - s i z e samples have been slowly cooled from t h e i s o t r o p i c phase and t h e occurence of small c r y s t a l 1 i t e s , spark1 ing with f i r e s of pure s p e c t r a l c o l o r , was noted.

The i r i d e s c e n c e of a given s p e c t r a l c o l o r is a r e s u l t of Bragg r e f l e c t i o n s of v i s i b l e l i g h t on a p a r t i c u l a r system of c r y s t a l planes ( h , k , l ) . The use of l i g h t d i f f r a c t i o n f o r s t r u c t u r a l s t u d i e s of c o l l o i d a l c r y s t a l s ( I o t o 3") i s t h e r e f o r e just as common a s t h e use of X-rays t o study t h e s t r u c t u r e of ordinary c r y s t a l s .

I - 2 - Light d i f f r a c t i o n experiments

Numerous papers d e s c r i b e l i g h t d i f f r a c t i o n experiments / 2 , 3 / , which i n t h e i r p r i n - c i p l e s ressemble X-ray d i f f r a c t o m e t r y (Fig. 2) : a collimated source of l i g h t (X- rays) i s i n c i d e n t on a sample and t h e i n t e n s i t y I ( A ) of t h e r e f l e c t e d l i g h t (X-rays) i s measured a s a function of t h e wavelength A , f o r d i f f e r e n t incidence ( e i n ) and r e f l e c t i o n (aout) angles.

SAMPLE

h

FROM MONOCHROMATOR TO DETECTOR

Fig. 2 - Typical c o n f i g u r a t i o n of a l i g h t d i f f r a c t o m e t e r used f o r s t u d i e s of Colloidal c r y s t a l s .

In t h i s arrangement, t h e diameter of t h e l i g h t beam, a s i t p e n e t r a t e s i n t o t h e sample, i s u s u a l l y much l a r g e r than t h e dimensions of c r y s t a l l i t e s and t h e s p e c t r a I ( A ) may contain several Bragg p i c s correspondin? t o c r y s t a l l i t e s of d i f f e r e n t o r i e n t a t i o n s . The i n t e r p r e t a t i o n of d a t a from p o l y c r y s t a l l i n e samples i s d i f f i c u l t when t h e crys- t a l s t r u c t u r e i s not known. For example, an unambiguous d i s t i n c t i o n between S . C . and b.c.c. l a t t i c e s can only be nade when more than seven Bragg p i c s a r e p r e s e n t on t h e (X-ray) spectrum I (A). The d i f f i c u l t y of i n t e r p r e t a t i o n of t h e (1 i g h t ) s p e c t r a I ( h ) of Colloidal C r y s t a l s i s even l a r g e r due t o t h e f a c t t h a t t h e r e f r a c t i v e index n(h) i n t h e Bragg formula :

2dhk1 s i n e = Ahkl/n(x)

cannot be s e t 1, a s i n t h e case of X-rays /4/. In a l l t h r e e types ( I o t o 3') of Colloidal C r y s t a l s , t h e average r e f r a c t i v e index n(A) i s of t h e o r d e r of 1.3 t o 1.5 and i t s dependence on h cannot be neglected.

(4)

I - 3 - O p t i c a l microscopy

An o p t i c a l microscope i s a n o t h e r t o o l , w h i c h has been used f r e q u e n t l y t o s t u d y C o l l o - i d a l C r y s t a l s . Because i t s r e s o l u t i o n i s p r a c t i c a l l y l i m i t e d t o a b o u t 0.3 pm, a d i r e c t d e t e r m i n a t i o n o f t h e c r y s t a l s t r u c t u r e f r o m p o s i t i o n s o f i n d i v i d u a l p a r t i c l e s i s r e - served t o t h e case o f suspensions o f l a r g e (> 0.3 ym i n d i a m e t e r ) polymer o r m i n e r a l p a r t i c l e s . I n a l l o t h e r cases, t h e image seen i n t h e microscope i s a r e s u l t o f i n t e r f e r e n c e s o f w a v e l e t s f r o m many p a r t i c l e s ( u n i t c e l l s ) . Due t o t h e l o n g - r a n g e c r y s t a l l i n e o r d e r , t h e s e i n t e r f e r e n c e s g i v e r i s e t o a f o r m a t i o n o f monochromatic c o l o u r s . The u s e f u l i n f o r m a t i o n a b o u t t h e c r y s t a l s t r u c t u r e i s , t h e r e f o r e , c o n t a i n e d i n n a r r o w bands o f t h e v i s i b l e spectrum, c o r r e s p o n d i n g t o Bragg r e f l e c t i o n s o f wave- l e n g t h hhkl f r o m d i f f e r e n t systems o f c r y s t a l p l a n e s ( h k l ) .

When a t u n g s t e n lamp i s used as t h e l i g h t source i n t h e microscope, t h i s u s e f u l i n - f o r m a t i o n w i l l be masked by s c a t t e r i n g o f a l l o t h e r wavelengths ( A

+

hhkl) on c r y s - t a l i m p e r f e c t i o n s such as phonons, d i s l o c a t i o n s , g r a i n boundaries o r i m p u r i t i e s and on d i f f e r e n t i n t e r f a c e s i n t h e o p t i c a l system ( l e n s e s , m i r r o r s , g l a s s p l a t e s , e t c ) . I t i s c l e a r t h a t t h i s l a r g e band " n o i s e " can c o m p l e t e l y mask t h e " i n f o r m a t i o n " c a r - r i e d by Bragg r e f l e c t i o n s .

I - 4 - P r i n c i p l e o f m i c r o s p e c t r o s c o p y

The aim o f t h e p r e s e n t paper i s t o o u t l i n e p r i n c i p l e s o f an a s s o c i a t i o n o f an o p t i c a l microscope w i t h a s p e c t r o m e t e r (monochromator) i n one e x p e r i m e n t a l set-up, which f o r b r i e f n e s s , can b e c a l l e d a microspectroscope. T h i s s e t - u p was b u i l t i n a manner t o correspond t o f o l l o w i n g o p e r a t i n g f e a t u r e s :

( I 0 ) - The monochromatic i l l u m i n a t i o n s h o u l d b e made t h r o u g h an o b j e c t i v e o f a m e t a l l u r g i c a l ( r e f l e c t i n g ) microscope, i n o r d e r t o a l l o w t o s e l e c t one c r y s t a l 1 i t e o f some p a r t i c u l a r o r i e n t a t i o n ( o r o f some p e c u l a r shape) and t o measure t h e spectrum o f l i g h t r e f l e c t e d by t h i s p a r t i c u l a r c r y s t a l l i t e .

( 2 " ) - D i r e c t o b s e r v a t i o n s s h o u l d be p o s s i b l e under monochromatic i l l u m i n a t i o n i n o r d e r t o e l i m i n a t e t h e broad-band " n o i s e " mentioned i n s e c t i o n 1-3.

( 3 " ) - We expected a l s o t h a t t h e monochromatic i l l u m i n a t i o n w i l l r e v e a l c r y s t a l d e f e c t s such as g r a i n b o u n d a r i e s and screw o r edge d i s l o c a t i o n .

The s e t - u p d e s c r i b e d i n t h e n e x t s e c t i o n , s a t i s f i e d t h e s e requirements. I t s p r a c t i c a l performances have been t e s t e d and a r e r e p o r t e d i n s e c t i o n 11-2. The use o f t h e m i c r o - s p e c t r o s c o p e i s i l l u s t r a t e d i n s e c t i o n 111 by two examples :

( I 0 ) - Coexistence between f.c.c. and b.c.c. c r y s t a l l i t e s i n suspensions o f p o l y s t y - r e n e spheres and

(2') - "PendellSsung" f r i n g e s i n c r y s t a l 1 i t e s o f f i n i t e t h i c k n e s s .

I n c o n c l u s i o n , ( S e c t i o n I V ) we w i l l i n d i c a t e o t h e r problems where t h e use o f t h e m i c r o s p e c t r o s c o p y has been s u c c e s s f u l o r i s p r o m i s s i n g .

I 1 - EXPERIMENTAL SET-UP I 1 - 1 - C o n s t r u c t i o n

A schema shown i n F i g . 3 d e p i c t s t h e p r i n c i p a l elements o f t h e e x p e r i m e n t a l set-up, d i s p o s e d on a g r a n i t o p t i c a l t a b l e ( f r o n M i c r o c o n t r B l e ) : t h e microscope i s o f an i n v e r t e d type, d e s t i n a t e d m a i n l y f o r o b s e r v a t i o n s b y l i g h t r e f l e c t i o n (Olympus PME). A t u n g s t e n lamp ( a p a r t o f t h e s t a n d a r d equipment o f t h e microscope) i s used as t h e l i g h t source. A small monochromator (Jobin-Yvon 20 VIS) i s o f h o l o g r a p h i c g r a t i n g t y p e and i s equiped f o r n u m e r i c a l c o n t r o l o f t h e wavelength A. The monochro- m a t o r and a n imaging l e n s L1 ( a c h r o m a t i c d u b l e t , f = 20 cm) a r e disposed on an

(5)

C3-284 JOURNAL DE PHYSIQUE

o p t i c a l bench (X95 from ~ i c r o c o n t r 6 l e ) which can be placed a t d i f f e r e n t heights, con- venient f o r i l l u m i n a t i o n o f t h e sample from above (transmission) o r from below ( f o r r e f l e c t i o n s t u d i e s ) . I f necessary, t h e sample can a l s o be i l l u m i n a t e d by a He-Ne l a s e r beam.

MONOCHROMATOR

6 ,SAMPLE LAMP

Fig. 3 - General view o f the microspectrometer.

7

The o p e r a t i o n o f t h i s set-up i s d e t a i l e d i n Fig. 4 :

- CHOPPER MONOCHROMATOR LAMP

-

f I - ~ ~ ~ - [ & ]

LOCK- IN

Fig. 4 - Scheme e x p l a i n i n g p r i n c i p l e s o f o p e r a t i o n o f the microspectrometer

i l l u m i n a t i o n : the w h i t e l i g h t beam from t h e lamp i s focused onto t h e i n p u t s l i t Sin o f t h e monochromator. The images o f Sin, formed i n t h e plane o f t h e o u t p u t s l i t Sout by t h e s p h e r i c a l g r a t i n g , are dispersed alono t h e h o r i z o n t a l a x i s A ( F i g . 5). The o u t p u t s l i t SOut i s then p r o j e c t e d through a l e n s L1 i n t o the plane o f t h e f i e l d diaphragm o f t h e microscope. F i n a l l y , the condenser and t h e o b j e c t i v e p r o j e c t t h e image o f Sout onto t h e plane o f t h e sample. For t h e o u t p u t s l i t w i d e l y open, t h e area o f .the sample i l l u m i n a t e d by t h i s means has roughly a form o f a trapeze (ABCD i n Fig. 5) and t h e c o l o u r o f 1 ig h t v a r i e s along t h e a x i s A . Using t h e f i e l d diaphragm

(6)

o r by changing t h e o u t p u t s l i t t o a narrower one ( f . ex. EFGH i n F i g . 5 ) , one can s e l e c t a v e r y sniall a r e a o f t h e sample. T h i s i l l u m i n a t e d area ( f . ex. ABCD o r EFGH

F i g . 5 - Area o f t h e sample, i l l u m i n a t e d by t h e l i g h t beam f r o m t h e monochromator, as seen i n t h e microscope.

i n F i g . 5 ) l o o k s ( i n t h e microscope) a l w a y s . t h e same when one changes t h e o b j e c t i v e b u t i t s r e a l dimensions a r e i n f a c t i n v e r s e l y p r o p o r t i o n a l t o t h e m a g n i f i c a t i o n s o f o b j e c t i v e s (see s e c t i o n 11.2).

D e t e c t i o n : t h e sample, i l l u m i n a t e d w i t h t h e monochromatic l i g h t , can be observed t h r o u g h t h e e y e p i e c e o r , a l t e r n a t i v e l y , t h e r e a l image o f t h e sample can be formed i n t h e p l a n e o f t h e p h o t o g r a p h i c camera. A photodiode, which i s s i t u a t e d t h e r e , mea- sures t h e i n t e n s i t y o f l i g h t IpD o f a p o r t i o n o f t h i s r e a l image, which s u r f a c e area and shape a r e s i m p l y t h o s e o f t h e p h o t o s e n s i t i v e a r e a o f t h e p h o t o d i o d e ( f o r example a c i r c l e of s u r f a c e . 1 cmZ). I n most cases, when one wants t o o b t a i n a quasi-normal i n c i d e n c e o f t h e i l l u m i n a t i n g beam, t h e a p e r t u r e diaphragm o f t h e microscope i s a l m o s t c l o s e d and, t h e r e f o r e , t h e l i g h t i n t e n s i t y IpD i s v e r y low. A synchroneous d e t e c t i o n (EGG 5206) was a p p l i e d t o measure a c c u r a t e l y t h e s e s m a l l l i g h t i n t e n s i t i e s . I 1 - 2 - S p e c i f i c a t i o n s

Wavelength range : t h e c h o i c e o f t h e elements o f t h e m i c r o s p e c t r o s c o p e was made i n f u n c t i o n o f i t s a p p l i c a t i o n f o r o b s e r v a t i o n and measurements u s i n g v i s i b l e 1 ig h t ; t h e l i g h t s o u r c e i s a t u n g s t e n lamp, t h e monochromator p e r m i t s t o scan between 200 and 900 nm, t h e p h o t o d e t e c t o r i s a s i l i c o n photodiode. The o v e r a l l s e n s i t i v i t y o f t h e m i c r o s p e c t r o s c o p e depends on s p e c i f i c a t i o n s o f t h e s e elements as w e l l as on c h a r a c t e r i s t i c s o f mu1 t i p l e lenses, m i r r o r s o r g l a s s p l a t e s i n t h e t r a j e c t o r y o f t h e l i g h t . A p r a c t i c a l t e s t o f t h e s e n s i t i v i t y was made b y p l o t t i n g t h e l i g h t i n d e n s i t y , measured b y t h e photodiode, when t h e sample was r e p l a c e d by a m e t a l 1 i c m i r r o r . The c o r r e s p o n d i n ? p l o t , shown i n F i g . 6a, has a maximum a t 590 nm and f a l l s o f f s y m e t r i - c a l l y t o a b o u t 10 % o f i t s maximum v a l u e a t

bin

= 400 nm and ,,,A = 800 nm.

(7)

C3-286 JOURNAL DE PHYSIQUE

P a r a s i t i c l i g h t : The l i g h t i n t e n s i t y , measured by t h e photodiode ( i n t h e c o n f i g u r a - t i o n o f F i g . 4 ) , has two c o n t r i b u t i o n s : t h e u s e f u l ' o n e , f r o n t h e sample (whatever i t i s ) and t h e p a r a s i t i c one, f r o m r e y l e c t i o n s a t d i f f e r e n t i n t e r f a c e s i n t h e o p t i c a l path. Two t e s t s o f a l e v e l o f t h i s p a r a s i t i c l i g h t were made : f i r s t o f a l l , t h e

sample i n t h e g l a s s c o n t a i n e r was r e p l a c e d by p u r e water. The i n t e n s i t y o f l i g h t I ~ D was a b o u t 7 % ( f i g . 6b) as compared w i t h t h e r e f l e c t i o n by t h e m i r r o r . I n t h e second

t e s t , t h e g l a s s c o n t a i n e r was c o m p l e t e l y removed, so t h a t o n l y t h e o p t i c a l system c o n t r i b u t e d t o I ~ D . The i n t e n s i t y IPD measured i n such a c o n d i t i o n , was n e g l i g i b l e

( f i g . 6 c ) so we have concluded t h a t t h e r e f l e c t i o n a t t h e l o w e r s u r f a c e o f t h e g l a s s c o n t a i n e r was t h e p r i n c i p a l s o u r c e o f l i g h t i n t h e p l o t o f f i g . 6h. The o b v i o u s way t o suppress t h i s p a r a s i t i c r e f l e c t i o n c o n s i s t s i n u s i n g an o i l immersion o b j e c t i v e . I n p r a c t i c e , a 40X o b j e c t i v e (Olympus AP040) has been f o u n d t o work p r o p e r l y . S p e c t r a l r e s o l u t i o n : The d i s p e r s i o n power o f t h e monochronator i n t h e p l a n e o f t h e o u t p u t s l i t Sout i s 4 nm/mm. U s i n g a s l i t o f w i d t h 0.5 mm (EFGH i n f i g . 5 ) t h e expected r e s o l u t i o n o f t h e m i c r o s p e c t r o s c o p e s h o u l d be 2 nm. We have t e s t e d t h i s expected r e s o l u t i o n by r e p l a c i n g t h e t u n g s t e n lam? b y a He-Ne l a s e r . The p l o t , enre- g i s t e r e d u s i n g t h e l a s e r i l l u m i n a t i o n , i s shown i n F i g . 6d. As expected, i t i s o f a t r i a n g u l a r shape and i t s h a l f w i d t h i s 2 nm.

S p a t i a l r e s o l u t i o n : The dimensions W ' o f t h e a r e a o f t h e sample, i l l u m i n a t e d and observed t h r o u g h t h e o b j e c t i v e , depend on c h a r a c t e r i s t i c s o f t h e vihole o p t i c a l sys- tem ( l e n s L1, condenser and o b j e c t i v e ) w h i c h forms t h e image o f Sout i n t h e p l a n e o f t h e sample. A s i m p l e t e s t has shown t h a t , i n p r a c t i c e , W ' % W/M, where M i s a no- m i n a l m a g n i f i c a t i o n o f t h e o b j e c t i v e and W i s t h e w i d t h o f Sout.

F i g . 6

-

T e s t s o f performances o f t h e set-up : p l o t s o f t h e i n t e n s i t y I ( X ) measured by t h e p h o t o d i o d e : ( a ) t h e g l a s s r e s e r v o i r w i t h t h e sample was r e p l a c e d by a m e t a l - l i c m i r r o r , ( b ) t h e sample was r e p l a c e d h y p u r e water, ( c ) t h e r e s e r v o i r w i t h t h e sample c o m p l e t e l y removed, ( d ) same as i n ( a ) b u t w i t h t h e i l l u m i n a t i o n b v a He-Ne l a s e r bean i n s t e a d o f t h e t u n g s t e n lamp, ( e ) Bragg r e T l e c t i o n f r o n a t h i c k b.c.c.

monocrystal o r i e n t e d w i t h (110) planes / / S.

U s i n g t h e o i l immersion o b j e c t i v e , M = 40 x, and t h e n a r r o w e s t o u t p u t s l i t (W=0.5 mm) one g e t s W ' = 12.5 Dm. W ' can be c o n s i d e r e d as a measure of t h e s p a t i a l r e s o l u t i o n of t h e m i c r o s p e c t r o s c o p e . I n o t h e r words, u s i n g t h e microscpectroscope, rre can measure s p e c t r a o f l i g h t r e f l e c t e d ( o r t r a n s m i t t e d ) by c r y s t a l l i t e s as s m a l l as 12,5 urn.

(8)

I t i s c l e a r t h a t t h i s s p a t i a l r e s o l u t i o n r e q u i r e s t h e use of a f i n i t e a p e r t u r e A % X / W 1 . Using Bragg r e l a t i o n ( I ) , one e s t i m a t e s t h a t , due t o t h e f i n i t e a p e r t u r e A , t h e r e f l e c t i o n p i c s w i l l have an "instrumental width" 6X/X % ( A / W ' ) ~ . With X = 500 nm and W ' = 12.5 11m one g e t s 6Xinstr. % 1 nm which i s l e s s than t h e s p e c t r a l width of t h e monochromator ( 6 ~ ) ~ ~ ~ . = 2 nm

111 - APPLICATIOI.IS OF- THE MICROSPECTROSCOPE 111.1. b.c.c.-f.c.c. phase coexistence

I t has been o f t e n mentioned /5,6,7/ t h a t in c e r t a i n suspensions of srnall polystyrene p a r t i c l e s (0.1 Dm i n diameter) dispersed i n water, h.c.c.-type c r y s t a l s may c o e x i s t with f.c.c.-type c F y s t a l s . Thus f a r , t h i s r e s u l t was obtained e i t h e r from d i f f r a c - t i o n p a t t e r n s , of a l a s e r bean!, from p o l y c r y s t a l l i n e samples /5/ o r from Kossel diagrams /7/. In both c a s e s , the s t u d i e s required t h e presence of l a r g e d e f e c t l e s s c r y s t a l 1 i t e s .

The microspectroscopy not only o f f e r s p o s s i b i l i t y of n!onitoring t h e processus of c r y s t a l growth b u t , a l s o , p e r n i t s an immediate d i s t i n ~ t i o n between t h e c r y s t a l l i t e s of d i f f e r e n t s t r u c t u r e s .

Let us consider an example of a sample shown i n f i g . 8. This suspension wade of polystyrene spheres 0.1 um i n diameter, dispersed i n water a t concentration

n = 9 x IOl3 part/cm3 was c r y s t a l l i z e d , f o r t h e f i r s t time, using an i o n i c exchange r e s i n and, then, was poored in a g l a s s r e s e r v o i r shoern i n f i g . 7. The temperature of t h e sample was p r o g r e s s i v e l y r a i s e d u n t i l a complete me1 t i n g of t h e c o l l o i d a l c r y s t a l occured and, t h e n , was s l o ~ r l y cooled down. The melting of t h e c o l l o i d a l c r y s t a l and i t s subsequent r e c r y s t a l l i z a t i o n has a l s o been obtained a t c o n s t a n t temperature by t h e following method : a very small c r y s t a l of saccharose was dropped i n t h e sample. Once f a l l e n a t t h e bottom of t h e r e s e r v o i r , t h e c r y s t a l disolved slowly. The saccharose d i f f u s e d slowly and, where i t s concentration n s was l a r g e r then some c r i t i c a l value n g r l t , t h e melting of t h e c o l l o i d a l c r y s t a l occured. Once t h e c r y s t a l of saccharose was completely d i s s o l v e d , t h e concentration ns decreased progressively due t o t h e continuing d i f f u s i o n . For ns

<

n E r l t , t h e r e c r y s t a l l i z a t i o n occured i n t h e same manner a s under t h e progressive cooling.

Fig. 7 - Cell used f o r t h e c o n t r o l l e d growth of t h e f c c and bcc c r y s t a l s : c - water c i r c u l a t i o n

The r e c r y s t a l l i z a t i o n always s t a r t e d a t t h e g l a s s s u r f a c e S so t h a t t h e c r y s t a l l i t e s had p r e f e r e n t i a l o r i e n t a t i o n s with r e s p e c t t o S. Figs 8 a and b show two views of t h e same portion of t h e sample, obtained under monochromatic i l l u m i n a t i o n of d i f f e r e n t wavelengths Xa % 527 nm and X b % 542 nm. As t h e c o n t r a s t i s reversed in t h e s e two

(9)

C3-288 JOURNAL DE PHYSIQUE

photographs, i t i s c l e a r t h a t t h e sample i s made o f two types o f c r y s t a l l i t e s g i v i n g Bragg r e f l e c t i o n s o f d i f f e r e n t wavelengths ha and Xb.

Fig. 8

-

Coexistence o f f c c and bcc c r y s t a l s . The same sample under monochromatic i l l u m i n a t i o n o f d i f f e r e n t wavelengths : (a) Xa = 527

+

5 nm, (b) Ab = 542 2 5 nm o b j e c t i v e 5x

The same r e v e r s a l o f t h e c o n t r a s t i s observed i n f i g s 9 a and b, which were taken u s i n g a h i g h e r m a g n i f i c a t i o n . The s i z e o f t h e l a r g e c r y s t a l l i t e i s about 200 pm.

I n o r d e r t o measure p r e c i s e l y t h e wavelengths Xa and Xb o f Bragg r e f l e c t i o n s from t h e two types o f c r y s t a l l i t e s , t h e f i e l d diaphragme o f t h e microscope was closed i n a manner t o s e l e c t one c r y s t a l l i t e ( o f type a o r b). The i n p u t and o u t p u t s l i t s were s e t t o t h e i r minimum widths (0.5 m) and t h e a p e r t u r e diaphragme was almost closed. The Bragg spectra, p l o t t e d i n such conditions, are shown i n f i g . 10. One measures

XFX

= 527 nm and

XrX

= 542 nm (i 2 nm).

L e t us suppose now t h a t t h e c r y s t a l l i t e s o f t y p e a have t h e b.c.c. s t r u c t u r e and a r e oriented, as u s u a l l y /7/, w i t h t h e i r (110) planes p a r a l l e l t o S. As these c r y s t a l l i t e s c o e x i s t w i t h t h e c r y s t a l l i t e s b, we can suppose t h a t t h e i r d e n s i t i e s n a r e

s i m i l a r ( t h e same). If t h e c r y s t a l l i t e s b had f.c.c. s t r u c t u r e and were o r i e n t e d w i t h t h e i r planes (111 p a r a l l e l t o S, from nbcc = nFcc one would g e t :

. i i n

A f ~ ~

This t h e o r e t i c a l value i s i n agreement w i t h t h e r a t i o Xa/Xb = 0.972 measured i n f i g . 10. This agreement was v e r i f i e d i n many o t h e r samples, each time, when t h e coexistence o f two types o f c r y s t a l s occured. The i d e n t i f i c a t i o n o f bcc and f c c s t r u c t u r e s as w e l l as t h e p e c u l a r o r i e n t a t i o n s ( ( l l ~ ) ~ ~ ~ , (1 11 lf c c / / s ) o f c r y s t a l s

\rere confirmed by observation of defects c h a r a c t e r i s t i c o f these s t r u c t u r e s .

(10)

Fig. 9

-

Same as i n f i g . 8 b u t w i t h t h e o b j e c t i v e 20x. One can d i s t i n g u i s h i n d i v i d u a l dislocations i n low angle g r a i n boundaries

Fig. 10

-

Spectra o f l i g h t r e f l e c t e d by i n d i v i d u a l c r y s t a l l i t e s : ( a ) b.c.c. c r y s t a l :

XY;

= 527 nm, (b) f .c.c. c r y s t a l : A";; = 542 nm.

(11)

C3-290 JOURNAL DE PHYSIQUE

This p a r t i c u l a r a p p l i c a t i o n o f t h e microspectroscope t r e a t e d as an example, r a i s e s an i n t e r e s t i n g q u e s t i o n concerning t h e r e l a t i o n s h i p between t h e s t r u c t u r e o f a c r y s t a l and and t h e growth r a t e . Indeed, r e have observed t h a t t h e b.c.c. cr:lstals have grown p r e f e r e n t a i l l y under r a p i d c o o l i n a from t h e i s o t r o p i c phase, w h i l e t h e growth o f t h e f.c.c. c r y s t a l s always occured under v e r y slo\.r c o o l i n g . This problem i s o u t o f t h e scope o f t h e p r e s e n t paper and w i l l be considered elsewhere /8/.

111.2. "Pendell6sung" f r i n g e s

During t h e growth o f bcc o r f c c c r y s t a l s , we have observed, under monochromatic i l l u - n i n a t i o n , systems o f f r i n g e s (shown i n f i g . 11) "decorating" each c r y s t a l l i t e . A t f i r s t i n s i g h t these f r i n g e s were s i m i l a r t o those which would occur i n a t h i n l i q u i d l a y e r , where two l i g h t waves, r e f l e c t e d a t two i n t e r f a c e s o f t h e l a y e r , i n t e r f e r e . I f t h e f r i n g e s shown i n f i g . 11 were produced by an i n t e r f e r e n c e o f two \.laves, t h e i r o r d e r p should be r e l a t e d t o t h e l o c a l thickness h and t o t h e wavelength X by t h e formula :

p = 2hn ; where n i s t h e r e f r a c t i v e index ( s 1.33) ( 2 )

Fig. 11

-

bcc c r y s t a l 1 i t e s "decorated by "Pendel l6sung" f r i n g e s .

As X % 500 nm, according t o t h i s r e l a t i o n , t h e c r y s t a l 1 i t e "a" i n f i g . 11 would have t h e t h i c k n e s s h = 0.564 vm, which i s j u s t enough t o c o n t a i n two l a y e r s o f p a r t i c l e s . Obviously, t h i s was n o t t r u e , because Bragg r e f ! e c t i o n g i v e n by t h i s c r y s t a l l i t e was v e r y i n t e n s e i n d i c a t i n g a presence of a t l e a s t few dozens o f c r y s t a l planes. Another experimental f a c t was a l s o i n c o n t r a d i c t i o n w i t h t h e equation (2) :

I n f i o . 12 a t o d, we show another b.c.c. c r y s t a l l i t e , i l l u n i n a t e d w i t l r t h e m o n o c h r o ~ t i c l i g h t o f d i f f e r e n t wavelengths A. For X = Amax t h e r e a r e no f r i n g e s a t a l l , w h i l e

f o r X = Xmax + 15 nm, two c o n c e n t r i c f r i n g e s decorate t h e c r y s t a l l i t e . It i s c l e a r t h a t such a m o d i f i c a t i o n o f t h e i n t e r f e r e n c e p a t t e r n cannot be explained by form.

(2).

We have found t h a t t h e f r i n g e s i n Figs. 11 and 12 r e s u l t from t h e i n t e r f e r e n c e o f waves r e f l e c t e d by l a r g e b u t f i n i t e number M o f c r y s t a l l i n e l a y e r s (110). This

"Pendell6sung" phenomenon i s e x p l a i n e d simply i n r e f /9/ : t h e i n t e n s i t y I o f l i q h t r e f l e c t e d from M c r y s t a l planes, d i s t a n t by dbCc, i s g i v e n by : 110

where Ak = 2.k0 = 2.7X/nr 2n

(12)

Fig. 12

-

bcc crystallites under monochromatic illumination of different wavelength X = XMX + 6X. ( a ) 6 X = 0, (b) 6 X = 5 nm, ( c ) AX = 10 nm, (d) 6 X = 15 nm.

110

(13)

C3-292 JOURNAL DE PHYSIQUE

Let X = X

Bragg - 61, where 6X/X

Bragg

<<

1. One g e t s :

and

s i n 2 ME I %

For a given E, i n t h e c r y s t a l l i t e o f thickness h = h(x,y) o r M = Pl(x,y), t h e

i n t e n s i t y of t h e r e f l e c t e d l i g h t w i l l show minima corresponding t o f r i n g e s of o r d e r p, f o r :

110

2n

'bee

M(X,Y) = p(x,y) =

.

p(x,y) ( 6 )

with 6X % 10 nm, Abcc 110 = 500 nm and p = 1 ( i n f i g . 12 c ) , one c a l c u l a t e s M = 50.

Knowing t h e p a t t e r n p(x,y) one can c a l c u l a t e t h e l o c a l thickness h ( x , y ) i n t h e whole c r y s t a l l i t e and, by t h i s means, determine i t s three-dimensional h a b i t .

In p a r t i c u l a r c a s e s . o f f i g s 11 and 12, we have concluded t h a t t h e i n t e r f a c e c r y s t a l / melt must have been smooth and rough and t h a t t h e o v e r a l l shape of t h e c r y s t a l ressembl ed a pl ane-convex 1 ens. ( f i g

.

13)

4 .

MELT

, CRYSTAL \,

Fig. 13

-

Shape of a bcc c r y s t a l l i t e , grown on a g l a s s s u r f a c e , i n equilibrium with t h e melted phase.

The l o c a l t h i c k n e s s h(x,y) can a l s o be determined even when t h e whole p a t t e r n p(x,y) i s not known. This can be done by nieasuring t h e spectrum I ( x ) of l i g h t r e f l e c t e d from a very small (compared t o i n t e r f r i n g e d i s t a n c e s ) a r e a o f t h e c r ~ l s t a l The p l o t shown i n f i g . 14 shows such "PendellBsunq" o s c i l l a t i o n around t h e c e n t r a l

"Bragg" pic.

From p o s i t i o n s o f t h e minima one c a l c u l a t e s :

IV - CONCLUSION

Although t h e a s s o c i a t i o n of t h e r e f l e c t i n g microscope with t h e monochromator i s so simple i n i t s p r i n c i p l e and s o easy t o r e a l i z e , i t s i n t e r e s t f o r s t r u c t u r a l s t u d i e s of systems showing Bragg r e f l e c t i o n s of l i g h t , was not obvious thus f a r .

We aimed i n t h i s paper t o prove t h e u t i l i t y of t h e microspectroscope f o r such s t u d i e s . Besides t h e two examples of i t s a p p l i c a t i o n , given i n t h e previous s e c t i o n , we

would l i k e t o mention study of c o l o r s i n t h i n l a y e r s of c o l l o i d a l c r y s t a l s /10/ and r e c e n t works /11,12/, given independently, concerning t h e determination of s t r u c t u r e s of Blue Phases. The p o s s i b i l i t y of measuring wavelengths of Bragg r e f l e c t i o n s , from c r y s t a l l i t e s of

known

o r i e n t a t i o n s , was c r u c i a l f o r an unambiguous determination of

(14)

these s t r u c t u r e s and, p r e c i s e l y , t h e microspectroscopy o f f e r e d t h i s p o s s i b i l i t y .

Fig. 14

-

Spectrum o f l i g h t r e f l e c t e d by a t h i n bcc crysta!. PendellBsung o s c i l l a - t i o n s i n d i c a t e t h a t t h e c r y s t a l i s made o f ?. 58 (110) planes.

F u r t h e r s t u d i e s o f d i f f e r e n t types o f c o l l o i d a l c r y s t a l s by means o f t h e microspec- troscopy should b r i n g i n t e r e s t i n g c o n t r i b u t i o n s t o t h e understandino o f e q u i l i b r i u m and non e q u i l i b r i u m c r y s t a l shapes /12/. I n p a r t i ~ u l a r ~ ~ p h e n o m e n o n o f c r y s t a l growth deserves more d e t a i l e d s t u d i e s by nieans o f t h e microspectroscope.

REFERENCES

1. CLADIS P.E., JOANICOT M. and PIERANSKI P., submitted t o Phys. Rev. L e t t . 2. TAKANO K. and HACCIISU S., J. C o l l . I n t . Sc. 66 (1978)

3. HILTNER A. and KRIEGER I.M., J , Phys. Chem. 73 (1969) 2386

4. GUINIER A., "Theorie e t Technique de l a r a d i i F r y s t a l l o g r a p h i e " , Dunod, P a r i s 1956 5. WILLIAHS R., CRANDALL R.S., Phys. L e t t . 48A (1974) 225

ti. CLARK N.A., HURD A. J., ACKERSON B. J., N a c e , 281 ( 1 979) 57

7. PIERANSKI P., DUBOIS-VIOLETTE E., ROTHEN F. anTTRZELECK1 L., J. de Phys.

42

(1981) 53

8. PIERANSKI P., t o be published

9. KITTEL Ch., " I n t r o d u c t i o n t o S o l i d S t a t e Physics" WILEY (1966)

1G. PANSU B., DUBOIS-VIOLETTE E., PIERANSKI P. and ROTHEN F., Proc. o f Workshop on C o l l o i d a l C r y s t a l s , Les Houches 1984

11. MARCUS M., Phys. Rev. A 25 (1982) 2272

12. CLADIS P.E., BARBET-MASSm R. and PIERANSKI P., Phys. Rev. A

-

30 (1984) 1161

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to