• Aucun résultat trouvé

THE EXPERIMENTAL STUDY OF ARC CATHODE MICROSPOTS LIFE-TIME BY THE VELOCITY MlCROPHOTOGRAPHY

N/A
N/A
Protected

Academic year: 2021

Partager "THE EXPERIMENTAL STUDY OF ARC CATHODE MICROSPOTS LIFE-TIME BY THE VELOCITY MlCROPHOTOGRAPHY"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00219180

https://hal.archives-ouvertes.fr/jpa-00219180

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE EXPERIMENTAL STUDY OF ARC CATHODE MICROSPOTS LIFE-TIME BY THE VELOCITY

MlCROPHOTOGRAPHY

A. Pertsev, V. Shadov

To cite this version:

A. Pertsev, V. Shadov. THE EXPERIMENTAL STUDY OF ARC CATHODE MICROSPOTS LIFE-

TIME BY THE VELOCITY MlCROPHOTOGRAPHY. Journal de Physique Colloques, 1979, 40

(C7), pp.C7-409-C7-410. �10.1051/jphyscol:19797200�. �jpa-00219180�

(2)

JOUHNAL DE PHYSIQUE CoZZoque C7, suppZdment au n07, Tomi 40, JuiZZet 2979, page C7- 40s

THE EXPERIMENTAL STUDY OF ARC CATHODE MICROSWTS LIFE-TIME BY THE VELOCITY MlCROPHOTOGRAPHY

A.A. Pertsev, V.P. Shadov.

Moscow U. S. S. R.

I. I n t r o d u c t i o n

There a r e two modes of cathode opera- t i o n , namely d i f f u s i v e and c o n t r a c t i v e i n d i f f e r e n t d i s c h a r g e d e v i c e s . For t h e c o n t r a c t i v e d i s c h a r g e c u r r e n t t r a n s f e r through t h e plasma-cathode l a y e r i s pro- v i d e d by small cathode s p o t s .

The i n v e s t i g a t i o n showed (p.e.

[I ]

), t h a t t h e s p o t s l o c a t e d on t h e cathode

micro-non-informatics,

c o n s i s t of t h e a r r a y of s m a l l e r elements cathode micro- s p o t s . The s t u d y of t h e cathode micro- s p o t s development dynamics and t h e i r pa- r a m e t e r s e n a b l e s one t o c l e a r t h e gene- r a l q u e s t i o n s of n e a r - e l e c t r o d e p r o c e s s e s and t o s o l v e connected a p p l i e d problems.

The l i f e - t i m e of t h e cathode microspot i s one of t h e most important parameters.

According t o some i n v e s t i g a t i o n s k1,2], t h e l i f e - t i m e o f t h e cathode microspot r a n g e s from few t e n t h s of microsecond t o t e n s microseconds.

I n t h e p r e s e n t work cathode m i c r o s p o t ' s l i f e - t i m e have been measured i n t h e p u l s e a r e vacuum d i s c h a r g e s using t u n g s t e n e l e c t r o d e s .

2.

Diagnostic t e c h n i a u e and t h e e x p e r i - mental d e v i c e

The cathode p r o c e s s e s of a r c were r e c o r - ded on t h e photofilm by t h e e l e c t r o n - o p t i c a l c o n v e r t e r w i t h space-time presen- t a t i o n of image.

The space-time four-dimentional a p e r t u r e f u n c t i o n of t h e p r o c e s s

i s

S ( x , y , z , t ) , where S

i s

t h e r a d i o n c e , t h a t was r e p r e -

s e n t e d by 1 6 space two-dimentional fun- c t i o n s S ( x , y ) , of which e v e r y o t h e r one was s h i f t e d w i t h r e g a r d t o t h e p r e c e d i n g f u n c t i o n b y ~ z -the exposure time.

The microspot l i f e - t i m e can be c a l c u l a t e d a s T = n . b Z where n

i s

t h e number of frames c o n t r a c t i n g a microspot. 'The r e f e- r e n c e g r i d was p r o j e c t e d t o t h e image of t h e s t u d i e d p r o c e s s f o r t h e d i f i n i t i o n of t h e microspot s p a t i a l p o s i t i o n on t h e cathode

633.

Pig.1 shows t h e p r i n c i p a l c o n f i g u r a t i o n of t h e e x p e r i m e n t a l d e v i c e . Vacuum sys- tem provided t h e d e p r e s s i o n i n t h e chamber ( I ) , i n which t h e e x p e r i -

- loe6

T o m

mental model (2) was i n s t a l l e d .

E l e c t r o n - o p t i c a l c o n v e r t e r

(3)

w i t h mic- rophotographic o b j e c t i v e ( 4 ) was used t o r e e o r d t h e a r c cathode p r o c e s s e s . For e l e c t r i c d i s c h a r g e i n t h e e x p e r i m e n t a l model t h e s t o r a g e l i n e

(5)

was used, t h a t was t r i g g e r e d by t h e i n i t i a t i n g d e v i c e

( 6 ) w i t h s y n c h r o n i z a t i o n c i r c u i t

(7)

.The e x p e r i m e n t a l model (Fig.2) i n c l u d e s t h e

cathode ( c ) i n t h e form of t u n g s t e n w i r e c u t ,

i t s

d i a m e t e r being 1

mm;

t h e l i m i t - i n g ceramic washer ( w ) , t h e anode ( a ) and t h e t r i g g e r i n g gun

(t).

The exposure time of t h e e l e c t r o n - o p t i c a l c o n v e r t e r v a r i e d from 0.05 t o 0.5 micro- second.

3 .

Experimental r e s u l t s

Fig.3 shows t h e copy of t h e t y p i c a l a r c cathode p r o c e s s photo, t h e d i s c h a r g e cur- r e n t 100A. The exposure time a Z =0.2 mic- rosecond t h e i n t e r f r a m e time d e l a y can be c o n s i d e r e d i n s i g n i f i c a n t .

S t a t i s t i c a l Q a t a h a s been o b t a i n e d con- c o n c i r n i n g t h e microspot l i f e - t i m e and i t s dynamics i n p u l s e d i s c h a r g e s a t t h e cathode temperature of about 3 0 0 ' ~ .

Pig.4 shows t h e d e n s i t y d i s t r i b u t i o n d i a - gram of t h e microspot number v i a t h e l i f e - t i m e ( t h e s o l i d ' l i n e ) . The p i c t u r e shows, t h a t t h e l i f e - t i m e r a n g e s from 0.05 t o 2 microsecond a t t h e d i s c h a r g e d u r a t i o n 1 0 mosec.

The most probable l i f e - t i m e

i s

e q u a l t o 0.6 microsecond. When cathodg temperature i n c r e a s e s from 3 0 0 ' ~ t o 1000bK, t h e d i s - t r i b u t i o n diagram changes v e r y s l i g h t l y , but a t h i g e r t e m p e r a t u r e s t h e number of microspots w i t h s h o r t l i f e - t i m e decrea- s e s and t h e number of ones w i t h l o n l i f e-time grows ( F i g .4, broken l i n e $ . A t temperatures up t o 4TO0°K t h e micro- s p o t s c l u s t e r t o a s i n g l e macrospot, e x i s t i n g d u r i n g t h e h o l e d i s c h a r g e time.

4. Discussion

One h a s t o n o t e , t h a t t h e measurements of t h e l i f e - t i m e were c a r r i e d o u t by r e c o r - d i n g t h e l i g h t r a d i a t i o n d u r a t i o n . The cathode flame f o r m a t i o n may be c o n s i d e r e d

as

t h e i n i t i a l phase of

a

microspot deve- lopment. The microspot l i f e - t i m e v a l u e , dependent on t h e c u r r e n t ,

w i l l

exceed t h e measured magnitude by t h e time i n t e r v a l needed t o t h e microspot f i x a t i o n c e n t e r from t h e c u r r e n t s t a r t t o

i t s

t h e r m a l ex- p l o s i o n . According t o [4] t h i s i n t e r v a l

i s

of t h e o r d e r of microseconds f o r a tunn- s t e n e l e c t r o d e a t t h e c u r r e n t d e n s i t y

-

-lo6

A/srna.

The microspot l i f e - t i m e measurement accu- r a c y

i s

l i m i t e d by

an

e l e c t r o n - o p t i c a l c o n v e r t e r exposure time.

For t h e p r e s e n t c a s e

i t i s

e q u a l t o 0.1 microsecond. T h e t ' s why t h e accuracy of t h e most p o s s i b l e l i f e - t i m e measurements

i s

l i m i t e d t o 2 v 0 l e v e l .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19797200

(3)

I ~XUCQUB El. r . Ku~eawre ~ g e c o n B J I ~ K ~ H X ~ C R ~ B wm. M.,"HayKaw, 1968.

2 . P a x i ~ s e ~ n P i B.H. @ n s a ~ e c ~ u e ocHosn

3,Eer@~oae~ 1D.A. ,roaybb B.H. TBT, 1971, 3, 846.

4. EHHHCOH M.M. PE1;3,1960,b8, 1318.

F i g .I. The experimental u n i t c o n f i g u r a t i o n .

Fig.!!.

The experimental

model.

Fig.4. The microspot d i s t r i b u t i o n on t h e l i g h t - t i m e .

F i g . 3 . The cathode microspot

s

photo.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to