• Aucun résultat trouvé

EXCITATION AND DECAY OF BOUND STATES NEAR THE IONIZATION LIMIT

N/A
N/A
Protected

Academic year: 2021

Partager "EXCITATION AND DECAY OF BOUND STATES NEAR THE IONIZATION LIMIT"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00218407

https://hal.archives-ouvertes.fr/jpa-00218407

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

EXCITATION AND DECAY OF BOUND STATES NEAR THE IONIZATION LIMIT

David Ellis

To cite this version:

David Ellis. EXCITATION AND DECAY OF BOUND STATES NEAR THE IONIZATION LIMIT.

Journal de Physique Colloques, 1979, 40 (C1), pp.C1-152-C1-154. �10.1051/jphyscol:1979127�. �jpa- 00218407�

(2)

J O U R N A L DE PHYSIQUE Colloque C1, suppldment au n " 2, Tome 40, fdvrier 1979, page C1-152

EXCITATION AND DECAY OF BOUND STATES NEAR THE IONIZATION LIMIT

David G. E l l i s

U n i v e r s i t y o f Toledo, Toledo, Ohio 43606, U.S.A.

RLsumd. Un modele c l a s s i q u e s i m p l e de l a c a p t u r e d ' u n d l e c t r o n , l o r s d e l ' e x - c i t a t i o n par f a i s c e a u - l a m e , s u g g e r e que l e s n i v e a u x de Rydberg d e n d l e v d e t (1

l i m i t d , p e u v e n t B t r e p e u p l d s d ' u n e manihre s u b s t a n t i e l l e . En i n c l u a n t l e s c a s c a d e s d e t o u s l e s o r d r e s , o n d e r i v e une r e l a t i o n s i m p l e e n t r e une t e l l e p o p u l a t i o n i n i t - i a l e e t l a queue n o n - e x p o n e n t i e l l e de l a d i s t r i b u t i o n .

A b s t r a c t . A s i m p l e c l a s s i c a l model of e l e c t r o n p i c k u p i n beam-foil e x c i t a t i o n s u g g e s t s t h a t Rydberg s t a t e s of h i g h n and l i m i t e d (1 may b e s u b s t a n t i a l l y pop- u l a t e d . I n c l u d i n g c a s c a d e s o f a l l o r d e r s , a s i m p l e r e l a t i o n i s d e r i v e d between s u c h a n i n i t i a l p o p u l a t i o n and t h e r e s u l t i n g power-law t a i l o f a d e c a y c u r v e .

INTRODUCTION

I n L i n e e m i s s i o n from h i g h l y c h a r g e d i o n s f o l l o w i n g beam-foil e x c i t a t i o n , e x p e r i m e n t a l decay c u r v e s may show a power-law t i m e dependence f o r l o n g t i m e s , r a t h e r t h a n t h e more f a m i l i a r e x p o n e n t i a l d e c r e a s e . [ I ] These "power-law t a i l s "

have been e x p l a i n e d a s produced by c a s c a d i n g from h i g h l y e x c i t e d s t a t e s , o n t h e a s s u m p t i o n t h a t t h e i n i t i a l p o p u l a t i o n s of t h e s e s t a t e s d e c r e a s e a s some power o f t h e p r i n c i p a l quantum number. 121 However, many q u e s t i o n s r e m a i n , s u c h a s t h e im- p o r t a n c e o f h i g h e r - o r d e r v s d i r e c t c a s c a d e s , y r a s t v s Rydberg c a s c a d e s , t h e c o n n e c t i o n between t h e e x p o n e n t of t h e d e c a y c u r v e and t h a t of t h e pop- u l a t i o n s , and t h e c o n n e c t i o n between t h e s e and t h e p h y s i c s o f t h e b e a m f o i l e x c i t a t i o n p r o c e s s .

T h a t a power-law t a i l d o e s r e s u l t n a t - u r a l l y from a power-law p o p u l a t i o n d i s t r i b u t i o n c a n of c o u r s e be s e e n v e r y e a s i l y . Assume t h e l e v e l o f i n t e r e s t ( n l , ( l l ) i s f e d by a s e r i e s of f i r s t - o r d e r c a s c a d e s from l e v e l s (n,(1) w i t h n = 2 , 3 , 4 , " ' . Then i f h i g h e r - o r d e r c a s c a d e s a r e i g n o r e d t h e p o p u l a t i o n o f l e v e l (nl,!Ll) is g i v e n by 131:

c o n v e r t e d t o a n i n t e g r a l and i t s a s y m p t o t i c be- h a v i o r e s t a b l i s h e d by s t e e p e s t d e s c e n t . We f i n d i m m e d i a t e l y a s t / ~ -> :

p l ( t ) Q c o n s t x ( t / ~ ) - ~ (2) w i t h m = ( b + c - l ) / a ,

where we h a v e assumed

Beyond t h i s o b v i o u s c r u d e r e l a t i o n s h i p we would l i k e t o s u g g e s t two s e p a r a t e p o i n t s which may b e r e l e v a n t t o some o f t h e open ques-

t i o n s a b o u t t h i s phenomenon. F i r s t , i t can b e shown t h a t ( 2 ) r e m a i n s t r u e f o r a c a s c a d e p r o c e s s o f a r b i t r a r i l y h i g h o r d e r . Second, e l e c t r o n p i c k u p from t h e f o i l s u r f a c e might i n some c i r - c u m s t a n c e s p o p u l a t e s t a t e s o f h i g h n b u t l i m i t e d

(1, f a v o r i n g Rydberg o v e r y r a s t c a s c a d e s . HIGHER ORDER CASCADES

t h

C o n s i d e r a n o r d e r c a s c a d e p r o c e s s o r i g i n a t i n g from a Rydberg s e r i e s (n,L) a s be- f o r e , and t e r m i n a t i n g o n t h e l e v e l o f i n t e r e s t ( n l , " ) . T h e r e w i l l b e N-1 i n t e r m e d i a t e s t a t e s i n v o l v e d , l a b e l l e d by quantum numbers ( n 2 , R 2 ) ,

( n 3 , E 3 ) , - - - ( % , ! L N ) . The c o n t r i b u t i o n t o P l ( t ) from t h i s p r o c e s s w i l l b e [ 3 ] :

Here a i s t h e decay c o n s t a n t , A t h e t r a n s i t i o n

e - a n ~

X [ ( a -a

)...

+

...).

p r o b a b i l i t y and P t h e p o p u l a t i o n . Now i t seems ( 4 )

nNeN ne (anla,-ane)

c l e a r t h a t b e c a u s e a d e c r e a s e s w i t h n , t h e t e r m s

n The N m i s s i n g t e r m s i n t h e b r a c k e t a l l t e n d t o

i n e-alt w i l l b e n e g l i g i b l e f o r l a r g e t and i n -

have l a r g e r d e c a y c o n s t a n t s and s o we would l i k e d e e d tha's i s e a s y t o show. F o r t h e same r e a s o n ,

t o n e g l e c t them. I n f a c t i t c a n b e shown t h a t t h e n-t.. t e r m s dominate t h e sum, s o i t c a n b e

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1979127

(3)

t h e y l e a d t o power-law t e r m s a l s o , b u t ' d e c r e a s - i n g more s t e e p l y w i t h t t h a n t h a t from t h e f i r s t term.

We f i r s t c o n s i d e r a f i x e d set o f v a l u e s f o r L2,...LN, s o t h a t we a r e c o n s i d e r i n g

t h

o n l y one p a r t i c u l a r scheme o f N-- o r d e r c a s c a d e , i n v o l v i n g s t a t e s i n t h e g i v e n s e q u e n c e o f Rydberg s e r i e s : L + L N + L N - l + - . . ~ . Having t h i s r e s u l t we must t h e n add i n a s i m i l a r c o n t r i b u - t i o n from e a c h p o s s i b l e s u c h s e t of L ' s . I t

k

t u r n s o u t t o b e s u r p r i s i n g l y e a s y t o p r o v e t h a t , f o r a g i v e n sequence ( L 2 , - - ' kN), t h e sums o v e r n , n ~ , - - - 3 c a n be done i n t h e l a r g e t l i m i t and l e a d t o t h e same r e s u l t a s i n t h e f i r s t - o r d e r c a s e , namely e q u a t i o n ( 2 ) . The i m p o r t a n t p o i n t i s t h a t e a c h s e q u e n c e (Lg,..-P, ) may pro-

N

duce a d i f f e r e n t c o n s t a n t , b u t t h e exponent m i s t h e same. Thus when a l l s e q u e n c e s a r e summed, and even when t h e sum o v e r o r d e r s N i s done, t h e a s y m p t o t i c r e s u l t i s s t i l l t h e same b e c a u s e m depends o n l y o n t h e e x p o n e n t s per- t a i n i n g t o t h e s e r i e s (n,L) and n o t a t a l l on any p r o p e r t y o f t h e i n t e r m e d i a t e s t a t e s . P h y s i c a l l y of c o u r s e t h e p o i n t i s t h a t t h e l A n g e s t p e r i o d s a r e t h o s e g o v e r n i n g t h e f i r s t d e c a y i n t h e c a s c a d e p r o c e s s , and s o i t i s t h e p r o p e r t i e s of t h e o r i g i n a t i n g Rydberg s e r i e s t h a t d e t e r m i n e t h e t- b e h a v i o r of t h e decay c u r v e .

T h i s r e s u l t means t h a t e a c h p o p u l a t e d Rydberg s e r i e s o f l e v e l s (nL) w i l l produce a t e r m i n t h e d e c a y c u r v e which g o e s l i k e t-m(L) a s t-. C l e a r l y t h i s r e s u l t i s much more h e l p - f u l i f o n l y a few s e r i e s a r e i m p o r t a n t , i . e . i f t h e r e i s a r e l a t i v e l y low l i m i t on L. So t h i s a p p r o a c h r e m a i n s o p p o s i t e t o t h a t f o r t h e y r a s t c a s c a d e s , where i t i s assumed t h a t n and L grow l a r g e t o g e t h e r .

CRUDE CLASSICAL PICKUP MODEL

I f we w i s h t o s t u d y ' p o p u l a t i o n s of l e v e l s w i t h h i g h quantum numbers, we s h o u l d b e a b l e t o l e a r n s o m e t h i n g from a c l a s s i c a l model.

We a r e p a r t i c u l a r l y i n t e r e s t e d i n e l e c t r o n p i c k - up from t h e f o i l s u r f a c e which we assume i s l i k e l y t o make a n i m p o r t a n t c o n t r i b u t i o n t o t h e p o p u l a t i o n of t h e s e l e v e l s [ 4 ] . T h i s p r o c e s s w i l l b e s t r o n g l y i n f l u e n c e d by plasma e f f e c t s f o r f a s t h i g h l y c h a r g e d i o n s 151. The s u r f a c e e l e c t r o n s w i l l b e s u b j e c t e d t o a c o m p l i c a t e d

time-dependent f i e l d a s t h e i o n a p p r o a c h e s t h e s u r f a c e a n d t h e n emerges. We want t o g e t a q u a l i t a t i v e i d e a o f how t h e plasma s c r e e n i n g of t h e i o n ' s f i e l d is l i k e l y t o a f f e c t t h e cap- t u r e p r o c e s s -- i n p a r t i c u l a r how t h e r e s u l t i n g p o p u l a t i o n s of h i g h l y e x c i t e d s t a t e s might b e d i f f e r e n t from t h o s e produced i n more f a m i l i a r p r o c e s s e s s u c h a s c h a r g e t r a n s f e r and r a d i a t i v e r e c o m b i n a t i o n . F o r t h i s p u r p o s e we make t h e extreme s i m p l i f y i n g a s s u m p t i o n t h a t t h e s u r f a c e e l e c t r o n is c o m p l e t e l y s h i e l d e d from any know- l e d g e o f t h e i o n ' s a p p r o a c h u n t i l t h e i o n s u d d e n l y emerges w i t h s p e e d v from t h e s u r f a c e a t a t r a n s v e r s e d i s t a n c e r from t h e e l e c t r o n ; a f t e r t h a t we assume t h e e l e c t r o n i s s u b j e c t t o t h e i o n ' s u n s c r e e n e d Coulomb f i e l d . We a l s o assume t h a t t h e e l e c t r o n i s a t r e s t , s i n c e i t s t h e r m a l v e l o c i t y i s l i k e l y t o b e much l e s s t h a n t h e i o n beam v e l o c i t y .

The c o n s e q u e n c e s o f t h i s e x t r e m e model a r e o b v i o u s . F o r a n i o n o f c h a r g e Z ,

t h e e l e c t r o n ' s o r b i t w i l l b e bound i f and o n l y

2 2

i f mv 12 < Ze / r ; t h i s d e f i n e s a c l a s s i c a l c a p t u r e r a d i u s R = 2Z/v 2

.

C l a s s i c a l l y , an e l e c t r o n i n s i d e R w i l l b e c a p t u r e d i n t o an o r b i t w i t h e n e r g y and a n g u l a r momentum d e t e r - mined b y t h e i n i t i a l d i s t a n c e r. I n a t o m i c u n i t s :

2 2 2

L=vr and E=-Z /2n ~v 12-Z/r. (5)

T h i s p u t s a n upper l i m i t on t h e o r b i t a l quantum number f o r bound o r b i t s :

a < Lmx w i t h Lmax:vR=2Z/v. ( 6 )

Of c o u r s e t h e s e c l a s s i c a l r e l a t i o n s c a n h a v e no meaning f o r n%1 o r 1-1. Another immediate r e s u l t i s t h a t t h e s e o r b i t s h a v e L =0, which i s a l s o f o u n d i n a n y s i m p l e quantum model b e c a u s e of a x i a l symmetry. I f we g i v e t h e e l e c t r o n some i n i t i a l t h e r m a l v e l o c i t y we would t h e n f i n d some p o p u l a t i o n o f o r b i t s w i t h small LZ, r o u g h l y l i m i t e d by

F i n a l l y we c a n g e t a n e s t i m a t e d p o p u l a t i o n d i s t r i b u t i o n 5 y s i m p l y assuming a u n i f o r m number of s u r f a c e e l e c t r o n s p e r u n i t a r e a and c o n v e r t i n g t h i s d i r e c t l y v i a e q u a t i o n

(5) t o d i s t r i b u t i o n s i n n and L. S i n c e e a c h o r b i t h a s a d e f i n i t e n and a d e f i n i t e L, b o t h

(4)

JOURNAL DE PHYSIQUE

determined by t h e i n i t i a l v a l u e of r , t h e two CONCLUSION

v a r i a b l e s a r e c o m p l e t e l y c o r r e l a t e d . I f Pn I n e x p e r i m e n t s where t h e c l a s s i c a l d e n o t e s t h e d i s t r i b u t i o n i n n when P. i s n o t c a p t u r e r a d i u s is l a r g e enough t o i n c l u d e measured, and PP. t h e d i s t r i b u t i o n i n P. when a number o f s u r f a c e e l e c t r o n s , t h e r e may be n i s n o t measured, then we have: a tendency toward p r e f e r e n t i a l l y p o p u l a t i n g

2 (8) s t a t e s o f c e r t a i n v a l u e s o f II = Z/v. I f s o .

pP. da. = ( k / v )P. dn. , e<imax

2 then f o r t i m e s l o n g compared t o t h e mean

P dn = k t (v n + ~ ' / n ) - ~ dn.

n (9) l i v e s of t h e l o w e s t - l y i n g such s t a t e s , t h e

I n g e n e r a l terms t h e p r e d i c t i o n i s f o r t h e p o p u l a t i o n of low-n c i r c u l a r o r b i t s w i t h roughly c o n s t a n t p r o b a b i l i t y almost up t o ESP. and then t h e Rydberg s e r i e s w i t h

max'

L = E p o p u l a t e d w i t h t h e u s u a l n-3 law f o r max

l a r g e n. The d i v i s i o n of p o p u l a t i o n between t h e s e two groups of l e v e l s i s roughly

power-law exponent may r e f l e c t t h e p r o p e r t i e s of t h e c o r r e s p o n d i n g Rydberg s e r i e s ( n , L ) , even though no d i r e c t c a s c a d e s from t h i s s e r i e s t o t h e l e v e l of i n t e r e s t a r e allowed.

ACKNOWLEDGEMENT

Thanks t o L. J . C u r t i s f o r c a l l i n g a t t e n t i o n t o t h i s problem and f o r many s t i m u l a t i n g d i s c u s s i o n s .

REFERENCES

[ I ] P. Richard, Phys. L e t t . B, 1 3 (1973). [4 1

W.J. B r a i t h w a i t e , D.L. Matthews, C.F.Moore, Phys. Rev. A 11, 465 (1975). D.J. Pegg,

P.M. G r i f f i n , B.M. Johnson, K.W. J o n e s , [51

J.L. Cecchi, T.H. Kruse, Phys. Rev. A 9,

2008 (1977). H.G. Berry, A.E. L i v i n g s t o n , L.J. C u r t i s , R.M. Schectman ( t o b e pub.).

H.C. Dohmann, H. Pfeng, Z. Physik A (1978).

[Z] R.M. Schectman, Phys. Rev. A g , 1717 (1975). F. Hopkins, P. von Brentano, J. Phys. B 2, 775 (1976)

[ 3 ] L.J. C u r t i s , Am. J. Phys. 36, 1123 (1968)

J.D. G a r c i a , Nucl. I n s t r . Meth.

110, 245 (1973)

-

W. Brandt, R.H. R i t c h i e , Nucl. I n s t r . Meth. 132, 43 (1976). A. C r i s p i n , G.N. Fowler, Rev. Mod. Phys. 41, 290 (1970). R.A. McCorkle, G . J . I a f r a t e , Phys. Rev. L e t t . 2, 1263 (1977).

Trubnikov and Y a v l i n s k i i , J.E.T.P.

25, 1089 (1967).

-

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to