• Aucun résultat trouvé

RECOMBINATION OF NONEQUILIBRIUM CARRIERS IN THE PRESENCE OF DISLOCATIONS IN SEMICONDUCTORS

N/A
N/A
Protected

Academic year: 2021

Partager "RECOMBINATION OF NONEQUILIBRIUM CARRIERS IN THE PRESENCE OF DISLOCATIONS IN SEMICONDUCTORS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00219033

https://hal.archives-ouvertes.fr/jpa-00219033

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

RECOMBINATION OF NONEQUILIBRIUM

CARRIERS IN THE PRESENCE OF DISLOCATIONS IN SEMICONDUCTORS

R. Labusch

To cite this version:

R. Labusch. RECOMBINATION OF NONEQUILIBRIUM CARRIERS IN THE PRESENCE OF DISLOCATIONS IN SEMICONDUCTORS. Journal de Physique Colloques, 1979, 40 (C6), pp.C6- 81-C6-86. �10.1051/jphyscol:1979617�. �jpa-00219033�

(2)

JOURNAL DE PHYSIQUE CoZloque C6, s u p p l h e n t au n06, tome 4 0 , j u i ~ 1 9 7 9 , page C6-81

RECOMBINATION OF NONEQUILIBRIUM CARRIERS I N THE PRESENCE OF DISLOCATIONS I N SEMICONDUCTORS

R. Labusch

I n s t i t u t fiir Angewcmdte Pizysik d e r TI1 Clausthal und S F B 126 Gottingen - ClausthaZ, F.R.C.

Resume.- Le problgme general de l a recombinaison e s t r e d u i t c3 une chaine de processus c a r a c t e r i s e s chacun par une simple decroissance e x p o n e n t i e l l e e t une constante de temps unique. Les constantes de temps sont c a l c u l e e s pour l e s spectres de niveaux de d i s l o c a t i o n q u i semblent p l a u s i b l e s . Dans l e cas d ' u n exemple s p e c i f i q u e on compare c e t t e cha9ne de processus avec des v a l e r ~ r s experimenta- l e s obtenues dans l e Ge, e t on i d e n t i f i e l e s mecanismes de recombinaison.

Abstract.- The general recombination problem i s reduced t o a s e t o f processes w i t h a simple exponen- t i a l decay and a s i n g l e time constant. The time constants a r e c a l c u l a t e d f o r those spectra o f d i s - l o c a t i o n l e v e l s t h a t appear t o be p o s s i b l e . I n a s p e c i f i c example t h i s s e t i s compared w i t h e x p e r i - mental values o f Ge and t h e recombination mechanisms a r e i d e n t i f i e d .

1. I n t r o d u c t i o n . - The aim o f t h e f o l l o w i n g i n v e s t i - g a t i o n i s t o d e r i v e r u l e s and equations t h a t a r e as general as p o s s i b l e but, a t the same time, s p e c i f i c enough t o serve as a q u a n t i t a t i v e basis f o r t h e ana- l y s i s o f recombination experiments i n deformed semi

-

conductors. Analyses o f recombination and t r a p p i n g a t d i s l o c a t i o n s have been given before /1,2,3,4/ b u t had the purpose t o e x p l a i n e x i s t i n g experiments and were done w i t h an incomplete knowledge o f the t r u e energy spectrum o f t h e d i s l o c a t i o n s t a t e s and o f the c o n f i g u r a t i o n o f t h e d i s l o c a t i o n core. This knowledge has been improved meanwhile and, although we are f a r from knowing _all p r o p e r t i e s o f even a s i n g l e d i s l o - c a t i o n type i n a s p e c i f i c m a t e r i a l , we have a good i d e a o f the p o s s i b l e f e a t u r e s t h a t d i s l o c a t i o n s i n semiconductors

can

have. This w i l l l e a d us t o a fi- n i t e s e t o f p o s s i b l e recombination mechanisms and simple mathematical d e s c r i p t i o n s f o r them. The expe- r i m e n t a l evidence a v a i l a b l e f o r a c e r t a i n m a t e r i a l must be a subset o f t h i s c o l l e c t i o n and the r u l e s of c o m p i l i n g the subset i n a c o n s i s t e n t way a r e r a t h e r s t r a i g h t f o r w a r d as w i l l be shown i n one s p e c i f i c example.

2. R e s t r i c t i o n s and t h e o r e t i c a l basis.- For t h e sake o f s i m p l i c i t y we have t o impose a few r e s t r i c t i o n s on our a n a l y s i s :

Thus we s h a l l o n l y discuss the recombination a f t e r

"weak" e x c i t a t i o n . As a r u l e "weak" e x c i t a t i o n means t h a t t h e response o f t h e system i s l i n e a r i n t h e e x c i t a t i o n r a t e i - e . , t h e l i g h t i n t e n ' s i t y o r t h e r a t e o f i n j e c t i o n and so f o r t h . A somewhat more spe- c i f i c requirement w i l l t u r n up l a t e r on. I n general an e l e c t r o n t h a t recombines w i t h a h o l e goes through

a sequence o f t r a n s i t i o n s , c a l l e d a recombination path. The elementary step i n recombination i s the t r a n s i t i o n between two l e v e l s i n such a path. I t may be assumed w i t h o u t any l o s s o f g e n e r a l i t y t h a t the e i g e n f u n c t i o n s o f such a p a i r a r e l o c a l i z e d a t the same d i s l o c a t i o n and, i f the d i s l o c a t i o n i s disso- c i a t e d , even a t t h e same p a r t i a l because otherwise t h e r e i s no o v e r l a p and t h e t r a n s i t i o n i s so slow t h a t t h e corresponding p a t h would be blocked. As a consequence t h e separation o f t h e two l e v e l s i s n o t changed v i a t h e e l e c t r o s t a t i c i n t e r a c t i o n o f excess e l e c t r o n s o r holes t h a t a r e trapped a t t h e same d i s - l o c a t i o n , although t h i s i n t e r a c t i o n s h i f t s a l l s t a - t e s ( b u t by t h e same amount!) w i t h r e s p e c t t o t h e unperturbed edges o f the valence and t h e conduction band which may serve as r e f e r e n c e energies.

It i s g e n e r a l l y accepted now t h a t t h e d i s l o c a - t i o n s t a t e s form one dimensional bands. The important consequence f o r recombination problems i s t h a t , as a r u l e , t h e exchange o f e l e c t r o n s between s t a t e s i n t h e same d i s l o c a t i o n band i s so r a p i d compared w i t h inter-.

band t r a n s i t i o n s t h a t they a r e alwavs i n thermal e q u i l i b r i u m and t h e d i s t r i b u t i o n w i t h i n each band i s completely described by a quasi-Fermi l e v e l p. T h i s a l l o w s us t o analyse t r a n s i t i o n s between d i s l o c a t i o n bands r a t h e r than between s i n g l e d i s l o c a t i o n l e v e l s , u s i n g t h e general theory o f Landsberg 151.

I n our d i s c u s s i o n we have t o consider t h r e e b a s i c a l l y d i f f e r e n t - t y p e s o f d i s l o c a t i o n bands : i ) P a r t l y f i 1 le d bands t h a t have t h e i r Fermi l e v e l p

i n s i d e t h e band. We denote these by t h e name H ( f o r h a l f f i l l e d , although o c c a s i o n a l l y t h e f i l - l i n g may be a d i f f e r e n t f r a c t i o n o f u n i t y ) .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1979617

(3)

C6-82 JOURNAL DE PHYSIQUE

i i ) " F u l l " bands, named F, where t h e Fermi l e v e l i s above t h e upper edge EF.

i i i ) "Empty" bands, named E, where t h e Fermi l e v e l i s below t h e l o w e r edge cE.

The d i f e r e n t t y p e s a r e e x e m p l i f i e d i n a sche- m a t i c diagram ( F i g . 1) t h a t has been suggested as a model f o r n e g a t i v e l y charged d i s l o c a t i o n s i n Ge / 2 / . The f u l l d i s l o c a t i o n band i n t h i s diagram i s c l o s e l y r e l a t e d t o t h e f r e e v a l e n c e band s t a t e s and i t s empty s t a t e s may be c o n s i d e r e d as h o l e s , bound b y t h e a t t r a c t i v e d i s l o c a t i o n p o t e n t i a l . A c t u a l l y t h e upper empty band (E) c o n s i s t s o f c o n d u c t i o n band s t a t e s t u n e l i n g i n t o t h e r e p u l s i v e d i s l o c a t i o n p o t e n t i a l . I t s l o w e r edge i s t h e r e f o r e n o t q u i t e sharp b u t t h e t u n e l i n g p r o b a b i l i t y and thus, t h e m a t r i x element o f t r a n s i t i o n s t o o t h e r s t a t e s t h a t a r e l o c a l i s e d a t t h e same d i s l o c a t i o n d r o p s r a p i d l y t o z e r o f o r e n e r - g i e s l o w e r t h a n a few h u n d r e d t h o f an eV below t h e upbent edge o f t h e c o n d u c t i o n band. T h e r e f o r e we may t r e a t t h e t u n e l i n g s t a t e s as a d i s l o c a t i o n band l i k e t h e bound s t a t e s .

F i g . 1 : Schematic model o f t h e l e v e l s a t a d i s l o c a - t i o n i n Ge, c a r r y i n g a n e g a t i v e l i n e c h a r g e . E, H and F a r e one d i m e n s i o n a l bands. E c o n s i s t s a c t u a l l y o f t u n n e l i n g s t a t e s .

I n most e x p e r i m e n t s t h e bound h o l e s t a t e s and t h e t u n n e l i n g s t a t e s a r e i n t h e r m a l e q u i l i b r i u m w i t h t h e v a l e n c e - and t h e c o n d u c t i o n band r e s p e c t i v e l y , because t h e exchange o f c a r r i e r s w i t h t h e s e bands i s v e r y r a p i d /3/.

A c c o r d i n g t o Landsberg t h e t r a n s i t i o n r a t e o f e l e c t r o n s f r o m one d i s l o c a t i o n band t o a n o t h e r i s /5/

rij = C . .n.p. (1-exp(pj t pi)/kT)

1J 1 J - ( 1 )

ni i s t h e number o f e l e c t r o n s

i n

band i, p t h e j

number' o f h o l e s i n band j and pi and p t h e respec- j

t i v e q u a s i - F e r m i l e v e l s . I f t h e whole system i s i n thermal e q u i l i b r i u m p and pi a r e o f c o u r s e equal t o

j

t h e Fermi l e v e l

c.

C.. can be expressed i n terms o f

1 J

t h e d e n s i t i e s of s t a t e s Ni(€) and N i ( € ' ) i n t h e two d i s l o c a t i o n bands as

Cij =

1

nij(E , c t ) N i ( ~ ) N . ( ~ ' ) ~ ( E - P ~ ) ( 1 - f ( c l - p j ) ) J

Ni(€)Nj(€' ) f (E-vi) ( l - f ( ~ ' ~ ~ ) ) d c d ~ ' Where f i s t h e Fermi d i s t r i b u t i o n f u n c t i o n and n i , j ( ~ , ~ ' ) t h e quantum mechanical t r a n s i t i o n proba- b i l i t y between a l e v e l a t E i n band i and a 1,evel a t E ' i n band j.

We s h a l l c o n c e n t r a t e o u r d i s c u s s i o n m a i n l y on t h e f a c t o r

R = n . p (1-exp ( p . - u . ) / k T )

1 J J 1 ( 2 )

w h i c h has an e x p o n e n t i a l t e m p e r a t u r e dependence. Cij i s o b v i o u s l y c o n s t a n t i f n . . ( E , E ' ) i s independent

1 J

o f E and E ' . However, t h e r e can be n o t i c e a b l e d e v i a - t i o n s f r o m t h i s s i m p l e b e h a v i o u r t h a t y i e l d an expo- n e n t i a l t e m p e r a t u r e dependence o f Ci as we1 1 /3/.

F o r empty and f u l l d i s l o c a t i o n bands we make use o f t h e Bol tzman a p p r o x i m a t i o n s

nE = NNE ' exp ( p E - ~ , - ) / k r ( 3 )

and

PF = NF exp ( E ~ - p F ) / k T ( 4 )

r e s p e c t i v e l y . If t h e band edges a r e a p p r o x i m a t e l y p a r a b o l i c t h e e f f e c t i v e d e n s i t i e s o f s t a t e s NE and NF a r e equal t o

=

p , where m* i s t h e e f f e c t i v e

zT2 h2

mass o f t h e d i s l o c a t i o n band' and p t h e d i s l o c a t i o n l i n e l e n g t h p e r u n i t volume.

I n a p a r t l y f i l l e d band we d e f i n e c R as t h e p o s i t i o n t h a t t h e q u a s i Fermi l e v e l would have i f t h e number o f e l e c t r o n s i n H were equal t o iH, t h e number i n thermal e q u i l i b r i u m . I f excess c a r r i e r s a r e p r e s e n t i n d i s l o c a t i o n s t a t e s , E,, e x p e r i e n c e s t h e same e l e c t r o s t a t i c s h i f t as a l l o t h e r d i s l o c a - t i o n l e v e l s . The p o s i t i o n o f t h e q u a s i Fermi l e v e l i s pH = E~ + AD,,, where ApH i s an a d d i t i o n a l s h i f t due t o t h e presence o f AnH excess e l e c t r o n s ( o r -ApH excess h o l e s ) i n H. F o r s m a l l AnH/" we use t h e expansion

F o r t h e sake o f s i m p l i c i t y we s h a l l o f t e n r e f e r t o d i s l o c a t i o n bands and t o t h e v a l e n c e and t h e c o n d u c t i o n band as " l e v e l s " i n t h e f o l l o w i n g b u t s h o u l d keep i n m i n d t h e i r t r u e meaning and t h e d e f i - n i t i o n s g i v e n h e r e .

3. D e f i n i t i o n o f t h e r a t e d e t e r m i n i n g t r a n s i t i o n . - F o r any system o f more t h a n two l e v e l s t h e r e a r e s e v e r a l p o s s i b l e p a t h s a l o n g which t h e r e c o m b i n a t i o n t a k e s p l a c e . F o r i n s t a n c e , an e l e c t r o n can proceed f r o m E t o F i n f i g u r e 1 t h r o u g h t h e sequence E-H-F

(4)

R. L a t u s c h C6-83

b u t a l s o t h r o u g h E-F. However, s i n c e t h e t r a n s i t i o n r a t e s u s u a l l y have an e x p o n e n t i a l t e m p e r a t u r e depen- dence t h e r e e x i s t s ( w i t h v e r y few e x c e p t i o n s ) a p a t h t h a t i s , by f a r , t h e f a s t e s t one w h i l e r e c o m b i n a t i o n a l o n g a l l o t h e r s i s n e g l i g i b l e . The o n l y s y s t e m a t i c exemptions f r o m t h i s r u l e a r e a few r a t h e r s h a r p l y d e f i n e d c r o s s o v e r t e m p e r a t u r e s where t h e system chan- ges i t s r e c o m b i n a t i o n p a t h .

L e t us c o n s i d e r now a steady s t a t e e x p e r i m e n t i n which e l e c t r o n s and h o l e s a r e generated a t t h e same r a t e G i n t h e l e v e l s E, and r e s p e c t i v e l y and recombine v i a t h e s i n g l e o r d e r e d sequence E ~ , i = 1,

...,

n. I n t h e s t e a d y s t a t e a l l r a t e s ri,itl i n t h i s p a t h must be equal t o G. S o l v i n g e q u a t i o n ( 1 ) w i t h j = i t 1 f o r vitl - ui we o b t a i n :

Again t h e f a c t o r s Ci,i+lnipi+l a r e u s u a l l y exponen- t i a l f u n c t i o n s o f T so t h a t , a p a r t f r o m a few c r o s s - o v e r s , one o f t h e v a l u e s (Ci ,i+lnipi+l)-' i s

=

g r e a t e r t h a n a l l t h e o t h e r s . L e t t h i s b i g g e s t v a l u e be assumed f o r i = k. We r e q u i r e now t h a t t h e genera- t i o n G i s "weak" enough so t h a t

I L I ~ + ~ - ~ ~

l<<! ci-ui

l

and Ipi+l-ui

I<<\

~ ~ +1 w i t h t h e p o s s i b l e excep- ~ - p ~ ~ ~ t i o n f o r i = k. Under t h e s e c o n d i t i o n s t h e system has o n l y two s i g n i f i c a n t l y d i f f e r e n t q u a s i Fermi e n e r - g i e s :

A l l l e v e l s w i t h i ( k have t h e same q u a s i Fermi e n e r - gy p k and t h e c o r r e s p o n d i n g v a l u e f o r t h e l e v e l s w i t h i = k + 1,

...,

n i s uktl. I n a d d i t i o n t o t h e l e v e l s i = 1,

...,

n t h e r e may be "dead end" l e v e l s

i = n t 1,

...,

m t h a t exchange e l e c t r o n s w i t h one b u t only one o f t h e l e v e l s of t h e r e c o m b i n a t i q n p a t h . The t r a n s i t i o n r a t e t o o r f r o m such a l e v e l which i s c a l l e d a " t r a p " i n t h e t e x t books, must be e x a c t l y z e r o under s t e a d y s t a t e c o n d i t i o n s and t h e r e f o r e i t has t h e same quasi-Fermi energy as t h e r e c o m b i n a t i o n l e v e l w i t h w h i c h i t communicates. I n f i g u r e 2 we have i l l u s t r a t e d t h i s concept i n a schematic diagram o f f o u r r e c o m b i n a t i o n l e v e l s and one t r a p .

F i g . 2 : Schematic example o f a r e c o m b i n a t i o n p a t h , i n v o l v i n g f o u r l e v e l s and a t r a p ( l e v e l 5 ) a t t a c h e d t o l e v e l 1. The r a t e d e t e r m i n i n g t r a n s i t i o n i s 2-3.

The t o t a l number o f excess e l e c t r o n s i s

Antot = !Ani where t h e sum i s t a k e n o v e r t h e l e v e l s 1 t o k and t h e t r a p s a t t a c h e d t o them. The t o t a l number of excess h o l e s i s Ap = An = :Api where now t h e sum i s t a k e n o v e r t h e l e v e l s k = 1 t o n and t h e i r t r a p s . I f t h e g e n e r a t i o n i s s w i t c h e d o f f , t h e l e v e l s w i t h a comnon Fermi l e v e l s t a y i n e q u i l i b r i u m and t h e recom- b i n a t i o n p r o c e s s i s d e s c r i b e d by t h e s i m p l e r a t e e q u a t i o n

which means t h a t t h e t r a n s i t i o n k + k t 1 i s r a t e d e t e r m i n i n g . T h i s h o l d s a l s o i f a t r a p i s p r e s e n t , u n l e s s t h e v a l u e (Ci,t ni

-

p t ) - ' , i t s exchange w i t h t h e l e v e l i on t h e r e c o m b i n a t i o n path, happens t o be g r e a t e r t h a n (Ck,ktl n k pktl)-l. I n t h e l a t t e r case t h e t r a n s i t i o n t + i becomes r a t e d e t e r m i n i n g a f t e r some t i m e . However, a decay o f t h i s t y p e seems t o be r a t h e r e x c e p t i o n a l and s h a l l n o t be c o n s i d e r e d f u r t h e r .

The s o l u t i o n o f e q u a t i o n ( 7 ) under t h e c o n d i - t i o n s o f l i n e a r response i s an e x p o n e n t i a l decay w i t h a s i n g l e t i m e c o n s t a n t . Such a decay can be observed i n most e x p e r i m e n t s i f o n l y t h e g e n e r a t i o n i s made weak enough and whenever i t i s found, chances a r e v e r y good t h a t o u r approach i s v a l i d .

4. E v a l u a t i o n o f r e c o m b i n a t i o n times.- F o r an e v a l u a - t i o n o f t h e t r a n s i t i o n r a t e f a c t o r R i n e q u a t i o n ( 2 ) we use t h e i d e n t i t y p . - p . = ( p . - E . ) - ( u . - E . ) -I

J 1 0 J J 1 1

( E . - f i ) - ( Z . - E ) .I 1 + (E.-g.) J J - ( E ~ - E ~ ) .

The l a s t t w o - t e r m s a r e t h e e l e c t r o s t a t i c s h i f t s o f E~ and E . which a r e a p p r o x i m a t e l y equal f o r a l l

J

d i s l o c a t i o n l e v e l s and t h e r e f o r e cancel each o t h e r . I n s e r t i n g f o r uj - ui we o b t a i n :

exp(ci-gi ) / k ~ . exp(u .-E . ) / k ~

e x p ( ( p . - u . ) / k T ) = - J -

J 1 exp(ui-")/kT exp(fi-F.)/kT J (8)

We can e x p r e s s now t h e r a t e f a c t o r R i n terms o f e l e c t r o n - and h o l e d e n s i t i e s f o r any p a i r o f d i s - l o c a t i o n bands, k and k t l , and e v a l u a t e t h e recombi- n a t i o n t i m e under t h e assumption t h a t t h i s p a r t i c u - l a r p a i r i s r a t e d e t e r m i n i n g . There a r e f i v e p o s s i b l e c o m b i n a t i o n s o f w h i c h we have t o a n a l y s e t h e f o l l o w - i n g t h r e e :

i ) The upper band i s empty and t h e l o w e r one p a r t l y f i l l e d .

i i ) The upper band i s empty and t h e l o w e r one f u l l . i i i ) B o t h d i s l o c a t i o n bands a r e empty.

The r e m a i n i n g combinations o f two f u l l bands and o f a p a r t l y f i l l e d and a f u l l band a r e o b t a i n e d f r o m i i ) and i i i ) i f t h e energy s c a l e i s i n v e r t e d and e l e c t r o n s a r e exchanged f o r h o l e s and v i c e v e r s a .

(5)

C6-84 JCURNAL DE PHYSIQUE

Ne s h a l l now discuss t h e cases i ) t o i i i ) i n t u r n :

i ) Remembering t h a t E~ = u we o b t a i n from equations ( 2 ) , ( 3 ) and ( 5 ) REH = nEPH - ( i E / n E ) . exp(- hpH/NHk~)]. Linear response i m p l i e s t h a t ApH must be small enough f o r a l i n e a r expansion o f the exponential.

Furthermore

~

<< 1 so t h a t ,

~ ~ / i ~

where a = ;H/~HL(:H) LT End o n l y l i n e a r terms i n AnE and ApH have been taken i n t o account. NH i s t h e d e n s i t y o f s t a t e s i n t h e H-band.

An estimate o f a, assuming a reasonable bandwith o f ( 0 . 1 t o 1 eV) y i e l d s values o f t h e order o f 10 t o 100, depending on T.

I n n-type m a t e r i a l we have aApH/EH >> AnE/iE because a >> 1. Therefore RE,H = a i E ApH. The quasi Fermi l e v e l o f t h e valence band i s equal t o uH. Therefore the f r e e h o l e d e n s i t y i s pv = Nv exp(6,-p)/kT w h i l e

6,

= ~ , e x p ( ~ ~ - : ) / k T . With A P ~ = pv (exp ( - A U / ~ T ) - ' we o b t a i n by a l i n e a r expansion o f t 9 e exponential f u n c t i o n

A p v . = ApH a Pv and, n e g l e c t i n g holes i n o t h e r P u

d i s l o c a t i o n stayes below H ( i f t h e r e a r e any), A ~ t o t = ApH(l+ apV/oH).

Under most c o n d i t i o n s , since pv i s t h e m i n o r i t y c a r r i e r d e n s i t y , apv/pH c c 1 i . e . most excess holes a r e i n H and o n l y a small f r a c t i o n i n t h e valence band. Then the recombination time i s T = ( c ~ , ~ ~ ~ 1 - l exp(gE - E H ) / k ~ ) (lea) where we have used equation ( 3 ) f o r iE.

For low d i s l o c a t i o n d e n s i t i e s and a t temperatures close t o t h e i n t r i n s i c temperature a; /fl >> 1 i s

a l s o possible, so t h a t T =

:

(Bv/fE,HyE~H)

0 0

exp(cE-aH)/kT. With pv = (NcNv/nc)exp(-~G/kT), where EG i s t h e gap energy, t h i s can be t r a n s f o r - med t o

NcNv exp ( ( E ~ - t H )

-

Q / X T ) ( l o b )

= CEaHNEF

6 _ i s - t h e - e l e c t r o n d e n s i t y i n t h e conduction band.

1; p-type m a t e r i a l we have REH = 6,,AnE, Antot = An .(It N exp ( z E - g c ) / k ~ and t h e r e f o r e

E

r = (CE,HbH)- l(1tNc/NE ~ X ~ ( ; ~ - ; ~ ) / X T .

With cE-cC = ( c E -cH) t ( E ~ - E ~ ) - E~ t h e second term i n t h e brackets can be transformed t o (NcNV/

NE$) exp((EE-gH)

-

cG)/kT).

The recombination time i s t h e r e f o r e

NcNv 1 0 0

T =

---

T - exp ( ( E ~ - cH)

-

cG)/kT (lib)

'E ,HPH~E Pv

Equations ( l l a ) and ( l l b ) h o l d i f t h e excess mino- r i t y c a r r i e r s ( e l e c t r o n s ) a r e trapped i n t h e E- band o r r e s i d e i n the conduction band r e s p e c t i v e l y . i i ) To d i s t i n g u i s h the energy l e v e l s i n v o l v e d i n t h e

t r a n s i t i o n E-F from those o f t h e process E-H we use now t h e symbols qE and nF. The a n a l y s i s pro- ceeds as under i :

0 0 A'lE A p ~

REF = ~ E P F

(H ' F)

and, using t h e same algebra as before, we o b t a i n t h e f o l l o w i n g recombination times. I n n-type ma- t e r i a l :

T = (CE,F ~ ~ ) - ' e x p ( ; ~ - : ) / k T (12a)

i n p-type m a t e r i a l :

T = (CEFNF)- exp

(E

- ; F ) / k ~ ) (13a)

Again equations (12a) and (13a) are v a l i d i f the excess m i n o r i t y c a r r i e r s are trapped i n E and F r e s p e c t i v e l y , equations (12b) and (13b) h o l d i f these c a r r i e r s a r e i n f r e e band s t a t e s .

i i i ) This r e q u i r e s the presence o f two empty d i s l o c a - t i o n bands a t t h e same p a r t i a l d i s l o c a t i o n . I t i s a r a t h e r u n l i k e l y case because t h e t r a n s i t i o n pro- b a b i l i t y i s expected t o be extremely h i g h f o r two l e v e l s o f s i m i l a r c h a r a c t e r t h a t are c l o s e t o each o t h e r on t h e energy scale. The r e s u l t s are iden- t i c a l w i t h those under i ) i f pH i s replaced by NE2 and EE by cE1/ Therefore t h i s process i s h a r d l y d i s t i n g u i s h a b l e from "E-H".

5 . Trapping.- We know t h a t most d i s l o c a t i o n s i n semi- conductors are d i s s o c i a t e d and we have t o expect t h a t each p a r t i a l has i t s own spectrum o f energy l e - v e l s . Therefore we have t o consider t h e p o s s i b i 1 i t y t h a t recombination takes p l a c e a t one p a r t i a l w h i l e t h e o t h e r one a c t s as a t r a p . The case o f i n t e r e s t i s the combination o f a H-band, t o g e t h e r w i t h F and E, a t one p a r t i a l andan E- and an F-band w i t h a gap between oE and qF a t t h e o t h e r one. Excess m i n o r i t y c a r r i e r s t h a t want t o recombine v i a l e v e l cr a t one d i s l o c a t i o n can be trapped i n a l e v e l E~ a t t h e o t h e r p a r t i a l . E can t r a p e l e c t r o n s , F can t r a p holes and H can t r a p e l e c t r o n s and holes I f c t and E, are i n thermal e q u i l i b r i u m , as they must be under steady s t a t e c o n d i t i o n s , t h e f r a c t i o n o f c a r r i e r s i n er i s o n l y ( I +

$

N eQp (er - ~ ~ ) / k T ) - l f o r excess e l e c - t r o n s and ( I t r

~

exp ( c t

-

e r ) / k f ) - ' f o r excess

(6)

K . Labusch C6-85

holes. Nt and Nr are e f f e c t i v e d e n s i t i e s o f s t a t e s . The expressions i n t h e brackets e n t e r t h e correspon- d i n g recombination times as f a c t o r s .

Obviously hole t r a p s a r e i n e f f i c i e n t i f ct i s below cr because otherwise (Nt/Nr)exp(ct-cr)/kT<<l.

On the o t h e r band, qF must be below cH. Therefore t h e r e i s no e f f e c t o f t r a p p i n g by t h e F-band a t nF i f , i n n-type m a t e r i a l , t h e process E-H i s r a t e de- termining. The same holds f o r p - m a t e r i a l and t h e pro- cess H-F.

I n p - m a t e r i a l , w i t h ct = nE and cr = qE, t r a p p i n g i s p o s s i b l e and equation ( l l a ) i s replaced by

T = ( ~ ~ ~ p ~ ) - ' ~ ~ ~ ( 2 ~ - nE)/kT ( I 1 c ) provided t h a t cE i s above nE and E-H t h e r a t e d e t e r - mining t r a n s i t i o n . As an example we have i l l u s t r a t e d t h i s case i n f i g u r e 3.

F i g . 3 : Model o f recombination and t r a p p i n g a t a d i s s o c i a t e d d i s l o c a t i o n . I n t h i s example o f p-type m a t e r i a l t h e r a t e determining t r a n s i t i o n c o u l d be from cE t o uH w h i l e most excess e l e c t r o n s are s t o r e d a t uE.

I f recombination takes p l a c e v i a the l e v e l s a t nE and qF, t h e H-band a t t h e companion d i s l o c a t i o n i s always an e f f i c i e n t t r a p because E~ i s above qF and below nE. The corresponding recombination times i n n- and p-material are obtained by m u l t i p l i c a t i o n o f e u a t i o n s (12a) and (12b) w i t h

#

N exp(gH - : E ) / k ~

I,

0 0 F

and exp(nE - E ~ ) / ~ T . T h i s y i e l d s i n both cases.

T = --- exp (:E H - ; F ) / k ~

EF E F ( 1 2 ~ )

6. Discussion and a p p l i c a t i o n t o Ge.- For comparison w i t h experiments we a r e mainly i n t e r e s t e d i n t h e a c t i v a t i o n energy Q o f T which c o n s i s t s o f t h e a c t i - v a t i o n energy Qi o f t h e f a c t o r C i l t h e extrapo-

, j Y

l a t e d value o f the energy d i f f e r e n c e i n t h e exponen- t i a l a t T = 0 and, i n some cases, the f r e e c a r r i e r c o n t r i b u t i o n Qc = 61n(Nc/nc)/6(l/kT) o r Q v = 61n ( N , , / P ~ ) / G ( ~ / ~ ~ ) . A l i n e a r e x t r a p o l a t i o n o f t h e

energy d i f f e r e n c e t o T = 0 i s necessary because any p a r t t h a t i s l i n e a r i n T does n o t c o n t r i b u t e t o Q. I n our r e s u l t s , w i t h t h e exception o f equation ( l l c ) , t h e r e appear o n l y energy d i f f e r e n c e s a t the same par- t i a l d i s l o c a t i o n so t h a t t h e i r dependence on T i s weak, b u t nevertheless the a c t i v a t i o n energies i n the f o l l o w i n g t a b l e should be considered as the extrapo- l a t e d r a t h e r than t h e t r u e values. The temperature dependence o f some o f t h e energy d i f f e r e n c e s has been c a l c u l a t e d by W. Schroter /2/. I n the same paper a l s o p o s s i b l e mechanisms t h a t y i e l d an a c t i v a t i o n energy f o r C . have been discussed. Qi . t u r n s o u t

I ,j 1 J

t o be small b u t n o t n e g l i g i b l e ( o f the order o f 0.1 eV). The columns o f t h i s t a b l e r e f e r t o t h e r a t e determining t r a n s i t i o n s "E-F", "E-H" and "H-F1' . The expressions under "H-F" can be obtained w i t h o u t c a l - c u l a t i o n from "E-H" by the conversion o f e l e c t r o n s and holes. The l i n e s a, b and c r e f e r t o t h e c o r r e s - ponding l e t t e r s a t equations (10a) t o (13b). The excess m i n o r i t y c a r r i e r s are s t o r e d i n d i f f e r e n t l e v e l s f o r a, b and c :

I n t h e recombination l e v e l i t s e l f f o r a, i n f r e e band s t a t e s f o r b and i n a t r a p p i n g l e v e l a t t h e companion p a r t i a l f o r c.

The f o l l o w i n g experimental f a c t s are known about d i s l o c a t i o n s (probably m a i n l y o f the 60'-type) i n Ge from p h o t o c o n d u c t i v i t y measurements : I n a p l o t o f T versus t h e photon energy hv t h e r e i s , a t low temperatures, a s t e p a t hv z 0.45 t o 0.5 eV w i t h t h e h i g h e r value o f T above 0.5 eV /6/. Obviously t h i s must correspond t o a change o f the recombination p a t h e i t h e r from "H-F" t o "E-H" o r from "H-F" t o

"E-F", because E s t a y s empty and cannot be on the recombination p a t h f o r small phtoon energies. This holds f o r n- and p - m a t e r i a l . For t h e h i g h e r photon energies the a c t i v a t i o n energy i s Q = 0.4 t o 55 eV i n n-Ge and Q around 0.25 eV i n p-Ge.

From o t h e r experiments we know t h a t a H-band e x i s t s /7,8/ so t h a t f o r t h e p a t h "E-F", H-trapping must be expected. The d i f f e r e n c e o f Q i n n-Ge and p-Ge then r u l e s o u t t h e p a t h "E-F" because i t would y i e l d t h e same a c t i v a t i o n energy f o r n-Ge and p-Ge.

Consequently t h e recombination must be "E-H". The a c t i v a t i o n energy o f 0.25 eV i n p-Ge appears t o be t o o h i g h t o be accounted f o r by QE,H alone. There- f o r e l i n e "c" i n t h e lower h a l f o f column "E-H" i s more l i k e l y than l i n e "a". A t h i g h e r temperatures t h e a c t i v a t i o n energy i s o f t h e order o f - 0.22.eV i n p-Ge and n-Ge. Obviously t h e l i n e s "b" apply t o t h i s case. With t h e o u t s i d e i n f o r m a t i o n t h a t (cH - E ~ ) z 0.1 eV / 7 / we can r u l e o u t column "H-F".

(7)

JOLIRNAL DE PHYSIQUE

Table I : A c t i v a t i o n energies o f recombination times

The remaining two cases "E-H" and "E-F" cannot be References

n-type

d i s t i n g u i s h e d a t present. I n t h e t a b l e the cases /1/ F i g i e l s k i , T., Phys. S t a t u s S o l i d i 2 (1965) 555.

t h a t t u r n o u t t o be v a l i d i n Ge from t h i s a n a l y s i s / 2 / Schroter, W., Phys. S t a t u s S o l i d i (a) - 19 (1973)

are i n d i c a t e d by double l i n e s . 159.

c not possible

Q ~+ ,"E ~- 'IF

QE,F + qE

-

fi

QE F + nE - vF

-

EG + QC

P-type

/3/ Jastrzebska, M. and F i g i e l s k i , T., Phys. Status S o l i d i

32

(1969) 791.

/4/ Labusch, R. and Schroter, W . , 1nst.PHys. Conf.

Ser. No 23 (1975) 56.

QH,F

QH,F + EH

-

EE

-

EG + QC

a b

QE,F +

-

"F

Q~ + nE - vF - E~ +

Qv

Q ~+ ,"E ~

-

'IF

/5/ Landsberg, T., Festkoperprobleme I V , ( V e r l a g F.

Vieweg, Braunschweig) 1967.

/6/ Mergel, D. and Labusch R., Phys. Status S o l i d i ( a )

41

(1977) 431.

/7/ Schroter, W., Phys. Status S o l i d i - 21 (1967) 211.

Q + E - E

QE,H + e E - c H - eG + QC

a b C

/8/ Labusch, R. and S c h e t t l e r , R., Phys. Status So- l i d i ( a ) 9 (1972) 455. -

QE,H

Q ~+ ,'E ~

-

'H

-

'G +

Qv

Q ~+ ,'E ~

-

"E

QH,F + EH - EF - cG + QV not p o s s i b l e

I

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to