• Aucun résultat trouvé

PREDICTION OF A TURBULENT REACTING DUCT FLOW WITH SIGNIFICANT RADIATION

N/A
N/A
Protected

Academic year: 2021

Partager "PREDICTION OF A TURBULENT REACTING DUCT FLOW WITH SIGNIFICANT RADIATION"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00214782

https://hal.archives-ouvertes.fr/jpa-00214782

Submitted on 1 Jan 1971

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PREDICTION OF A TURBULENT REACTING DUCT FLOW WITH SIGNIFICANT RADIATION

F. Lockwood, D. Spalding

To cite this version:

F. Lockwood, D. Spalding. PREDICTION OF A TURBULENT REACTING DUCT FLOW WITH SIGNIFICANT RADIATION. Journal de Physique Colloques, 1971, 32 (C5), pp.C5b-27-C5b-31.

�10.1051/jphyscol:1971563�. �jpa-00214782�

(2)

PREDICTION OF A TURBULENT REACTING DUCT FLOW WITH SIGNIFICANT RADIATION F. C. Lockwood and D. B. Spalding

Mechanical Engineering Department, Imperial College, London, S.W.7, England

On p r s s e n t e une f i t h o d e pour prPdire un Gcoulement t u r b u l e n t dans un conduit 3 s p g t r i e a x i a l e ou une f l a m e d i f f u s i v e s e produit, e t on developpe un modale pour p r d d i r e larayonnementconsiddrable de chaleur.

Ce modsle e s t incorpor'e a' une p r o d d u r e disponible pour rssoudre l e t r a n s f e r t convectif e t d i f f u s i f d e moment, de c h a l e u r , e t de masse.

A method i s presented f o r p r e d i c t i n g a confined, t u r b u l e n t , axisymmetrical duct flow i n which a d i f f u s i o n flame occurs. Radiation i s important and a model i s developed f o r i t s p r e d i c t i o n which i s incorporated i n t o an e x i s t i n g s o l u t i o n procedure f o r t h e convective and d i f f u s i v e t r a n s f e r s of momentum, h e a t and matter.

1. Introduction

1.1 The problem. I n t h i s paper we present a method s u f f i c i e n t t o employ t h e "conduction approximation"

f o r p r e d i c t i n g t h e hydrodynamic and thermal behaviour of r a d i a t i o n . Usually, however, t h e flame emisiviky of an axi-symmetrical t u r b u l e n t d i f f u s i o n flame con- i s too small t o j u s t i f y t h i s step.

f i n e d i n a duct (Fig. 1). We suppose t h a t r a d i a t i o n The best-known method of solving t h e r a d i a t i v e - makes a s i g n i f i c a n t c o n t r i b u t i o n t o t h e h e a t f l u x e s t r a n s f e r problems of flames i s t h a t of Hottel and i n t h e r a d i a l d i r e c t i o n , b u t t h a t t h e a x i a l t r a n s f e r Sarofim 121. This r e q u i r e s t h e s o l u t i o n of an i n t e - of h e a t , by both r a d i a t i o n and c o n d ~ ~ c t i o n , may be g r o - d i f f e r e n t i a l equation, i n f i n i t e - d i f f e r e n c e f o n ; neglected. The v e l o c i t y i n t h e a x i a l d i r e c t i o n i s t h e computational t a s k i s a heavy one, because each supposed everywhere t o be of t h e same sign. sub-domain of t h e space i n f l u e n c e s each o t h e r sub-

domain, and t h e i n f l u e n c e c o e f f i c i e n t s a r e burdensome t o compute. We have t h e r e f o r e p r e f e r r e d t o employ a

diffusion -

formulation introduced by Schuster [3] and elab-

flame

orated by Hamaker [ A ] , which focusses a t t e n t i o n

~ i r 0 - - - -

on t h e f l u x e s of r a d i a t i o n i n two opposed d i r e c t i o n s , and l e a d s t o d i f f e r e n t i a l equations which can be Fig. 1 Geometry and flow conditions

of t h e problem solved

There a r e some simple i n d u s t r i a l flames of t h i s kind; f o r them t h e method of p r e d i c t i o n w i l l be use- f u l t o design engineers. Most i n d u s t r i a l flames a r e however complicated by three-dimensionality and by r e c i r c u l a t i o n of gas flow; f o r t h e s e , a more elabor- a t e p r e d i c t i o n procedure i s necessary; however, t h e present treatment of r a d i a t i o n can be extended t o t h e s e cases, and methods of handling t h e convective processes e i t h e r e x i s t o r a r e under development.

1.2 The method of solution. I n t h e absence of radi- a t i o n , t h e problem can b e solved straightforwardly by a p p l i c a t i o n of t h e f i n i t e - d i f f e r e n c e procedure of Patankar and Spalding [I], which solves coupled non- l i n e a r p a r a b o l i c equations, and which has a b u i l t - i n model of t u r b u l e n t t r a n s f e r .

This method i s used i n t h e present work f o r hand- l i n g t h e equations describing t h e convective and d i f f u s i v e t r a n s f e r s of momentum, h e a t and matter;

solved f a i r l y simply.

Two developments of t h i s l a t t e r method have had t o be made. F i r s t , t h e equations have required form- u l a t i o n f o r a n axi-symmetrical flow; it emerges t h a t new terms, of non-obvious form, e n t e r t o a f f e c t appreciably t h e behaviour. Secondly, it i s necessary t o express t h e new equations i n a manner which allows t h e i r s o l u t i o n , simultaneously with t h o s e f o r veloc- i t y , stagnation enthalpy and concentration, by means of t h e Patankar-Spalding computer program.

I n s e c t i o n 2, d e t a i l s of t h e p r e d i c t i o n procedure a r e given; t h e g r e a t e s t a t t e n t i o n i s devoted t o t h e r a d i a t i o n t r a n s f e r because of i t s novelty; t h e re- maining matters a r e t r e a t e d f l e e t i n g l y because of t h e a v a i l a b i l i t y o f [I]. Section 3 of t h e paper i s de- voted t o t h e d e s c r i p t i o n and discussion of t h e r e s u l t s of p a r t i c u l a r computations; t h e s e have been provided mainly t o i l l u s t r a t e t h e new p r e d i c t i v e p o s s i b i l i t i e s , n o t f o r comparison with any p a r t i c u l a r experiments.

Such comparisons have not y e t been made.

however we have had t o extend it so a s t o account 2. General Analysis

a l s o f o r t h e important r a d i a t i v e exchanges. Of 2.1 Assumptions. The chemical k i n e t i c s a r e supposed course, i f t h e mean f r e e path of r a d i a t i o n were very f a s t enough f o r t h e r e a c t i o n t o b e p h y s i c a l l y con- small i n comparison with t h e flame width, it would b e t r o l l e d . The thermodynatnics a r e those of a simple-

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1971563

(3)

F.

C. LOCKWOOD ET D . B . SPALDING

c h e m i c a l l y r e a c t i n g system. Three a s s u m p t i o n s d e f i n e t h i s s y s t e m , t h e y a r e : t h a t t h e o n l y r e a c t i o n i s b e t - ween f u e l and o x i d a n t which u n i t e i n f i x e d propor- t i o n s ; t h a t t h e c o n s t a n t - p r e s s u r e s p e c i f i c h e a t s o f t h e f u e l , o x i d a n t and p r o d u c t s a r e c o n s t a n t and e q u a l ; and t h a t t h e d i f f u s i v e t r a n s p o r t p r o p e r t i e s :

rh, rfu,

Ex

and

trod

a r e a l l e q u a l a t a n y p o i n t i n t h e f l u i d . P r a n d t l ' s m i x i n g - l e n g t h h y p o t h e s i s i s employed t o de- t e r m i n e t h e e f f e c t i v e v i s c o s i t y o f t h e t u r b u l e n t f l o w , and c o n s t a n t t u r b u l e n t P r a n d t l / S c h m i d t nurrhers a r e p r e s c r i b e d .

The r a d i a t i o n h e a t t r a n s f e r i s d e t e r m i n e d from a two-flux model, t h e s e f l u x e s b e i n g opposed and i n t h e r a d i a l d i r e c t i o n . The a n c u l a r d i s t r i b u t i o n of b o t h i n c i d e n t and s c a t t e r e d r a d i a t i o n i s i s o t r o p i c . The a b s o r p t i o n and s c a t t e r i n g c o e f f i c i e n t s a r e supposed p r o p o r t i o n a l t o t h e mass c o n c e n t r a t i o n o f f u e l .

2.2 D i f f e r e n t i a l e q u a t i o n s . With t h e p r e c e e d i n g a s s u m p t i o n s a b o u t t h e c h e m i c a l k i n e t i c s and thermo- dynamics, t h r e e s i m u l t a n e o u s c o n s e r v a t i o n e q u a t i o n s f o r momentum, e n t h a l p y and m i x t u r e f r a c t i o n e n a b l e t h e c o n v e c t i v e h e a t and mass t r a n s f e r and combustion t o b e determined. These e q u a t i o n s a r e :

a f a f

p x + p y ; =

C).

r ar e f f 3 r

One f u r t h e r d i f f e r e n t i a l e q u a t i o n i s r e q u i r e d t o pre- d i c t t h e r a d i a t i o n t r a n s f e r ; t h i s e q u a t i o n i s now d e r i v e d .

C o n s i d e r an a n n u l a r r i n g o f t h i c k n e s s d r - a t a d i s - t a n c e r from an a x i s o f symmetry i n an a b s o r b i n g and s c a t t e r i n g medium ( s e e Fig. 2 ) . L e t t h e r a d i a t i o n f l u x t r a v e l l i n g i n t h e d i r e c f i o n o f p o s i t i v e r b e d e s i g n a t - ed by I ; and t h a t t r a v e l l i n g i n t h e d i r e c t i o n o f n e g a t i v e r b y J . L e t t h e a b s o r p t i o n and s c a t t e r i n g c o e f f i c i e n t s o f t h e medium h a v e t h e symbols a and s , r e s p e c t i v e l y .

C o n s i d e r t h e r a d i a t i o n e n e r g y f l o w 2jfrI t r a v e r s i n g t h e t h i c k n e s s d r ef t h e a n n u l a r r i n g . A f r a c t i o n 2 r r a I d r i s a b s o r b e d ; a n d , i f t h e s c a t t e r i n g i s i s o - t r o p i c , a f r a d n 2 t r r z 1 d r i s e l i m i n a t e d b y backward

2

s c a t t e r i n g i n t h e d i r e c t i o n o f n e g a t i v e r. The e n e r g y f l o w 2 r r 1 i s augmented by a f r a c t i o n 2 8 r

$

Jdc d u e t o backward s c a t t e r i n g o f t h e J f l u x . I f t h e i n c i d e n t r a d i a t i o n i s i s o t r o p i c , i t i s f u r t h e r augmented by a

d r

f r a c t i o n

-

o f t h e f l u x which e n t e r s t h e r i n g o f r a d i u s r + d r , b u t which d o e s n o t l e a v e t h e r i n g o f

r a d i u s r. F i n a l l y , i t i s augmented by a f r a c t i o n d a r E d r due t o e m i s s i o n from t h e g a s e s and p a r t i c l e s w i t h i n t h e r i n g .

L

2

J f l u x w h i c h

joins I

f l u x F i g . 2. S k e t c h showing r a d i a t i o n f l u x e s

Summation o f a l l o f t h e s e i n f l u e n c e s on t h e f l o w 2 r r 1 y i e l d s a d i f f e r e n t i a l e q u a t i o n f o r t h e v a r i a t i o n o f t h e f l u x I w i t h r a d i u s , namely:

The c o e f f i c i e n t a which m u l t i p l i e s E c a n b e v e r i f i e d a s t h e c o r r e c t o n e by c o n s i d e r a t i o n o f t h e c a s e o f t h e r m a l e q u i l i b r i u m where I = Z = E and d ( r I ) / d r

= J/r. The v a r i a t i o n o f t h e J f l u x c a n b e deduced from a n a l o g o u s arguments; t h e r e s u l t i s :

E q u a t i o n 4 and 5 a r e t h e f o u n d a t i o n on which o u r t h e o r y rests It i s t h e t e r m s J/r, and t h e p r e s e n c e o f r t o t h e r i g h t o f t h e d i f f e r e n t i o n s i g n , t h a t d i s t i n g u i s h them from t h o s e o f [2,3]. The two e q u a t i o n s c a n b e combined t o y i e l d a second o r d e r d i f f e r e n t i a l e q u a t i o n :

where F s t a n d s f o r t h e q u a n t i t y ( I + J ) . T h i s i s t h e e q u a t i o n d e s c r i b i n g t h e r a d i a t i o n t r a n s f e r which we s o l v e s i m u l t a n e o u s l y ~ w i t h e q u a t i o n s 1 t o 3. The r a d i a t i o n h e a t f l u x Q g I

-

J i s c a l c u l a b l e from t h e r e l a t i o n :

Q = l + ( a + s ) r d r 2 r ( 7 2.3 The s o l u t i o n procedure. The computer-based s o l u t i o n p r o c e d u r e o f P a t a n k a r and S p a l d i n g i s d e s - c r i b e d i n d e t a i l i n [I]. I t s o l v e s p a r a b o l i c equa- t i o n s of t h e form:

(4)

PREDICTION OF A TURBULENT REACTING DUCT FLOW WITH SIGNIFICANT RADIATION C5b-29

where d s t a n d s f o r a dependent v a r i a b l e ;

w

f (W-

vI)/(Y - Y

) i s a d i m e n s i o n l e s s stream I f u n c t i o n :

f u n c t i o n which r a n g e s a r -(d$!I/dx)/qE-YI); b E -(d(W E

-Y

I ) / ~ X ) / ( V ~ - Y ! ) ; cd E ' r 2 ~ ~ ~ e f f / I . ( $ E

-

$ I ) a

aeff

and d i s a s o u r c e term.

d

Couette-flow formulae a r e i n c o r p o r a t e d which d e t e r - mine t h e f l u x e s of h e a t , mass and momentum n e a r walls. Marching i n t e g r a t i o n i s employed, i t e r a t i o n b e i n g e n t i r e l y avoided. The procedure p e r m i t s a s e t of simultaneous e q u a t i o n s which p o s s e s s t h e common form o f 8 t o b e solved v e r y r a p i d l y .

E q u a t i o n s 1 , 2 , 3 and 6 a l l p o s s e s s t h e form o f e q u a t i o n 8 , with $ s t a n d i n g r e s p e c t i v e l y f o r u , h , f and F; b u t convection t e r m s , r e p r e s e n t e d by t h o s e on t h e l e f t - h a n d s i d e of e q u a t i o n 8 , a r e a b s e n t from e q u a t i o n 6. This d i f f e r e n c e i s , however, e a s i l y r e s o l v e d by m u l t i p l y i n g t h e terms on t h e right-hand s i d e of e q u a t i o n 8 , when d s t a n d s f o r F, by a f a c t o r s u f f i c i e n t l y l a r g e t o make n e g l i g i b l e t h e i n f l u e n c e of t h o s e t o t h e l e f t of t h e equal sign.

The Patankar-Spalding s o l u t i o n procedure p e r m i t s l i n e a r i z a t i o n of t h e s o u r c e term o v e r t h e forward step. We have a v a i l e d o f t h i s f e a t u r e i n t h e c a s e of e q u a t i o n 6 and have expressed i t s source term, t h e second one, a s :

d =

-

a ( E u - FD)

F PU ( 9 )

where t h e ~ u b s c r i p t s U and D r e f e r t o t h e upstream and downstream l o c a t i o n s between which a forward s t e p i s made. The source term of e q u a t i o n 2, d =

2 - ,

i s n o t l i n e a r i z e d and i s expressed

h pur d r

from e q u a t i o n s 6 and 7 a s :

These f o r m u l a t i o n s f o r t h e s o u r c e terms e n s u r e a c o r r e c t e n t h a l p y b a l a n c e and r e s u l t i n good compu- t a t i o n a l s t a b i l i t y .

The r a d i a t i o n f l u x streaming from a w a l l i s t h e summation of t h e r e f l e c t e d i n c i d e n t f l u x p l u s t h e w a l l emission:

J W = ( 1

-

c w ) Iw

+

EWEw (11)

Using e q u a t i o n 7 and t h e d e f i n i t i o n s o f F and Q, t h i s r e l a t i o n can b e r e c a s t a s :

T h i s i s t h e boundary c o n d i t i o n which must b e a p p l i e d

t o e q u a t i o n 6 a t t h e d u c t wall. It i s unusual i n t h a t b o t h t h e g r a d i e n t and magnitude o f t h e depend- e n t v a r i a b l e F a r e p r e s c r i b e d . We have i n c o r p o r a t e d i t i n t o t h e f i n i t e - d i f f e r e n c e scheme 'of t h e s o l u t i o n procedure u s i n g an i m p l i c i t formulation.

3. P a r t i c u l a r Computations

3.1 Problem s p e c i f i c a t i o n . The d u c t o f Fig. 1 i s 1 m i n d i a m e t e r and i s cooled t o a uniform tempera- t u r e of 363O~. The f u e l i s o i l and t h e f i r i n g r a t e i s 3 . 1 ~ 1 0 7 W. The a i r i s a t ambient c o n d i t i o n s and i t s flow r a t e i s 20% i n e x c e s s of t h e s t o i c h i o m e t r i c requirements. The d e n s i t y of t h e gaseous m i x t u r e i s c a l c u l a t e d from t h e e q u a t i o n o f s t a t e ; i t s l a m i n a r v i s c o s i t y i s presumed t o vary a s t h e t e m p e r a t u r e r a i s e d t o t h e power one h a l f . The mixing l e n g t h v a r i e s i n accordance w i t h f o l l o w i n g s p e c i f i c a t i o n :

A D / ~ x < Y / ( D / ~ ,

R = h W 2 ; (13b) where y i s t h e d i s t a n c e from t h e w a l l and

6

and

/\

a r e c o n s t a n t s a s s i g n e d t h e v a l u e s 0.44 and 0.09 r e s - p e c t i v e l y . The t u r b u l e n t Prandtl/Schmidt numbers a r e e q u a l t o 0.86.

It i s n o t t h e i n t e n t i o n h e r e t o suppose formulae f o r a b s o r p t i o n and s c a t t e r i n g c o e f f i c i e n t s i n keeping with t h e most r e c e n t knowledge. An a d e q u a t e demon- s t r a t i o n of t h e c a p a b i l i t i e s of t h e flux-model can b e e f f e c t e d u s i n g v e r y simple formulae which never- t h e l e s s a r e n o t wholly u n r e a l i s t i c . I n t h i s s p i r i t , we pressume t h a t t h e a b s o r p t i o n and s c a t t e r i n g c o e f f i c i e n t s a r e p r o p o r t i o n a l t o t h e mass concentra- t i o n of f u e l , hence:

a = h m

a f u ' ( 1 4 a )

and s = & m

s f u ' (14b)

where t h e

8's

a r e t h e c o n s t a n t s of p r o p o r t i o n a l i t y . 3.2 Some r e s u l t s Fig. 3 shows t h e d i s t r i b u t i o n o f w a l l h e a t f l u x o v e r a l e n g t h o f 10 d u c t d i a m e t e r s downstream o f t h e f u e l i n j e c t i o n l o c a t i o n . Curves a r e shown f o r v a l u e s o f

8

r a n g i n g from 2 t o 40 i n t h e absence o f s c a t t e r i n g . The maximum v a l u e o f t h e a b s o r p t i o n c o e f f i c i e n t space-averaged a c r o s s t h e d u c t

amax

i s i n d i c a t e d f o r e a c h v a l u e o f

aa.

These

vary from 0.14 t o 2.8, a range which i n c l u d e s v a l u e s t y p i c a l l y encountered i n o i l - f i r e d furnaces. The shapes o f t h e h e a t - f l u x d i s t r i b u t i o n s a r e a l s o t y p i c a l o f t h o s e measured i n f u r n a c e t r i a l s . The maximum h e a t f l u x o c c u r s a t an x/D o f about 1.7 i n each c a s e

.

The r a t i o o f t h e maximum t o averaged h e a t f l u x e s i n c r e a s e s with i n c r e a s i n g absorption.

(5)

F. C . LOCKWOOD ET D . B. SPALDING

The i n c r e a s e i n t h e h e a t f l u x r e l a t i v e t o an i n c r e a s e i n

ga

becomes p r o g r e s s i v e l y l e s s s i n c e t h e absorb- t i v i t y cannot exceed u n i t y . Although n o t shown on Fig. 3, t h e c o n v e c t i v e wall h e a t t r a n s f e r i s a l s o an outcome of t h e s o l u t i o n . When&a i s 40, f o r example, it r i s e s slowly with x reaching t h e s i g n i f i c a n t value

4 2

of 5.7 x 1 0 W/m a t x/D = 10.

Fig. 3. D i s t r i b u t i o n of \ $ a l l h e a t f l u x

Fig. 4 e x h i b i t s temperature p r o f i l e s a t two down- stream s t a t i o n s : x/D = 1.9 and 8.2. P r o f i l e s a r e shown a t b o t h s t a t i o n s f o r two c a s e s : without r a d i a t i o n t r a n s f e r , and with r a d i a t i o n corresponding t o

8

= 40 and no s c a t t e r i n g . T h i s m e a n t of r a d i a - t i o n lowers t h e maximum t e m p e r a t u r e s , ~ h i c h of

c o u r s e o c c u r a t t h e flame l o c a t i o n , by about 2 6 0 ~ ~ a t x/D = 1.9 and by about 4 2 0 ~ ~ a t x/D = 8.2. The maximum t e m p e r a t u r e s a r e s t i l l h i g h e r than would o c c u r i n p r a c t i c e , t h e y exceed t h e a d i a b a t i c flame t e m p e r a t u r e , b u t a more j u d i c i o u s s p e c i f i c a t i o n o f s p e c i f i c h e a t would c o r r e c t t h i s . The d e c r e a s e i n flame temperature caused by r a d i a t i o n has t h e con- sequence of d i m i n i s h i n g t h e importance of d i s s o c i a - t i o n which cannot b e p r o p e r l y accounted f o r by simple t h e o r e t i c a l models of chemical r e a c t i o n . Note t h a t t h e r a d i a t i o n removes h e a t from t h e c e n t r a l r e g i o n of t h e flow with t h e r e s u l t t h a t t h e tempera- t u r e r i s e t h e r e due t o conduction from t h e flame be- tween t h e two s t a t i o n s i s o n l y small.

Fig. 5 d i s p l a y s p r o f i l e s o f h e a t flux a t t h e s t a t i o n x/D = 1.9 f o r

8

r a n g i n g from 2 t o 40 and no s c a t t e r i n g . The p r o f i l e s have t h e expected shapes.

They a r e i n c l u d e d because t h e y demonstrate t h a t l o c a l i n f o r m a t i o n a b o u t t h e h e a t f l u x can r e a d i l y b e o b t a i n e d u s i n g t h e p r e s e n t procedure. Such i n f o r m a t i o n i s of g r e a t v a l u e when t h e l o c a t i o n o f ,

r ( m )

Fig. 4: Temperature p r o f i l e s The s o o t p a r t i c l e s formed i n o i l flames a r e smll enough f o r s c a t t e r i n g t o b e n e g l i g i b l e . The p a r t i c l e s may, however, aglomerate; and c e n o s p h ~ r e s may b e p r e s e n t . Also, t h e p a r t i c l e s in a pulverized- c o a l flame a r e n o t s m a l l enough for s c a t t e r i n g t o b e i n s i g n i f i c a n t . The complete r a d i a t i o n theory must, t h e r e f o r e , b e c a p a b l e o f h a n d l i n g s c a t t e r i n g . I n Fig. 6 two h e a t - f l u x p r o f i l e s a r e p r e s e n t e d f o r

(r_

= 40 a t x / D = 1.9; t h e broken c u r v e i s o b t a i n e d

r ( m )

Fig. 5 Heat-flux p r o f i l e s

(6)

PREDICTION OF A TURBULENT REACTING DUCT FLOW WITH SIGNIFICANT RADIATION C5b-3 1

when t h e r e i s no s c a t t e r i n g , while t h e s o l i d curve i s t h e result h e n t h e r a t i o of s c a t t e r e d t o absorb- ed r a d i a t i o n i s one h a l f . The e f f e c t of t h i s r a t h e r l a r g e amount of s c a t t e r i s n e g l i g i b l e . ?his was a l s o found t o b e t h e case f o r smaller values of%,.

Of course, s c a t t e r i n g i s not, i n general, i s o t r o p i c a s assumed i n t h e present analysis. This assumption i s , however, not a requirement o f the f l u x model.

5. Conclusions

A numerLca1 method has been presented which enables t h e e n t i r e hydrodynamic and thermal n a t u r e of a chemically-reacting, absorbing and s c a t t e r i n g flow t o be predicted. The f e a s i b i l i t y of t h e method has been denonstrated through i t s applica- t i o n t o t h e p r e d i c t i o n of a t u r b u l e n t duct flow containing a d i f f u s i o n flame. The method i s rapid.

Using 20 g r i d d i v i s i o n s i n t h e r a d i a l d i r e c t i o n and with a forward s t e p s i z e equal t o 1/50 of t h e duct

r a d i u s , t h e time required by an IBM 7094 t o compute

0 0.1 0.2 0.3

0.4

0.5

s o l u t i o n s i n t h e range 0 Q d D 10 was t y p i c a l l y

r ( m )

2 minutes. The development of t h e method i s , however, i n i t s e a r l y stages. I n t e n s i v e t e s t i n g i s y e t required before t h e s t a t u s of a r e l i a b l e design t o o l f o r t h e p r a c t i s i n g engineer can be accorded t o it.

6. Nomenclature

a

-

s c a t t e r i n g c o e f f i c i e n t

-

a maxirnum value of a space-averaged across duct max

D duct diameter

E emissive power

f mixture f r a c t i o n defined a s mass of f u e l - bearing stream 141ich has mixed with oxidant- bearing stream t o produce u n i t mass of products.

F (I+J), t h e sum of t h e r a d i a t i o n f l u x e s h s p e c i f i c enthalpy

m

mass f r a c t i o n p p r e s s u r e r r a d i a l d i s t a n c e s s c a t t e r i n g c o e f f i c i e n t

Fig. 6: E f f e c t of s c a t t e r i n g streamwise v e l o c i t y

r a d i a l v e l o c i t y

streamwise d i s t a n c e from f u e l - i n j e c t i o n s t a t i o n

d i s t a n c e from and normal t o t h e duct wall p/u, a d i f f u s i v e t r a n s p o r t c o e f f i c i e n t a/mfu, an absorption constant

d m f u , a s c a t t e r i n g constant e m i s s i v i t y

a mixing-length constant a mixing-length constant f l u i d v i s c o s i t y

f l u i d d e n s i t y

Prandtl/Schmidt number a dependent v a r i a b l e S u b s c r i p t s

e f f e f f c t i v e sum of laminar and t u r b u l e n t conzributions

f u , ox, prod fuel, oxidant, products

w wall value

REFERENCES

[I] Patankar (S.V. and Spalding (D.B. ), 'Radiative t r a n s f ~ r ' . McGraw H i l l , 1967.

'Heat and Mass Transfer i n boundary l a y e r s ' .

I n t e r t e x t Books. London, 1970. [31 s c h u s t e r ( A e ) , Astrophys. J., 1905,

2,

1.

[21 H o t t e l (H.C.) and Sarofim (A.F. 1, [4I Hamaker (H.c.), P h i l i p s Res. Rpt., 1947,.

2,

55.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to