• Aucun résultat trouvé

INTERFACE RECOMBINATION IN GaAs-GaAlAs QUANTUM WELLS

N/A
N/A
Protected

Academic year: 2021

Partager "INTERFACE RECOMBINATION IN GaAs-GaAlAs QUANTUM WELLS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00226729

https://hal.archives-ouvertes.fr/jpa-00226729

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTERFACE RECOMBINATION IN GaAs-GaAlAs QUANTUM WELLS

B. Sermage, M. Pereira, F. Alexandre, J. Beerens, R. Azoulay, C. Tallot, A.

Jean-Louis, D. Meichenin

To cite this version:

B. Sermage, M. Pereira, F. Alexandre, J. Beerens, R. Azoulay, et al.. INTERFACE RECOMBI- NATION IN GaAs-GaAlAs QUANTUM WELLS. Journal de Physique Colloques, 1987, 48 (C5), pp.C5-135-C5-138. �10.1051/jphyscol:1987525�. �jpa-00226729�

(2)

INTERFACE RECOMBINATION IN GaAs-GaAlAs QUANTUM WELLS

B. SERMAGE, M.F. PEREIRA Jr, F. ALEXANDRE, J. BEERENS, R. AZOULAY, C. TALLOT, A.M. JEAN-LOUIS and D. MEICHENIN C e n t r e N a t i o n a l d ' E t u d e s d e s T t + l 6 c o m m u n i c a t i o n s , 196, Avenue H e n r i R a v e r a , F - 9 2 2 2 0 B a g n e u x , F r a n c e

R6sum6 : La duree de v i e non r a d i a t i v e dans des doubles h 6 t e r o s t r u c t u r e s GaAs;GaAlAs non dop6es fabriques en EJM e t EOM a Gt6 6 t u d i e e en u t i l i s a n t une d t h o d e de d 6 c l i n de luminescence avec une r 6 s o l u t i o n de 10 ps. La v i t e s s e de recombinaison 2 l ' i n t e r f a c e S e s t obtenue en P t u d i a n t des s e r i e s d ' 6 c h a n t i l l o n s w a n t d i f f c r e n t e s Ppaisseurs d de GaAs ( e n t r e 1 P?

e t 20 A). Pour chaque d r i e , S e s t constant quand d e s t superieur a 200 A. Quand d e s t i n f e r i e u r 2 200 A, S c r o i t du f a i t de l'augmentation de l a p r o b a b i l i t 6 de pr6sence des p o r t e u r s dans l a b a r r i i r e quand 1'6- p a i s s e u r du p u i t s d e c r o i t .

A b s t r a c t : Non r a d i a t i v e c a r r i e r s l i f e t i m e has been s t u d i e d i n MBE and FR)CVD grown GaAs-GaA1 As undoped double h e t e r o s t r u c t u r e s by luminescence decay technique. I n t e r f a c e recombination v e l o c i t y i s obtained by studying s e r i e s o f samples w i t h d i f f e r e n t GaAs l a y e r thicknesses d (between 1 ,,m and 20 A ) . For each s e r i e s S i s constant when d i s l a r g e r than 200 A.

When d i s smaller than 200 A, S increases due t o t h e increase o f t h e l e a k i n g o f the c a r r i e r s wave f u n c t i o n s i n t h e b a r r i e r when the w e l l t h i c k n e s s decreases.

I - INTRODUCTION : The t h r e s h o l d c u r r e n t i n double h e t e r o s t r u c t u r e l a s e r s i s p r o p o r t l o n a l t o t h e recombination p r o b a b i l i t y i n t h e a c t i v e l a y e r 1 / ~ . I n t h e case o f t h e GaAs-GaA1As lasers, the recombination p r o b a b i l i t y has G o components

: the r a d i a t i v e one l/rr and the non r a d i a t i v e one l/znr.

The l a s e r w i l l be o f p r a c t i c a l use i f rnr i s l a r g e compared t o the r a d i a t i v e l i f e time a t t h r e s h o l d c a r r i e r density (- 4 ns). The non r a d i a t i v e recombination pro- b a b i l i t y , l / z n r ( c a l l e d Shockley-Read) i s the sum o f the bulk and the i n t e r f a c e recombination p r o b a b i l i t i e s :

where d i s the GaAs l a y e r thickness and S = S + S i s the sum o f the i n t e r f a c e recombination v e l o c i t y a t the two i n t e r f a c e s . kq. z2 i s v a l i d when the GaAs l a y e r thickness d i s small compared t o t h e c a r r i e r d i f f u s i o n l e n g t h which i s t h e case here.

Quantum w e l l l a s e r s have proved t o be i n t e r e s t i n g devices ( 1 ) ( s m a l l e r t h r e - s h o l d c u r r e n t , l a r g e r modulation frequency 1. However i n such small a c t i v e l a y e r thicknesses (d - 50-100 A), i n t e r f a c e recombination can be dramatic. I n r e f . 2, i t was observed t h a t i n t e r f a c e recombination was smaller i n quantum w e l l s than i n l a r g e GaAs l a y e r s , c o n t r a r i l y t o what was expected t h e o r e t i c a l l y due t o an i n - crease o f the l e a k i n g o f t h e c a r r i e r s wave f u n c t i o n s i n the b a r r i e r s when the thickness o f the GaAs l a y e r decreases ( 3 ) . I n f a c t , luminescence decay observed i n r e f . 2 was t h a t o f t h e GaAs b u f f e r . Indeed i n r e f . 2, t h e 0.514 ,m, e x c i t a t i o n l a s e r , e x c i t e d both t h e AlGaAs b a r r i e r s , the quantum w e l l and the GaAs b u f f e r and t h e only s p e c t r a l s e l e c t i o n before t h e d e t e c t o r was a low pass f i l t e r which c u t t h e luminescence o f the AlGaAs b a r r i e r s and t h e 0.514 ~m l a s e r . Careful measu- rements done here w i t h a streak camera and a monochromator show t h a t the i n t e r -

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987525

(3)

C5-136 JOURNAL DE PHYSIQUE

face recombination v e l o c i t y increases i n quantum w e l l s as expected.

I 1 - EXPERIMENT : We have s t u d i e d two s e r i e s o f MBE grown samples and one s e r i e s of MOCVD grown samples. The samples were undoped. The f i r s t MBE s e r i e s was g r w n i n J u l y 84 and was the same as the one s t u d i e d i n r e f . 2 and the second MBE se- r i e s was grown i n Dec. 86. I n a l l t h e cases, t h e samples c o n s i s t e d o f a GaAs 1 a y e r of t h i c k n e s s d i n c l u d e d between two Gal- AlXAs confinement l a y e r s w i t h x a p p r o x i m a t i v e l y equal t o 0.3. The thicknesses o r th e two confinement l a y e r s a r e 0.2 p and 0.1 p I n t h e f i r s t M6E series, 0.5 1 ~ n and 1 ~m i n t h e second MBE series, 0.5 ~m and 1 p i n t h e MOCVD series. We have observed independently t h a t t h e thickness o f the f i r s t confinement l a y e r has a small i n f l u e n c e on S (about a f a c t o r o f 2 between 200 a and 0.5 0 ) which cannot e x p l a i n t h e l a r g e d i f f e r e n c e o f the i n t e r f a c e recombination v e l o c i t y we observe i n the d i f f e r e n t series. The thickness d o f the GaAs l a y e r i s v a r i e d between 1 ~m and 20 which allows t o study t h e i n t e r f a c e recombination v e l o c i t y f o r l a r g e thicknesses and how i t i s m o d i f i e d i n quantum wells. To have more chance t h a t t h e i n t e r f a c e q u a l i t y i s t h e same f o r a l l the samples o f a series, a l l the s t r u c t u r e s c o n t a i n a s i n g l e GaAs l a y e r . We have n o t s t u d i e d rmltiquantum w e l l s f o r which t h e i n t e r f a c e q u a l i t y i s known t o be improved (2). The MBE s t r u c t u r e s were grown a t 690°C and the GaAs b u f f e r l a y e r was grown a t 600°C. The temperature r i s e was done a t the beginning o f the f i r s t GaAlAs l a y e r i n t h e case o f t h e f i r s t MBE s e r i e s and a t the end o f t h e GaAs b u f f e r l a y e r i n the case o f the second MBE series.

The c a r r i e r s l i f e t i m e i s measured by luminescence decay. The sample i s e x c i - t e d by t h e 3 ps pulses o f a synchronously pumped Rhodamine 66 mode locked dye l a s e r a t 0.58 pm and the luminescence i s s p e c t r a l l y s e l e c t e d by a small 10 cm monochromator. The decay i s observed u s i n g a Hamamatsu two dimension streak came- r a so t h a t we can observe on t h e screen o f the camera t h e luminescence i n t e n s i t y as a f u n c t i o n o f wavelength and time and we can e a s i l y s e l e c t the wavelength range we want t o i n t e g r a t e f o r t h e decay measurement.

.Examples o f luminescence decay curves a t low e x c i t a t i o n are given on Fig. 1.

Because the luminescence i n t e n s i t y IL i s n o t p r o p o r t i o n a l t o t h e c a r r i e r s d e n s i t y n, the c a r r i e r s l i f e t i m e i s n o t equal t o the luminescence decay time constant

T ~ . However due t o the s h o r t pulses and the good temporal r e s o l u t i o n (10 ps), t h e c a r r i e r s do n o t recombine d u r i n g the e x c i t a t i o n pulse and the c a r r i e r s density a t t h e end o f t h e e x c i t a t i o n p u l s e i s p r o p o r t i o n n a l t o t h e e x c i t a t i o n power P .

Then t h e c a r r i e r s l i f e t i m e a t t h e end o f the exci t a t i o n p u l s e i s r e l a t e d t o R e luminescence decay time a t the end o f the e x c i t a t i o n pulse by :

where I L ( 0 ) i s the luminescence i n t e n s i t y a t the end o f the e x c i t a t i o n pulse and t h e c o r r e c t i o n f a c t o r aLog(IL(0))/aLog(Pex) can vary between 1 and 2. For each

F i g . 1 : Examples o f luminescence decay F i g . 2 : V a r i a t i o n w i t h e x c i t a t i o n o f curves obtained w i t h t h e streak camera t h e t o t a l ( + I r a d i a t i v e ( A ) and non a t low e x c i t a t i o n . r a d i a t i v e (0) recombination p r o b a b i l i t y .

-1MATE CARRlERS DENYTY(cm-')

a" lo' lo" lo" .

o.- *MBE J"l BL

- a z 0 3 w . a

* a 0

-

W

4"

"7

!lo,-

Be-

*

am ; a1 I a

EXaTATION W W E R (mW)

(4)

r i e r s l i f e time % i s obtained using eg. L3. On the o t t e r hand, we c a l c u l a t e the r a t i o IL(0)/Pex which i s p r o p o r t i o n a l t o l/rr.

F o r each sample, we p l o t the recombination p r o b a b i l i t y 11% and IL/Pe as a func- t i o n o f t h e e x c i t a t i o n power as shown i n Fig. 2. The important p o i n t i s t h a t a t l o w e x c i t a t i o n , I/% i s n e a r l y c o n s t a n t w h i l e I/%, decreases, which shows t h a t t h i s c o n s t a n t v a l u e i s t h e p r o b a b i l i t y o f non r a d i a t i v e recombination l/znr.

Supposing t h a t l/znr i s constant which i s n e a r l y exact a t low e x c i t a t i o n , we can a d j u s t t h e a b s o l u t e v a l u e o f I/%, so t h a t I/,,, i s constant as we have done on F i g . 2. Also shown on Fig. 2 i s the approximate c a r r i e r s d e n s i t y obtained by the measurement o f the s i z e o f t h e l a s e r beam on t h e sample and supposing t h a t each photon creates an e l e c t r o n - h o l e p a i r i n t h e a c t i v e l a y e r . This c a r r i e r s d e n s i t y i s c e r t a i n l y over-estimated because p a r t o f the c a r r i e r s are created i n t h e AlGa- As confinement l a y e r s from where they d i f f u s e t o the GaAs l a y e r and p a r t o f these c a r r i e r s are l o s t by recombination i n t h e AlGaAs l a y e r o r a t the f r e e surface o f t h e AlGaAs l a y e r .

Fig. 3 gives the l/% curves as a f u n c t i o n o f the approximate c a r r i e r s densi- t y f o r the samples o f t h e f i r s t MBE series. The c a r r i e r s d e n s i t y i s estimated f o r t h e t h i c k samples as p r e v i o u s l y and f o r t h e t h i r GaAs l a y e r s , we a d j u s t by c o n t i - n u i t y o f t h e r a d i a t i v e p r o b a b i l i t y . For each sample, the constant value a t low e x c i t a t i o n gives the non r a d i a t i v e recombination p r o b a b i l i t y . For the t h i c k GaAs l a y e r s , t h e s u b s t r a t e luminescence i s weak and does n o t modify t h e r e s u l t s . F o r t h e t h i n GaAs l a y e r s ( < 100 A ) the monochromator s e l e c t the quantum w e l l lumines- cence. Otherwise we would o b t a i n t h e s u b s t r a t e non r a d i a t i v e recombination proba- b i l i t y which i s 7. 109 s-1.

On F f g . 4, we have p l o t t e d t h e UTn, value as a f u n c t i o n o f l / d f o r l a r g e thicknesses 0 200 A). The experimental r e s u l t s f o l l o w eq. 3 w i t h S constant f o r each series. The l a r g e d i f f e r e n c e between the f i r s t and t h e second MBE s e r i e s can be due e i t h e r t o t h e f a c t the s h u t t e r o f the aluminium source has been chan- ged between the two s e r i e s o r t o the temperature r i s e time d u r i n g the growth o f t h e s t r u c t u r e .

For small GaAs thicknesses, (d(200 A ) S increases as foreseen by Duggan e t a1 .(3) due t o the f a c t t h a t the l e a k i n g o f the e l e c t r o n s and holes wave f u n c t i o n s

G a l s THKWESS[pml

- . July 01

F i g . 3 : V a r i a t i o n w i t h e x c i t a t i o n o f Fig. 4 : V a r i a t i o n o f the non r a d i a t h e t o t a l ( - 1 and r a d i a t i v e ( A ) recom- t i v e recombination p r o b a b i l i t y w i t h b i n a t i o n probabi 1 i ty f o r d i f f e r e n t t h e i n v e r s e GaAs l a y e r thicknesses GaAs thicknesses. f o r t h e three series.

(5)

C5-138 JOURNAL DE PHYSIQUE

Fig. 5 : R a t i o o f the i n t e r f a c e recom- b i n a t i o n v e l o c i t y i n GaAs quantum w e l l s t o i t s value i n t h i c k l a y e r s f o r the t h r e e s e r i e s : f i r s t MBE s e r i e s (+), second MBE s e r i e s ( A ) and MOCVD s e r i e s

+- ( X I . Calculated models f o r b a r r i e r

(-1 and i n t e r f a c e (---I recombinations.

X) ' lo'

GaAs LAVER WIDTH&

i n t h e GaAlAs confinement l a y e r s increases. Fig. 5 shows the v a r i a t i o n o f S/S f o r the small values o f GaAs thicknesses where S i s the constant value f o r l a r g 8 GaAs thicknesses. For the t h r e e series, S/S iflcreases b u t the increase i s n o t t h e same f o r t h e t h r e e s e r i e s and we t h i n k ?hat t h i s i s due t o d i f f e r e n t shar- pnesses o f the i n t e r f a c e s . The l a r g e increase observed f o r the 50 A w i d t h w e l l o f t h e second MBE s e r i e s can be due t o a resonance between t h e quantum w e l l l e v e l and t h e l e v e l s o f t h e recombination centers i n the b a r r i e r . Also shown on Fig. 5 a r e the t h e o r e t i c a l models o f Duggan e t a l . c a l c u l a t e d f o r an o f f s e t of t h e con- d u c t i o n band equal t o 67 % o f t h e bandgap d i f f e r e n c e ( 4 ) and an Aluminium compo- s i t i o n i n the b a r r i e r equal t o 30 %. The f i r s t model supposes t h a t t h e r e i s a c o n s t a n t density o f recombination centers i n the GaAlAs b a r r i e r and c a l c u l a t e s t h e p r o b a b i l i t y o f presence o f the e l e c t r o n s i n t h e b a r r i e r s . The second model supposes t h a t a l l t h e recombinations happen a t the exact i n t e r f a c e and c a l c u l a t e s t h e p r o b a b i l i t y o f presence o f t h e e l e c t r o n s a t t h e i n t e r f a c e . We suppose t h i s c a l c u l a t i o n i s s t i l l v a l i d f o r l a r g e GaAs l a y e r s where i t gives a constant value This increase o f the i n t e r f a c e recombination v e l o c i t y i s important f o r quan- tum w e l l lasers. For example i n the case o f t h e second MBE series, the non r a d i a - t i v e l i f e t i m e f o r 0.1 ~m t h i c k l a y e r s i s 100 ns which i s n e g l i g i b l e compared t o t h e r a d i a t i v e l i f e t i m e i n usual DH l a s e r s which i s about 4 ns. However i n t h e case o f a quantum w e l l o f 50 A, the non r a d i a t i v e l i f e t i m e i s about 2 ns and increases the c a l c u l a t e d thresh01 d c u r r e n t from 110 A/cm2 t o 165 A/cm*.

REFERENCES

1) S.D. Hersee, B. de Cr6moux and J.P. Duchemin, Appl. Phys. L e t t . 44, 476 (1984)

2 ) B. Sermage, F. Alexandre, J.L. L i g v i n , R. Azoulay, M. El Kaim, H. Le Person and J.Y. Marzin, I n s t . Phys. Conf. Ser. n074, 345 (1985) and C. Khan Malek, B. Sermage, M.F. Pereira, M. El Kaim, F. Alexandre and R. Azoulay, Advanced m a t e r i a l s f o r telecommunications 1986, Les 6 d i t i o n s de Physique, p.239

(1986)

3 ) G. Duggan, H.J. Ralph and R.J. E l l i o t t , S o l i d S t a t e Corn, 56, 17 (1985) 4 ) G. Danan, B. Etienne, F. M o l l o t , R. Planel, A.M. Jean-Louis, F. Alexandre,

B. Jusserand, G. Le Roux, J.Y. Marzin, H. Savary and B. Sermage, Phys. Rev.

B, 35, 6207 (1987)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to