• Aucun résultat trouvé

TOTAL ENERGY CALCULATIONS AND BONDING AT INTERFACES

N/A
N/A
Protected

Academic year: 2022

Partager "TOTAL ENERGY CALCULATIONS AND BONDING AT INTERFACES"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: jpa-00224688

https://hal.archives-ouvertes.fr/jpa-00224688

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

TOTAL ENERGY CALCULATIONS AND BONDING AT INTERFACES

S. Louie

To cite this version:

S. Louie. TOTAL ENERGY CALCULATIONS AND BONDING AT INTERFACES. Journal de Physique Colloques, 1985, 46 (C4), pp.C4-335-C4-346. �10.1051/jphyscol:1985437�. �jpa-00224688�

(2)

JOURNAL DE PHYSIQUE

Colloque C4, suppl6ment au n04, Tome 46, avril 1985 page C4-335

TOTAL ENERGY CALCULATIONS AND BONDING AT INTERFACES S.G. Louie

Department o f Physics, U n i v e r s i t y o f California, and Materials and Molecular Research Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, U.S.A .

A b s t r a c t - Some o f t h e concepts and t h e o r e t i c a l techniques employed i n r e c e n t ab i n i t i o s t u d i e s o f t h e e l e c t r o n i c and s t r u c t u r a l p r o p e r t i e s o f surfaces and i n t e r f a c e s are discussed. Results o f t o t a l energy c a l c u l a t i o n s f o r t h e 2x1 reconstructed diamond (111) s u r f a c e and f o r s t a c k i n g f a u l t s i n S i a r e reviewed.

I - INTRODUCTION

A f u l l understanding o f a s u r f a c e o r i n t e r f a c e r e q u i r e s knowledge o f both i t s e l e c t r o n i c and geometric s t r u c t u r e s . Hence, a g r e a t deal o f e f f o r t has been devoted i n t h e p a s t decade i n developing t h e o r e t i c a l methods f o r c a l c u l a t i n g t h e p r o p e r t i e s and s t r u c t u r e o f i n t e r f a c e s from f i r s t p r i n c i p l e s . This paper describes some o f the concepts and 1 a t e s t t h e o r e t i c a l techniques used i n addressing the i n t e r f a c e problem. Several r e s u l t s obtained using the pseudopotential d e n s i t y f u n c t i o n a l method a r e presented t o i l l u s t r a t e r e c e n t progress.

Much of the t h e o r e t i c a l work i n t h i s area i n t h e p a s t has been focused on the e l e c t r o n i c p r o p e r t i e s o f t h e i n t e r f a c e s w i t h o u t c o n s i d e r a t i o n o f t h e i r t o t a l

e n e r g e t i c s /I/. Thus, t h e geometric s t r u c t u r e s were necessary i n p u t t o t h e c a l c u l a - t i o n s . The s i t u a t i o n , however, i s changing r a p i d l y . I n the l a s t few years,

i t has become p o s s i b l e t o c a l c u l a t e from f i r s t p r i n c i p l e s the d e t a i l e d e l e c t r o n i c and s t r u c t u r a l p r o p e r t i e s o f m a t e r i a l s and t h e i r surfaces. With b a s i c a l l y t h e atomic number and atomic mass o f t h e c o n s t i t u e n t atoms as i n p u t , many s t a t i c and dynamical p r o p e r t i e s /2/ (e.g., cohesive energies, l a t t i c e constants, b u l k moduli, phonon spectra, c r y s t a l s t r u c t u r e s , e t c . ) have been c a l c u l a t e d t o w i t h i n a few percent o f experiment. This development i s made p o s s i b l e because o f r e c e n t advances i n t h e pseudopotential theory and t o t a l energy c a l c u l a t i onal techniques.

I t has opened up many e x c i t i n g p o s s i b i l i t i e s f o r t h e study o f i n t e r f a c e s s i n c e t h e r e i s l i t t l e t e c h n i c a l d i f f e r e n c e between a s u r f a c e which i s a vacuum-solid i n t e r f a c e and a s o l i d - s o l i d i n t e r f a c e / 3 / . I n t h i s paper, we describe two r e c e n t a p p l i c a t i o n s o f t h e t h e o r y as examples. One i n v o l v e s t h e p r e d i c t i o n o f t h e geometry o f t h e diamond (111) surface /4/, and t h e o t h e r i s a c a l c u l a t i o n of t h e p r o p e r t i e s o f s t a c k i n g f a u l t s i n S i /5/.

The paper i s organized i n t h e f o l l o w i n g manner. I n Sec. 11, a s h o r t d e s c r i p t i o n of t h e t h e o r e t i c a l methods i s given. Section I 1 1 presents a b r i e f review o f p a s t s e l f - c o n s i s t e n t c a l c u l a t i o n s i n which o n l y t h e e l e c t r o n i c p r o p e r t i e s were considered. Results from two r e c e n t t o t a l energy c a l c u l a t i o n s are presented i n Sec. I V . The bonding p r o p e r t i e s and s t r u c t u r e o f t h e diamond (111) surface are discussed, and a minimum energy geometry f o r the 2x1 reconstructed surface i s deter- mined. Also presented i s a study o f t h e i n t r i n s i c and e x t r i n s i c s t a c k i n g f a u l t s

i n Si. The s t a c k i n g f a u l t energies are obtained and found t o be i n good agreement w i t h experimental values. The Hellmann-Feynman f o r c e s a r e c a l c u l a t e d t o study t h e forces on atoms near t h e f a u l t s . L o c a l i z e d d e f e c t ( s u r f a c e and f a u l t ) s t a t e s are determined and t h e i r p r o p e r t i e s analyzed. F i n a l l y , Sec. V presents a sumnary.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985437

(3)

JOURNAL DE PHYSIQUE

I 1 - THEORETICAL METHODS

The general approach i n v o l v e s reducing the many-body problem t o t h a t o f a s e t o f s e l f - c o n s i s t e n t f i e l d equations f o r the e l e c t r o n s . For ground-state p r o p e r t i e s , t h i s i s achieved, i n p r i n c i p l e , u s i n g t h e d e n s i t y f u n c t i o n a l formal ism /6,7/.

The eigenvalues o f t h e r e s u l t i n g s i n g l e - p a r t i c l e equations, the Kohn-Sham equations, are a1 so o f t e n i n t e r p r e t e d as e x c i t a t i o n energies w i t h reasonable r e s u l t s when analyzing the spectroscopic p r o p e r t i e s o f m a t e r i a l systems, although t h e r e i s no formal j u s t i f i c a t i o n f o r such a s s o c i a t i o n . The approach i s ab i n i t i o i n t h a t t h e o n l y i n p u t t o t h e c a l c u l a t i o n i s i n f o r m a t i o n about t h e c o n s t i t u e n t atoms and a s e t o f p o s s i b l e s t r u c t u r a l t o p o l o g i e s among which a minimal energy s t r u c t u r e i s derived.

The e f f e c t i v e one-electron eauations i n t h i s formalism a r e o f t h e form ( i n atomic u n i t s ) :

{- +v2 + vkXt(f) +vH(?) + Pxc[n~}*i (f 1 = Eiri

where V e x t i s the e x t e r n a l p o t e n t i a l seen by t h e e l e c t r o n s and VH i s t h e e l e c t r o - s t a t i c o r Hartree p o t e n t i a l . i s the exchange-correlation p a r t o f the e f f e c t i v e p o t e n t i a l which i s given by pGXz 6Exc/6n where Ex, i s t h e exchange-correlation energy o f t h e system. F i n a l l y , t h e d e n s i t y n i s obtained from t h e o n e - p a r t i c l e wavefunctions

N

where N i s the number o f e l e c t r o n s i n the system. What remains i s the s p e c i f i c a t i o n Since t h e exact f u n c t i o n a l i s n o t known, t h e most w i d e l y used scheme

9: :fiz'local d e n s i t y approximation (LDA) /7/:

where c$(n) i s the exchange-correlation energy d e n s i t y of t h e homogeneous e l e c t r o n gas o f d e n s i t y n. Several parameterizations o f e l e c t r o n gas data are i n common use.

I n t h e pseudopotential approach, t h e s o l i d i s considered t o be composed o f r i g i d i o n cores and t h e valence e l e c t r o n s which are i t i n e r a n t . The s e l f - c o n s i s t e n t f i e l d equations are c a r r i e d o u t o n l y f o r the valence e l e c t r o n s . The e x t e r n a l p o t e n t i a l VeXt due t o the cores are modeled by s u p e r p o s i t i o n o f i o n i c pseudopoten- t i a l s which are constructed from a knowledge o f o n l y t h e atomic numbers. The e l e c t r o n wavefunctions are obtained by s o l v i n g t h e Kohn-Sham equations using a basis s e t expansion i n e i t h e r plane waves o r l o c a l i z e d o r b i t a l s .

Once the one-electron wave equation has been solved, the t o t a l energy o f the system may be evaluated by adding t h e core-core and e l e c t r o n - e l e c t r o n i n t e r a c t i o n energies t o the c o r e - e l e c t r o n i n t e r a c t i o n energy /8/. The t o t a l energy i s u s u a l l y cast i n t h e form

where the sum i s over a l l occupied s t a t e s and Eion-ion i s t h e e l e c t r o s t a t i c i n t e r - a c t i o n energy among the bare ions. Once t h e lowest energy s t r u c t u r e i s found, the o t h e r s o l i d s t a t e p r o p e r t i e s can be computed.

An i n t e r f a c e being a d e f e c t t o an otherwise p e r f e c t c r y s t a l poses a d d i t i o n a l c o n s t r a i n t s t o t h e c a l c u l a t i o n s . One i s the l a c k o f t r a n s l a t i o n a l symmetry because o f t h e i n t e r f a c e . T h i s can be overcome i n two ways. One approach i s t o match wavefunctions across the i n t e r f a c e allowi'ng both extended and decaying s t a t e s .

(4)

Another i s t o use the s o - c a l l e d s u p e r c e l l method i n which t h e i n t e r f a c e i s repeated i n d e f i n i t i v e l y w i t h c e r t a i n s e p a r a t i o n t o prevent i n t e r a c t i o n between i n t e r f a c e s . This method a l l o w s the use o f standard band s t r u c t u r e techniques since p e r i o d i c i t y i s mathematically restored. I t i s t h e most common and i s t h e method employed f o r the s t u d i e s discussed here. Another c o n s t r a i n t i n i n t e r f a c e s t u d i e s i s t h e requirement o f d e t a i l e d s e l f - c o n s i s t e n c y i n t h e c a l c u l a t i o n s because o f the p o s s i b l y i m p o r t a n t charge rearrangement near the i n t e r f a c e . Q u a n t i t i e s such as atomic rearrangements and i n t e r f a c i a l formation energies a r e s e n s i t i v e t o such charge rearrangements.

I 1 1 - SELF-CONSISTENT CALCULATIONS

I n t h e 19701s, many surfaces and i n t e r f a c e s were s t u d i e d u s i n g t h e s e l f - c o n s i s t e n t pseudopotential method /1,9/. I n these studies, t h e e l e c t r o n i c s t r u c t u r e was c a l c u l a t e d s e l f - c o n s i s t e n t l y f o r an assumed s t r u c t u r e . However, no attempt was made t o compute the lowest t o t a l energy s t r u c t u r e because o f t h e o r e t i c a l and computational d i f f i c u l t i e s . Thus, i n the scheme described i n Sec. 11, t h e steps f o r t o t a l energy e v a l u a t i o n were n o t c a r r i e d out. The atomic p o s i t i o n s were e i t h e r i n f e r r e d i n d i r e c t l y from experiments o r taken t o be those o f i d e a l i z e d models. Nevertheless, from these e l e c t r o n i c s t r u c t u r e c a l c u l a t i o n s , a g r e a t deal has been learned about surfaces and i n t e r f a c e s , and the r e s u l t s o f t e n provided t h e needed i n t e r p r e t a t i o n s and explanations o f experimental observations.

These s e l f - c o n s i s t e n t pseudopotential studies i n c l u d e d metal and semiconductor surfaces, metal-semiconductor i n t e r f a c e s (Schottky b a r r i e r s ) , semiconductor- semiconductor i n t e r f a c e s ( h e t e r o j u n c t i o n s ) , and s t a c k i n g f a u l t s . I n t h i s s e c t i o n , we b r i e f l y d e s c r i b e one a p p l i c a t i o n t o i l l u s t r a t e some o f t h e t h e o r e t i c a l concepts and techniques used i n s t u d y i n g i n t e r f a c i a l systems and a l s o t h e l i m i t a t i o n s o f t h e approach w i t h o u t t o t a l energy and f o r c e

0.5 i n f o r m a t i o n .

For a given s t r u c t u r e , the c a l c u l a t i o n s y i e l d a host o f i n f o r m a t i o n on t h e e l e c t r o n i c p r o p e r t i e s i n c l u d i n g t h e i n t e r f a c e energy bands, charge d e n s i t i e s , l o c a l d e n s i t i e s o f s t a t e s , and so f o r t h . The c a l c u l a t e d l o c a l d e n s i t y o f s t a t e s (LDOS) which describes t h e e l e c t r o n energy spectrum as f u n c t i o n o f p o s i t i o n i n r e a l space f o r an A l / S i (111) i n t e r f a c e / l o / .

presented i n F i g . 1. I n t h i s work, t h e E ' s u p e r c e l l c o n s i s t e d o f 12 l a y e r s o f t h e

s i l i c o n c r y s t a l along t h e (111) d i r e c t i o n and an e q u i v a l e n t thickness o f A1 which was approximated by the j e l l i u m model s i n c e the exact geometry a t t h e i n t e r f a c e i s n o t known.

The edge o f t h e j e l l i u m i s taken t o be a t a d i s t a n c e o f one-half t h e S i - S i bond length.

The u n i t c e l l , thus, i s composed o f an A1 h a l f and a S i h a l f , and each i s d i v i d e d i n t o t h r e e regions f o r the purpose o f analyzing the LDOS. As shown i n Fig. 1, t h e LDOS changes from t h a t o f a f r e e - e l e c t r o n model o f a metal w i t h a square r o o t dependence on energy i n r e g i o n I, which i s deep i n the

- 1 4 -12 - 1 0 - 8 -6 - 4 - 2 o 2 4 A1 side, t o t h a t o f b u l k S i i n r e g i o n V I

Energy (eVJ which i s the S i r e g i o n f a r t h e s t from the i n t e r f a c e .

Fig. 1 - Local d e n s i t y o f s t a t e s

near an A1 /Si (111) i n t e r f a c e . Region I V i s t h e t r a n s i t i o n r e g i o n on the ( a r b i t r a r y u n i t s ) S i side and i s the most i n t e r e s t i n g region.

(5)

C3-338 JOURNAL DE PHYSIQUE

U n l i k e t h e b u l k LDOS, new metal-induced gap s t a t e s (MIGS) appear i n t h e S i band gap i n t h i s region. These s t a t e s a r e b u l k - l i k e i n t h e metal, have l a r g e amplitude i n t h e d a n g l i n g bond s i t e s o f t h e S i surface, and decay r a p i d l y i n t o t h e semiconductor

/lo/. I t i s these s t a t e s which determine t h e Schottky b a r r i e r p r o p e r t i e s . L o c a l i z e d i n t e r f a c e s t a t e s which decay i n both d i r e c t i o n s away from t h e i n t e r f a c e a l s o e x i s t f o r t h i s system. The peak i n the valence band ( l a b e l e d S ) a t -8.5 eV a r i s e s from such l o c a l i z e d s t a t e s . Because these s t a t e s a r e deep i n [he valence band, they do n o t c o n t r i b u t e t o t h e t r a n s p o r t p r o p e r t i e s o f t h e Schottky b a r r i e r s . From t h e Fermi l e v e l and t h e p o s i t i o n o f t h e conduction band minimum, t h e b a r r i e r h e i g h t can be evaluated as seen i n Fig. 1. The c a l c u l a t e d v a l u e i s 0.6 + 0.1 eV which i s i n v e r y good agreement w i t h t h e measured value o f 0.6 eV /11/.

The MIGS i n t h e band gap are S i dangling bond surface s t a t e s h y b r i d i z e d w i t h the continuum s t a t e s o f t h e metals. They are, t h e r e f o r e , h y b r i d s t a t e s which are i n t e r m e d i a t e between the Bardeen ( s u r f a c e s t a t e ) and t h e Heine ( m e t a l l i c t a i l s t a t e ) p i c t u r e s /12/. A t the i n t e r f a c e , t h e formation o f t h e MIGS and t h e subsequent d i p o l e p o t e n t i a l created due t o the occupation o f them e q u a l i z e the Fermi l e v e l s o f t h e two m a t e r i a l s and determine t h e Schottky b a r r i e r height.

S i m i l a r c a l c u l a t i o n s were done f o r the 111-V and 11-VI compound semiconductor- metal i n t e r f a c e s /13/. The same qua1 i t a t i v e p i c t u r e emerged w i t h t h e t r e n d t h a t

both t h e d e n s i t y o f MIGS and the p e n e t r a t i o n o f t h e MIGS i n t o the semiconductor decrease as the i o n i c i t y o r t h e band gap o f t h e semiconductor increases. This i s i n t u i t i v e s i n c e a b i g g e r band gap imp1 i e s a l a r g e r e f f e c t i v e b a r r i e r f o r these s t a t e s t o p e n e t r a t e i n t o the semiconductor. With the MIGS as a conceptual basis, a microscopic t h e o r y f o r the behavior o f t h e Schottky b a r r i e r has been constructed which, f o r example, e x p l a i n s the change i n b a r r i e r h e i g h t w i t h metal e l e c t r o -

n e g a t i v i t y /13/.

The above example serves t o i l l u s t r a t e both t h e power and l i m i t a t i o n o f t h e s e l f - c o n s i s t e n t pseudopotential method. Although we have learned much about the general e l e c t r o n i c nature o f metal-semiconductor i n t e r f a c e s , we have n o t gained i n f o r m a t i o n on t h e d e t a i l geometric s t r u c t u r e o r chemical bonding a t t h e i n t e r f a c e . Since experiments s t i l l cannot r e 1 ia b l y y i e l d i n t e r f a c i a l s t r u c t u r e s , t h i s i s a major d e f i c i e n c y f o r methods which must r e l y on e x p e r i m e n t a l l y determined geometries o r i d e a l i z e d models.

I V - TOTAL ENERGY CALCULATIONS

I n t h e ab i n i t i o t o t a l energy c a l c u l a t i o n s , t h e exact geometry i s no l o n g e r a r e q u i r e d i n p u t . The s t r u c t u r e i s determined by m i n i m i z i n g t h e t o t a l energy w i t h r e s p e c t t o the atomic coordinates near the i n t e r f a c e f o r a given topology. A l t e r n a - t i v e l y , t h e He1 lmann-Feynman f o r c e s on each atom a r e c a l c u l a t e d , and t h e atoms are moved u n t i l a l l f o r c e s are zero. I n e i t h e r approach, the c a l c u l a t i o n must be done i t e r a t i v e l y s i n c e new forces develop Bn t h e i r neighbors when atoms are moved. Several cycles a r e u s u a l l y needed t o achieve a minimum energy, zero f o r c e s t r u c t u r e . I n t h i s approach, both e l e c t r o n i c and s t r u c t u r a l p r o p e r t i e s a r e obtained.

Several important f a c t o r s c o n t r i b u t e d t o the development and use of. ab i n i t i o t o t a l energy c a l c u l a t i o n s i n the 1980's /2/. Among these a r e the refinements i n band s t r u c t u r e c a l c u l a t i o n a l techniques, development o f approximations t o t h e d e n s i t y f u n c t i o n a l formal ism, i n v e n t i o n o f t h e ab i n i t i o pseudopotentials, and development o f techniques f o r c a l c u l a t i n g t o t a l energies and forces. I n t h i s s e c t i o n , we

review two c a l c u l a t i o n s using t h i s approach--the diamond (111) surface as a p r o t o t y p e vacuum-sol i d i n t e r f a c e f o r t e t r a h e d r a l covalent m a t e r i a l s and the i n t r i n s i c and e x t r i n s i c s t a c k i n g f a u l t s along the [Ill] d i r e c t i o n i n S i as -examples o f i n t e r n a l i n t e r f a c e s .

A. Diamond (111) Surface

The determination o f surface s t r u c t u r e i s a major unsolved problem i n s u r f a c e

science. No d e f i n i t i v e experimental probe has been developed y e t f o r g i v i n g d e t a i l e d surface geometry. There are many models proposed t o e x p l a i n the experimental data for t h e diamond (111) s u r f a c e as w e l l as f o r many o t h e r surfaces. Ab i n i t i o t o t a l

(6)

Table I. Ground-state properties of energy calculations should be able

diamond and Si. t o distinguish among these models

and suggest a possible low energy structure.

Lattice .Cohesive Bulk

Conztant Energy Modulus Table I summarizes some of the structural ( A ) (eV/atom) (Mbar) properties of bulk diamond calculated

using a l i n e r combination of atomic- l i k e (Gaussian) o r b i t a l s basis s e t 1141.

Di amond This basis s e t i s employed because of

Theory 3.56 7.84 4.37 the localized nature of the carbon

Experiment 3.57 7.37 4.42 electron wavefunctions. Three Gaussian

exponents f o r each of the s , px, p ,

S i l i c o n and pz o r b i t a l s t o t a l i n g 12 b a s ~ s Yunc-

Theory 5.41 4.76 0.93 tions per carbon atom were used. The

Experiment 5.43 4.63 0.99 r e s u l t s i l l u s t r a t e the accuracy of the method and serve as calibrations f o r

the surface study. The computed l a t t i c e constant, cohesive energies, and bulk modulus are a l l i n excellent agreement with experimental values.

The diamond (111) surface i s of i n t e r e s t as the insulating l i m i t f o r the group IV (111) surfaces which show a remarkable variety of surface reconstructions, t h a t i s , atomic rearrangements which r e s u l t in a change in the ideal surface symmetry.

Recent experiments indicate a hydrogen-terminated 1x1 surface a t room temperature, b u t the 2xl/2x2 surface seen by Low Energy Electron Diffraction (LEED) f o r surfaces cleaned by annealing t o above 1000 C i s apparently H-free 115-181. (LEED cannot distinguish between a true 2x2 or disordered domains of 2x1 for t h i s surface;

the s i m i l a r i t y of the angle-resolved photoemission t o that of the 2x1 S i ( l l 1 ) and Ge(ll1) surfaces suggests the l a t t e r . ) Although there a r e many models proposed f o r t h i s surface, the correct s t r u c t u r e remains undetermined. In the study /4/, energy minimization i s carried out f o r a1 1 the topologically d i s t i n c t 2x1 models in the l i t e r a t u r e . These models a r e a l l motivated by experimental data such as those from LEED or angle-resolved photoemission experiments. The structures considered include the ideal relaxed model , the Haneman buck1 ing model 1191,

the Pandey n-bonded chain model /20/,

( a ) ( c ) the Chadi molecule model 1211, and the

Seiwatz single chain model /22/. (See Fig. 2.)

The calculated t o t a l energies for these models a r e summarized i n Table 11. The energy per surface atom f o r the ideal 1x1 model i s used as zero of energy.

Relaxing the f i r s t two surface bonds (Fig. 3 ( a ) ) lowers the energy by 0.37 eV. Buckling of the 1x1 surface by r a i s - ing and lowering a l t e r n a t e rows of surface atoms, on the other hand, i s found t o r a i s e the energy. Of the other three 2x1 models, the ideal Pandey chain model 1231 has the lowest energy. The Seiwatz single chain model i s c l e a r l y unfavorable, and the Chadi molecule model, which has the second lowest energy, has not been relaxed f u r t h e r because the calculated surface s t a t e dispersion i s inconsis- t e n t with angle-resolved photoemission Fig. 2 - Geometries of 1x1 and 2x1 data /15/.

diamond (111) surfaces: ( a ) ideal

s t r u c t u r e , ( b ) Pandey chain model, The energy of the Pandey model i s ( c ) Seiwatz single chain model, and further minimized by adjusting the four ( d ) Chadi molecule model. surface-most bond 1 engths to give the

(7)

C4-340 JOURNAL DE PHYSIQUE

Table 11. Calculated t o t a l e n e r g i e s of C(111J 1 x 1 and 2x1 s u r f a c e r e c o n s t r u c t i o n model s.

Surface Energy

model eV/(surface atom)

Ideal 1x1 0.00

Relaxed 1 x 1 -0.37

Buckled (Az = k0.26 A) 0.35

Chadi a-bonded molecule 0.28

Sei watz s i ngl e chain 1.30

Ideal Pandey a-bonded chain -0.05 Relaxed Pandey a-bonded chain -0.47

Sane with k2% dimerization -0.46

Same with 24% dimerization -0.43

Same with +6% dimerization -0.38

Full y re1 axed Pandey chai n -0.68

"relaxed" s t r u c t u r e of Fig. 3 ( b ) lowering t h e Fig. 3 - Bond length changes energy t o -0.47 eV. A r a t h e r unexpected f e a t u r e (with r e s p e c t t o bulk) of of t h e r e s u l t i n g geometry i s t h e 8% lengthening ( a ) relaxed 1x1 and ( b ) re- of t h e subsurface i n t e r l a y e r bond. In c o n t r a s t , laxed 2x1 Pandey chain models t h e s u r f a c e chain bond was only shortened by 4% f o r t h e diamond (111) s u r f a c e . t o a length which i s approximately midway between

t h a t o f g r a p h i t e and diamond. Another important

r e s u l t i s t h a t , c o n t r a r y t o some s p e c u l a t i o n s , 8 dimerization of t h e chain i s found t o r a i s e t h e

s u r f a c e energy. The s t r u c t u r e can be f u r t h e r

relaxed by allowing t h e atoms below t h e f i r s t 6 two l a y e r s t o move. This movement r e l i e v e s some

of t h e bond angle s t r a i n s on the t h i r d l a y e r

atoms. The f i n a l f u l l y relaxed s t r u c t u r e has - 4

an energy lowered by an additional 0.21 eV per

s u r f a c e atom. 2 -

A 2 Once a minimum energy s t r u c t u r e i s determined, L 0

t h e c a l c u l a t e d s u r f a c e s t a t e d i s p e r s i o n can be Q, used t o compare with experimental r e s u l t s f o r 15 O confirmation. Figure 4 shows t h e c a l c u l a t e d

s u r f a c e band s t r u c t u r e f o r t h e f u l l y relaxed

Pandey chain model with t h e Fermi l e v e l a t near - 2 2 eV. Experimental angle-resolved photoemission

d a t a /15/ f o r t h e occupied s u r f a c e s t a t e s a r e

shown f o r comparison. There i s good agreement - 4 - - -

between theory and experiment f o r t h e band r J K

d i s p e r s i o n . However, t h e c a l c u l a t e d band i s t o o

high by a r i g i d s h i f t of -1 eV. This kind of Fig. 4 - Calculated s u r f a c e discrepancy i s most l i k e l y caused by using t h e bands ( s o l i d l i n e s ) and reson- l o c a l d e n s i t y approximation which i s well-known ances (dashed l i n e s ) f o r t h e t o g i v e excel l e n t s t r u c t u r a l (ground-state) 2x1 diamond (111) s u r f a c e f o r p r o p e r t i e s but t o o small e x c i t a t i o n e n e r g i e s f u l l y relaxed Pandey chain S i m i l a r c a l c u l a t i o n s /24/ have been c a r r i e d o u t model. Black d o t s a r e experi -

f o r t h e 2x1 phases of t h e (111) s u r f a c e s of Si mental d a t a of Ref. 15.

and Ge. The r e s u l t s obtained a r e q u a l i t a t i v e l y

t h e same. Namely, t h e relaxed a-bonded chain geometry y i e l d s the lowest t o t a l energy among the s t r u c t u r e s t e s t e d , and t h e s u r f a c e band d i s p e r s i o n s a r e i n good agreement with experiment but not t h e band p o s i t i o n s .

From t h e s e r e s u l t s , t h e s t r u c t u r e and bonding a t t h i s s u r f a c e can be described i n

(8)

the f o l l o w i n g terms. The d r i v i n g mechanism f o r

<,,,, t h e r e c o n s t r u c t i o n i s the existence o f half-occu-

7

8

p i e d dangling bonds o f t h e i d e a l (111) surface

1 which are h i g h l y unfavorable e n e r g e t i c a l l y . I n t h e n-bonded chain geometry, t h e surface i s

O y - s t a b i l i z e d by a l l o w i n g t h e dangling bonds t o move i n t o near-neighbor p o s i t i o n s where they can

Y p a r t i c i p a t e i n v bonding. However, t h i s geometry r e s u l t s i n l a r g e bond angle d i s t o r t i o n s which g i v e r i s e t o a s t r a i n energy. The second and t h i r d l a y e r atoms are, thus, f o r c e d t o move t o re1 ie v e the s t r a i n s r e s u l t i n g i n a f i n a l r e l a x e d geometry.

VL7

The same general mechanism appears t o be o p e r a t i v e f o r the (111) surfaces o f a l l t h r e e o f the group I V elements.

B . Stacking F a u l t s i n Si

0 Stacking f a u l t s a r e probably t h e s i m p l e s t o f the p l a n a r defects o r i n t e r n a l i n t e r f a c e s . For diamond s t r u c t u r e semiconductors, s t a c k i n g f a u l t s along

t h e [Ill) d i r e c t i o n correspond t o Fig. 5 - Geometry o f t h e diamond s t r u c t u r e . a misplacement o f t h e t h i r d nearest-

neighbor arrangement, and the systems are o n l y s l i g h t l y d i s t u r b e d compared

( a 1 I S F t o those due t o o t h e r bond-breaking

[ I I I I d e f e c t s . There are, however, r a t h e r

few t h e o r e t i c a l i n v e s t i g a t i o n s o f t h e s t a c k i n g f a u l t s i n semiconductors.

I n p a r t i c u l a r , t h e r e has n o t been a complete study f o r the t o t a l energy o r t h e s t r u c t u r e o f Si s t a c k i n g f a u l t s i n the 1 i t e r a t u r e .

Experimentally, t h e i n f e r r e d s t a c k i n g f a u l t energies f o r (about 50-60 erg/cm 3 i ) a r e very small /25,26/. A recent charge c o l l e c t i o n scanning e l e c t r o n microscopy experiment on an e x t r i n s i c s t a c k i n g f a u l t i n n- type s i l i c o n suggested t h e existence o f s t a c k i n g f a u l t s t a t e s w i t h ener- gies a t about 0.1 eV below t h e con- d u c t i o n band minimum /27/. Photo- 1 umi nescence s p e c t r a o f p l a s t i c a l l y deformed samples showed a d e f e c t s t a t e near 0.15 eV above the valence Fig. 6 - Atomic p o s i t i o n s i n the (110) plane band maximum /28/.

of S i f o r ( a ) ISF and ( b ) ESF. The dashed

1 in e i n d i c a t e s a s t a c k i n g f a u l t plane. The The s t a c k i n g sequence along t h e i l l 1 1

n e t force on each atom i n t h i s i d e a l geome- d i r e c t i o n i n t h e diamond s t r u c t u r e t r y i s marked i n u n i t s o f 10-2 Ry/a.u. i s AA'BB'CC. (See Fig. 5.) An

i n t r i n s i c s t a c k i n g f a u l t (ISF) i s a planar d e f e c t corresponding t o a p a i r o f atomic planes m i s s i n g from the i d e a l s t a c k i n g sequence, and an e x t r i n s i c s t a c k i n g f a u l t i s a d e f e c t r e s u l t i n g from adding a p a i r o f atomic planes (e.g., AA' i n s e r t e d between BB' and CC'). The atomic p o s i t - ions near the f a u l t s i n the (110) plane are shown i n Fig. 6. For both types o f f a u l t s , the o r i e n t a t i o n o f t h e Si-Si bond i s r o t a t e d 120" from i t s normal d i r e c t i o n when passing through a f a u l t plane (dashed l i n e i n Fig. 6). As a consequence, for t h e atoms near a f a u l t (e.g., atom 2 i n Fig. 6(a) and atoms a and 4 i n Fig. 6 ( b ) ) , t h e numbers o f f i r s t and second nearest neighbors a r e n o t changed, b u t the number of t h i r d nearest neighbors i s reduced from 12 t o 9 w i t h one a d d i t i o n a l neighboring atom a t a d i s t a n c e s l i g h t l y l a r g e r than the second nearest-neighbor distance.

(9)

C4-342 JOURNAL DE PHYSIQUE

I n t h e c a l c u l a t i o n /5/, the geometries shown i n Fig. 6 are used t o c a l c u l a t e

the t o t a l energies o f t h e ISF and the ESF. Supercells o f 10 (14) atoms a r e construc- t e d f o r the ISF (ESF). The t o t a l energies o f t h e p e r f e c t c r y s t a l and t h a t o f t h e c r y s t a l w i t h s t a c k i n g f a u l t s are compared t o o b t a i n t h e s t a c k i n g f a u l t energies.

Since we a r e c a l c u l a t i n g extremely small energy d i f f e r e n c e s , g r e a t care i s needed i n t r e a t i n g the p e r f e c t c r y s t a l and the s u p e r c e l l s w i t h the f a u l t s i n equal f o o t i n g n u m e r i c a l l y so t h a t the r e q u i r e d p r e c i s i o n s o tained. The c a l c u l a t i o n s are c a r r i e d o u t using a plane wave b a s i s w i t h (i+~)! up t o 10 Ry which corresponds t o about 70 plane waves per atom.

Table I d i s p l a y s some o f t h e c a l c u l a t e d s t a t i c s t r u c t u r a l p r o p e r t i e s o f t h e S i p e r f e c t c r y s t a l u s i n g a six-atom s u p e r c e l l o f t h e same symmetry as the s u p e r c e l l s c o n t a i n i n g t h e s t a c k i n g f a u l t s . The c a l c u l a t e d l a t t i c e constant i s 5.41 A, which i s i n e x c e l l e n t agreement w i t h t h e experimental value o f 5.43 A. A l l subsequent r e s u l t s are obtained a t t h i s c a l c u l a t e d e q u i l i b r i u m l a t t i c e constant. The c a l c u l a t e d s t a c k i n g f a u l t energy i s 40 erg/cmZ and 26 erg/cm2 f o r the ISF and ESF r e s p e c t i v e l y . The u n c e r t a i n t y i n t h e t h e o r e t i c a l values r e s u l t i n g from the f i n i t e number o f planes waves and % p o i n t s i s estimated t o be 20%. The experimental values /25,26/

which are e x t r a c t e d u s i n g e l s t i c i t y models vary from 50 t o 70 erg/cmZ f o r the ISF and from 50 t o 60 erg/cml f o r the ESF. Thus, the theory i s i n reasonable agreement w i t h experiment. Although t h e r e has been previous t h e o r e t i c a l work /29-31/, t h i s i s t h e f i i - s t time t h a t s t a c k i n g f a u l t energies a r e obtained from an ab i n i t i o s e l f - c o n s i s t e n t c a l c u l a t i o n .

--

I n a d d i t i o n t o t h e f a u l t energies, f o r c e s a r e c a l c u l a t e d u s i n g t h e Hellmann- Feynman theorem. This provides i n f o r m a t i o n on t h e tendency o f t h e atoms t o r e l a x near the f a u l t . The f o r c e on each atom near the f a u l t s i n the i d e a l geometry are shown i n Fig. 6. The t h r e e - f o l d r o t a t i o n a l symmetry around the [111] a x i s d i c t a t e s t h a t the o n l y forces e x i s t i n g are along the [lll] d i r e c t i o n . As seen from the f i g u r e , atoms belonging t o the same double l a y e r immediately n e x t t o a f a u l t plane (e.g., atoms b and 5) tend t o lengthen t h e c o v a l e n t bond between them. Also, t h e atoms belonging t o d i f f e r e n t double l a y e r s (e.g., atoms 3 and d i n Fig. 6 ( b ) ) a l s o tend t o r e p e l each other. The n e t e f f e c t i s t h a t t h e mis- - o r i e n t e d bonds along t h e chain want t o move away from t h e bond d i r e c t l y below o r above it. Thus, these r e s u l t s p r e d i c t t h a t t h e f u l l y r e l a x e d s t r u c t u r e f o r both ISF and ESF would be s l i g h t l y d i l a t e d along t h e [lll] d i r e c t i o n .

S i I S F

The c a l c u l a t e d energy bands i n t h e two-dimensional B r i l l o u i n zone a r e presented i n Fig. 7 f o r the ISF. The allow-

4 ed b u l k s t a t e s ( t h e p r o j e c t e d

band s t r u c t u r e ) are given by the

3 shaded regions. Stacking f a u l t

s t a t e s (dashed 1 in e s ) aye found i n t h e gap r e g i o n near r and

2 R. There are two f a u l t s t a t e s

- a t f o r the ISF. One i s a two-

3 f o l d degenerate s t a t e a t about

E 1 0.1 eV above t h e valence band

> mhximum; t h e o t h e r i s s i n g l y

w degenerate a t about 0.3 eV below

rr 0

w t h e conduction band minimum. The

L

W charge d e n s i t y o f these s t a t e s

- 1 i s p l o t t e d i n Fig. 8. The s t a t e

near the valence band maximum i s a bonding s t a t e w i t h charge

-2 d e n s i t y m a i n l y concentrated be-

tween f a u l t atoms ( F i g . 8 ( a ) ) . The l e v e l p o s i t i o n o f t h i s s t a t e

-3 - - - i s c o n s i s t e n t w i t h t h e photolumin-

W r K escence spectrum f i n d i n g /28/.

The s t a t e below t h e conduction F i g . 7 - Calculated s t a c k i n g f a u l t s t a t e s band minimum a t i s , on the o t h e r (dashed l i n e s ) f o r the ISF. hand, an anti-bonding s t a t e

(10)

( F i g . 8 ( b ) ) . S i m i l a r s t a c k i n g f a u l t states are found f o r t h e ESF.

V - SUMMARY

We have presented a review o f t h e ab i n i t i o pseudopotenti a1 d e n s i t y f u n c t i o n a l method f o r studying surfaces and i n t e r f a c e s . Results from c a l c u l a t i o n s on t h e diamond (111) surface and t h e s t a c k i n g f a u l t s i n S i are discussed. For t h e case o f t h e diamond surface, t h e bonding p r o p e r t i e s and s t r u c t u r e o f t h e 2x1 r e c o n s t r u c t i o n a r e examined. A f u l l y r e l a x e d n-bonded geometry i s p r e d i c t e d from t o t a l energy m i n i m i z a t i o n . For t h e case o f s t a c k i n g f a u l t s , c a l c u l a t i o n s are c a r r i e d o u t f o r e x t r i n s i c and i n t r i n s i c f a u l t s along t h e [lll] d i r e c t i o n . The s t a c k i n g f a u l t ener- g i e s a r e calculated, and forces on t h e atoms a r e determined f o r t h e i d e a l geometries.

The existence and the p r o p e r t i e s o f l o c a l i - zed d e f e c t s t a t e s are a l s o examined and Fig. 8 - Charge d e n s i t y of s t a c k i n g compared w i t h experiment. The o n l y i n p u t f a u l t s t a t e s of t h e ISF a t w i t h en- t o the c a l c u l a t i o n s a r e t h e atomic numbers e r g i e s (a) 0.1 eV above the valence and a s e t o f p o s s i b l e s t r u c t u r a l topologies.

band maximum and (b) 0.3 eV below t h e

conduction band minimum. The charge Acknowledgement - T h i s work was supported d e n s i t y i s i n u n i t s of e l e c t r o n per by N a t i o n a l Science Foundation Grant No.

c e l l volume and i s normalized t o .one DMR8319024 and by a program development e l e c t r o n p e r c e l l . The contour I n t e r - fund from t h e D i r e c t o r o f t h e Lawrence v a l s are (a) 1.5 and (b) 3.0. Berkeley Laboratory.

References

[I] For a r e c e n t review, see M. L. Cohen, Advances i n E l e c t r o n i c s and E l e c t r o n Physics, Vol. 51, eds. L. Marton and C. Marton, Academic Press, New York, pp. 1-62 (1980).

[2] S. G. Louie, Proceedings o f NATO Advanced Study I n s t i t u t e on E l e c t r o n i c S t r u c t u r e , Dynamics and Quantum S t r u c t u r a l P r o p e r t i e s o f Condensed M a t t e r , 1984, eds. J. T. Devreese, P. E. Van Camp, and H. Nachtegaele, Plenum Press ( i n press) and references t h e r e i n .

[3] T o t a l energy c a l c u l a t i o n s , e s p e c i a l l y f o r metals, have been c a r r i e d o u t w i t h i n d i f f e r e n t approaches i n a d d i t i o n t o t h e pseudopotential method.

See, f o r example, V. L. Moruzzi, J. F. Janak, and A. R. W i l l i a m s i n Calculated E l e c t r o n i c P r o p e r t i e s o f Metals, Pergamon Press, New York (1978), and t h e r e c e n t paper by C. L. Fu, S. Ohnishi, E. Wimmer, and A. J. Freeman, Phys.

Rev. L e t t . 53, 675 (1984). Other references may be found i n Ref. 2.

[4] D. V a n d e r b i n and S. G. Louie, Phys. Rev. B 2, 7099 (1984).

[5] M. Y. Chou, S. G. Louie, and M. L. Cohen, Proceedings o f t h e 17th I n t e r n a t i o n a l Conference on t h e Physics o f Semiconductors, 1984, eds. D. J. Chadi and

W. A. Harrison, Springer-Verlag ( i n press).

[ 6 l P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

[7] W. Kohn and L. J. Sham, Phys. Rev. 9, A1133 (1965).

[8] J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C 2, 4401 (1979).

[9] M. L. Cohen and S. G. Louie, Ann. Rev. Phys. Chem. 2, 537 (1984).

[ l o ] S. G. Louie and M. L. Cohen, Phys. Rev. L e t t . 3, 866 (1975); Phys. Rev.

B 3 , 2461 (1976).

(11)

C4-344 JOURNAL DE PHYSIQUE

A. Thanailakis, J . Phys. C 3, 655 (1975).

J. Bardeen, Phys. Rev. 71, 717 (1947) ; V. Heine, Phys. Rev. 138, A1689 (1965).

S. G. Louie, J . R. Chelikowsky, and M. L. Cohen, Phys. Rev. B 15, 2154 (1977).

J . R . Chelikowsky and S. G. Louie, Phys. Rev. B 29, 3470 (1984).

F. J . Himpsel, D. E. Eastman, P . Heimann, and J . F. van d e r Veen, Phys.

Rev. 24, 7270 (1981).

B. B. Pate eta., J. Vac. S c i . Technol. 19, 349 (1981).

$. V. Pepper, S u r f . S c i . 12, 47 (1982).

W. S. Yang and F. Jona, ~ f i s . Rev. B 29, 899 (1984).

D. Haneman, Phys. Rev. 121, 1093 ( 1 9 6 n .

K. C. Pandey, Phys. R e v x e t t . 9, 1913 (1981); Phys. Rev. B 25, 4338

(1982).

0. J. Chadi, Phys. Rev. B 3, 4762 (1982).

R. Seiwatz, Surf. Sci. 2, 473 (1964).

The i d e a l Pandey s-bondzd chain model i s defined a s having a l l bulk bond lengths except f o r graphite-length bonds along t h e s u r f a c e chains.

J . E. Northrup and M. L. Cohen, Phys. Rev. L e t t . 9, 1349 (1982); Phys.

Rev. B 27, 6553 (1983).

I. L. F. Ray and D. J . H. Cockayne, Proc. R. Soc. London A 325, 543 (1971).

H. Foll and C. B. C a r t e r , P h i l . Mag. A 9, 497 (1979).

L. C. Kimerling, H. J . Leamy, and J . R. P a t e l , Appl. Phys. L e t t . 3,

217 (19771.

E . R: web& and H. Alexander, J . de Phys. (Colloque) C 4, 319 (1983).

C. Weigel, H. Alexander, and J. W. Corbett, Phys. S t a t u s S o l i d i B 71,

701 (19751.

L. F: ~ a t t h e i s s and J . R. P a t e l , Phys. Rev. B 3, 5384 (1981).

J . Sanchez-Dehesa, J. A. Verges, and C. Tejedor, Phys. Rev. B 24, 1006 (1981).

DISCUSSION

D. A s t ; Two comments. ( i ) If I r e c a l l it c o r r e c t l y , it was l a t e r shown t h a t t h e r e s u l t s o f Kimmerling e t a l . were obtained on a decorated s t a c k i n g f a u l t . ( i i ) I n high r e s o l u t i o n TEM o f twins t h e r e a r e some i r r e g u l a r i t i e s i n c o n t r a s t which may be compatible with a d i l a t a t i o n occurring a t t h e boundary.

S.G. Louie: There is a paper by Y. Hanoka (Mobil Tyco Co., Waltham, Mass) i n Am.

Rev. Mat. S c i . which, I b e l i e v e , g i v e s numbers f o r energy l e v e l s o f twins i n S i a s derived from temperature dependent EBIC d a t a .

R. Havdock: How s e n s i t i v e a r e your r e s u l t s t o t h e pseudopotential you d e r i v e from t h e f r e e atom? How good a r e t h e atomic wavefunctions t o which you f i t t h e pseudo wavefunctions?

S.G. Louie: The r e s u l t s a r e i n s e n s i t i v e t o t h e d e t a i l s o f form o f t h e &initio i o n i c pseudopotentials near t h e nucleus provided they a r e derived using t h e norm-conserving c r i t e r i a such a s t h o s e described i n t h e Hamann-SchluterChiang o r t h e Kerkev scheme. The a l l - e l e c t r o n atomic wavefunctions a r e c a l c u l a t e d

(12)

s e l f - c o n s i s t e n t l y w i t h i n t h e l o c a l d e n s i t y approximation. The a l l - e l e c t r o n wavefunctions and t h e pseudo-wavefunctions a r e i d e n t i c a l beyond a chosen c o r e r a d i u s from t h e nucleus i n t h e Kerker scheme. T h i s c o r e r a d i u s h a s t o be chosen small enough t o ensure high degree o f t r a n s f e r a b i l i t y o f t h e i o n i c p o t e n t i a l .

D.P. DiVincenzo: Are your r e s u l t s f o r t h e i n t r i n s i c and e x t r i n s i c s t a c k i n g f a u l t s ( i n p a r t i c u l a r t h e boundary d i l a t a t i o n s and t h e valence-derived gap s t a t e ) q u a l i t a t i v e l y o r q u a n t i t a t i v e l y a p p l i c a b l e t o t h e coherent twin boundary i n Si?

S.G. Louie: We have some preliminary r e s u l t s on t h e S i twin boundary. I t seems t h a t t h e q u a l i t a t i v e f e a t u r e s found f o r t h e i n s t r i n s i c and e x t r i n s i c s t a c k i n g f a u l t s a l s o apply f o r t h e twin boundary.

R.C. Pond: There is some experimental evidence supporting your suggestion t h a t t h e r e is some d i l a t i o n a t s t a c k i n g f a u l t s i n S i . I f t h e r e is an expansion, it follows t h a t t h e d i s l o c a t i o n s which bound s t a c k i n g f a u l t s do n o t have t h e Burgers v e c t o r s u s u a l l y assumed. Does t h i s imply t h a t t h e values o f s t a c k i n g f a u l t e n e r g i e s , obtained by experimental o b s e r v a t i o n s , should be r e v i s e d , and would t h e r e v i s e d v a l u e s correspond more o r l e s s c l o s e l y with your c a l c u l a t e d values.

S.G. Louie: Yes. However, I b e l i e v e t h e measured s t a c k i n g f a u l t e n e r g i e s a r e only approximate s i n c e they a r e derived from experimental d a t a using e l a s t i c i t y models.

The r e v i s i o n s discussed h e r e a r e probably w i t h i n t h e u n c e r t a i n t i e s o f both t h e experimental and t h e o r e t i c a l values.

M. Schluter: ( i ) Did you check hex diamond? Could it be t h a t a t high p r e s s u r e t h e hex phase is lower i n energy than BC8? ( i i ) Is t h e s t a c k i n g f a u l t s t a t e near t h e VBM s t a b l e a g a i n s t t h e r e l a x a t i o n s o f t h e s t r u c t u r e ?

S.G. Louie: ( i ) A t p r e s e n t we have n o t c a l c u l a t e d carbon i n t h e hexagonal diamond s t r u c t u r e . R e s u l t s from S i work show t h a t t h e hexagonal diamond s t r u c t u r e has s l i g h t l y h i g h e r energy than t h e cubic diamond s t r u c t u r e up t o very high p r e s s u r e . ( i i ) Preliminary r e s u l t s i n d i c a t e t h a t they a r e s t a b l e .

M. Riihle: ( i ) You determined t h e f o r c e s on t h e atoms i n S i i n ( o r n e a r ) a twin.

The f o r c e s w i l l r e s u l t i n a r e l a x a t i o n o f t h e atomic s t r u c t u r e (observed by HREM).

W i l l t h e r e l a x a t i o n i n f l u e n c e a l l your r e s u l t s ? ( i i ) Is it p o s s i b l e t o do s i m i l a r c a l c u l a t i o n s f o r metals?

S.G. Louie: ( i ) The c a l c u l a t e d value o f t h e f o r c e s i n d i c a t e s t h a t t h e r e l a x a t i o n w i l l be r a t h e r small. I expect only small changes i n t h e c a l c u l a t e d q u a n t i t i e r

(13)

C4-346 JOURNAL DE PHYSIQUE

such a s t h e f a u l t e n e r g i e s and s t a c k i n g f a u l t s t a t e p o s i t i o n s . The e x i s t e n c e o f t h e s e d e f e c t s t a t e s is n o t expected t o change. ( i i ) Yes. We can do s i m i l a r c a l c u l a t i o n s f o r metals.

E. Molinari: Could you comment about t h e comparison between your r e s u l t s and t h e experiments, a s f a r a s t h e presence o f s t a c k i n g f a u l t s t a t e s i n t h e s i l i c o n bond gap is concerned?

S.G. Louie: The s t a c k i n g f a u l t s t a t e s t h a t we f i n d near t h e t o p o f t h e valence band maximum a g r e e w e l l with a s t a c k i n g f a u l t l e v e l observed i n photoluminescence measurements by Weber and Alexander (Ref. 28). The o t h e r p r e d i c t e d d e f e c t s t a t e s w i l l be more d i f f i c u l t t o observe because they a r e not i n s i d e t h e minimum gap o f t h e S i p r o j e c t e d band s t r u c t u r e .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to