• Aucun résultat trouvé

MODULATION EFFECTS IN PASSIVE Rb FREQUENCY STANDARDS

N/A
N/A
Protected

Academic year: 2021

Partager "MODULATION EFFECTS IN PASSIVE Rb FREQUENCY STANDARDS"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: jpa-00221717

https://hal.archives-ouvertes.fr/jpa-00221717

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MODULATION EFFECTS IN PASSIVE Rb FREQUENCY STANDARDS

P. Thomann, G. Busca

To cite this version:

P. Thomann, G. Busca. MODULATION EFFECTS IN PASSIVE Rb FREQUENCY STANDARDS.

Journal de Physique Colloques, 1981, 42 (C8), pp.C8-189-C8-197. �10.1051/jphyscol:1981822�. �jpa-

00221717�

(2)

JOURNAL DE P H Y S I Q U E

CoZZoque C8, suppZe'ment au n012, Tome 42,

de'cembre

1981 page C8-189

MODULATION EFFECTS I N P A S S I V E Rb FREQUENCY STANDARDS

P. Thomann and G. Busca

ASULAB S. A., 6, passage

M a x

Meuron, CH-2001 NeucMteZ, Switzer Zand

A b s t r a c t . - The l i n e s h a p e o f a microwave resonance i s s t u d i e d t h e o r e t i - c a l l y and e x p e r i m e n t a l l y i n t h e c a s e o f a phase-modulated RF-field and o p t i c a l d e t e c t i o n of t h e resonance. The c a l c u l a t i o n a l l o w s t o o p t i m i z e t h e e r r o r s i g n a l i n a Rb frequency s t a n d a r d with r e s p e c t t o t h e modula- t i o n parameters. Sine-wave and square-wave modulation a r e examined i n some d e t a i l .

1. I n t r o d u c t i o n . - The s h o r t term s t a b i l i t y o f a p a s s i v e Rb s t a n d a r d i s mainly li- mited by t h e s i g n a l t o n o i s e r a t i o o f t h e e r r o r s i g n a l needed t o lock t h e q u a r t z o s c i l l a t o r t o t h e atomic frequency. The e r r o r s i g n a l i s u s u a l l y o b t a i n e d by modu- l a t i n g t h e phase of t h e RF f i e l d and d e t e c t i n g t h e corresponding modulation i n t h e l i g h t i n t e n s i t y t r a n s m i t t e d by t h e resonance c e l l . I n t h i s paper we d e r i v e a n a l y t i - c a l r e s u l t s f o r t h e dependence of t h e e r r o r s i g n a l on modulation frequency, modula- t i o n depth and r e l a x a t i o n r a t e s , w i t h p a r t i c u l a r a t t e n t i o n t o t h e s p e c i f i c c a s e s of sine-wave and square-wave modulation.

Modulation e f f e c t s have been e x t e n s i v e l y s t u d i e d i n t h e p a s t ([I] - [8]). A l l au- t h o r s we a r e aware o f , however, c o n c e n t r a t e on t h e l i n e s h a p e o f t h e radio-frequency a b s o r p t i o n curve. Here we a r e concerned with o p t i c a l d e t e c t i o n of an RF resonance s i g n a l , which means t h a t t h e p o p u l a t i o n i n v e r s i o n between t h e two h y p e r f i n e l e v e l s , n o t t h e i r coherence, i s t h e r e l e v a n t parameter. Furthermore, most t r e a t m e n t s a r e r e s t r i c t e d a s t o t h e range of t h e modulation parameters (modulation frequency low [ 6

-

8 o r h i g h 1 3 , 43 compared t o t h e r e l a x a t i o n r a t e s , low modulation amplitu- d e s [2.

$, .

I n t h i s c a l c u l a t i o n we p u t no l i m i t a t i o n on t h e modulation amplitude and frequency, s o t h a t t h e e r r o r s i g n a l cannot be r e l a t e d i n g e n e r a l t o d e r i v a t i v e s of t h e s t a t i c l i n e s h a p e .

I n o r d e r t o s i m p l i f y t h e mathematical t r e a t m e n t and t o o b t a i n meaningful a n a l y t i c a l r e s u l t s , we make t h e two f o l l o w i n g assumptions:

1) Although t h e p o p u l a t i o n s o f a l l Zeeman s u b s t a t e s a r e coupled through t h e o p t i c a l pumping p r o c e s s , we assume t h a t t h e ( s m a l l ) p o p u l a t i o n changes induced by t h e RF f i e l d i n t h e two f i e l d - i n d e p e n d e n t s t a t e s have a n e g l i g i b l e e f f e c t on t h e o t h e r p o p u l a t i o n s . Thus we r e p l a c e t h e two Zeeman m u l t i p l e t s by two s i n g l e l e v e l s and assume t h a t t h e e f f e c t o f t h e c o u p l i n g w i t h i n m u l t i p l i c i t i e s can be c o n t a i n e d i n t h e r e l a x a t i o n r a t e s of t h e two-level system.

2) We assume t h a t t h e RF power i s low enough t o n e g l e c t s a t u r a t i o n e f f e c t s ; t h i s allows a p e r t u r b a t i v e t r e a t m e n t of t h e e q u a t i o n s of motion. I n t h i s r e s p e c t our c a l c u l a t i o n i s s i m i l a r t o t h e one by Karplus

[I],

b u t second-order, i n s t e a d of f i r s t o r d e r , r e s u l t s a r e n e c e s s a r y t o account f o r t h e o p t i c a l d e t e c t i o n of t h e RF-resonance.

2. D e r i v a t i o n of t h e resonance l i n e s h a p e . - The e v o l u t i o n of t h e d e n s i t y m a t r i x i s s p l i t i n t o t h r e e p a r t s corresponding t o o p t i c a l pumping, r e l a x a t i o n and i n t e r a c t i o n

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981822

(3)

JOURNAL

DE

PHYSIQUE

with t h e RF f i e l d :

O P Re l R F

a , ~ = a , ~ + aP ,+ ~ , P

We t a k e a simple model f o r o p t i c a l pumping where l e v e l s 1 and 2 a r e d e p l e t e d by t h e pumping l i g h t a t r a t e s

rl

and

r2.

The pumping l i g h t i s assumed t o be weak and t o have a broad spectrum, i n which c a s e t h e pumping c y c l e i s a d e q u a t e l y d e s c r i b e d by r a t e e q u a t i o n s (no o p t i c a l c o h e r e n c e s ) . The l i g h t i s r e e m i t t e d spontaneously from a s i n g l e e x c i t e d l e v e l which decays t o l e v e l s 1 and 2 w i t h t h e same r a t e 4y, ( ~ > > r ) . We t h e n have t h e f o l l o w i n g e q u a t i o n s f o r t h e h y p e r f i n e 0-sublevels (we n e g l e c t t h e l i g h t - s h i f t f o r s i m p l i c i t y ) .

We assume t h a t a l l r e l a x a t i o n mechanisms ( c o l l i s i o n s w i t h o t h e r atoms o r with t h e w a l l s , magnetic f i e l d inhomogeneities) can b e d e s c r i b e d by a " l o n g i t u d i n a l " and a

" t r a n s v e r s e " r e l a x a t i o n time y i , and y;; t h e s t e a d y s t a t e d e n s i t y m a t r i x elements w i t h o u t o p t i c a l pumping a r e

011 = 022 = 4 and p l 2 = 0 , s o t h a t

a

Rel

,

Pn

= - Y;

(Pit - 1/21

a

Rel

,

p22 = -

Y;

( P 2 2 - 1 4 )

a

Rel

,

p 1 2 =

-

yiplz

F i n a l l y , t h e i n t e r a c t i o n w i t h t h e RF-field ( l i n e a r l y p o l a r i z e d p a r a l l e l t o t h e C- f i e l d ) i s given by

where p2 / ~ W O pe icp(t)

H - .

(

Be-icp(t)

-%

w o

Uo i n c l u d e s t h e q u a d r a t i c Zeeman e f f e c t and t h e l i g h t s h i f t

p

= .-1 PBBRF i s t h e c o u p l i n g s t r e n g t h o f t h e 0-0 t r a n s i t i o n i n Rb-87 w i t h t h e RF f i e l d

Radiofrequency f i e l d , w i t h phase $ ( t ) t o b e B R F ( t ) = B R F COS cp(t)

s p e c i f i e d l a t e r

Defining A = p l l - p22, we o b t a i n t h e f o l l o w i n g e q u a t i o n s f o r A and p12 A = -

Yl

(A-AO)

+

4

p

Jm ( p12e - i V ( t )

biz=(-y2

+ i u o ) p,, -

,ae

icp(tIA

where = y;

+

1 3 (

r1 + r2

)

y , =

Yi

+ % ( r l + r 2 ) 0 - Yz(r

- r

A -&+b;r~+;:)

(4)

I n o b t a i n i n g e q u a t i o n s ( 4 ) we have a l s o made use o f t h e rotating-wave approximation, which i s j u s t i f i e d s i n c e i n p r a c t i c e b o t h

6

and t h e frequency

w,

o f phase modulation a r e much s m a l l e r than W o .

Although a numerical s o l u t i o n o f e q s ( 4 ) can r e a d i l y be o b t a i n e d f o r any v a l u e o f t h e p a r a m e t e r s , we r e s t r i c t t h e range of RF amplitude i n o r d e r t o o b t a i n an approxi- mate a n a l y t i c a l s o l u t i o n . I f

6

<

yl, yz

we can expand A and i n a p e r t u r b a t i o n s e r i e s of powers o f

8.

This i s n o t a very r e s t r i c t i v e c o n d i t i o n : i n p r a c t i c e one a v o i d s t o s a t u r a t e t h e t r a n s i t i o n s i n c e s a t u r a t i o n a l s o means broadening o f t h e re- sonance curve and d e c r e a s e o f t h e d i s c r i m i n a t i n g s l o p e .

We t h e r e f o r e w r i t e

w i t h

d") - on

~2)- b n

I n s e r t i n g t h e e x p r e s s i o n s above i n t o e q s ( 4 ) and s o r t i n g o u t terms o f e q u a l powers of

B

y i e l d s t h e f o l l o w i n g o r d e r s of approximation f o r t h e permanent s o l u t i o n s : Order 0 : A(') = A0

:

= o

Order 1: A(') = 0

- i

p a 0

+iwt7 +iB@(t') .(-Y2 + iw,) ( t - t') d t' where we have used t h e following d e f i n i t i o n

64I(t) i s t h e phase modulation of t h e RF f i e l d ; we make use o f i t s p e r i o d i c i t y t o w r i t e it a s a F o u r i e r s e r i e s

-

we suppose f o r s i m p l i c i t y t h a t ak i s r e a l , which i s t h e c a s e i f 6 $ 1 ( t ) =

-

6 @ ( - t ) . Theref o r e

( l ) iwt a k e ikwmt

p I l ( t ) = - iPAoe 2

-a Y2+i(U +kW,) where Cf = W

-

U o i s t h e RF-atom detuning.

Order 2 : p$) =

I n t e g r a t i n g eq. (9) we o b t a i n , f o r t h e l o w e s t (second) o r d e r i n

B,

t h e f o l l o w i n g e x p r e s s i o n f o r t h e permanent s o l u t i o n A ( ' ) ( t ) :

Replacing PI(:) ( t ' ) by i t s e x p l i c i t e x p r e s s i o n (eq. 8) and performing t h e i n t e g r a - t i o n , we g e t , a f t e r some m a n i p u l a t i o n s

A (2)(*) = -

2'

Cp COs pw, t

+ sp

sin pw,t

Y1 Y2

{

P=o

(5)

JOURNAL DE PHYSIQUE

where A ( x ) = ( i

+

x Z ) - ' x k = ( a + k w , )

/

y, and

D ( x ) = X . ( 1

+

x 2 ) - I Y p = p W m / Y,

The i n v e r s i o n A ( ' ) shows o s c i l l a t i o n s a t a l l harmonics of t h e modulation frequency.

A s a f u n c t i o n of t h e d e t u n i n g a , t h e amplitude of t h e s e o s c i l l a t i o n s undergoes r e - sonances c e n t e r e d a t a = - kq,,. When % << y l , y~ t h e a d d i t i o n a l resonances (k

#

0 ) merely broaden t h e unmodulated l i n e shape whereas i f

q,,

> > y l , y2 t h e y appear a s r e s o l v e d sidebands. S i n c e t h e f i r s t harmonic ( p = 1) i s o f most i n t e r e s t h e r e we w i l l c o n c e n t r a t e on t h i s component and, i n o r d e r t o o b t a i n s p e c i f i c a n a l y t i c a l r e - s u l t s , we w i l l c o n s i d e r two s p e c i a l c a s e s of phase modulation, namely sine-wave and square-wave modulation.

3. F i r s t harmonic of t h e p o p u l a t i o n i n v e r s i o n , s i n e - and square-wave phase modulation.-

The f i r s t harmonic component o f t h e i n v e r s i o n i s given by e q . . l l :

where C1 and S 1 a r e given by e q s ( l l b , c ) a ) sine-wave modulation

The phase e x c u r s i o n i s t h e n

8 g , ( t ) = m s i n w m t ; t h e F o u r i e r development of ei6'(t) r e a d s

i m s i n % t +o

= J~ ( m ) e i k w m t k=-w

and we have ak = J k ( m ) , where Jk(m) i s t h e s t a n d a r d B e s s e l f u n c t i o n of o r d e r k . b ) square-wave modulation

-

i f k = O

= [ i s I i n m i f i f k k i s i s even odd

,.,,

Table 1 g i v e s a summary o f a n a l y t i c a l r e s u l t s which a r e v a l i d i n some l i m i t i n g c a s e s of i n t e r e s t . For small modulation f r e q u e n c i e s t h e l i n e shape i s , a s expected, e q u a l t o t h e d e r i v a t i v e o f t h e s t a t i c L o r e n t z i a n l i n e shape (eq. 1 5 ) . A t high modu- l a t i o n f r e q u e n c i e s , however, t h e l i n e shape becomes a s t a n d a r d d i s p e r s i o n curve (eq. 1 3 ) .

Comparison between t h e s e two l i m i t i n g c a s e s ( e q s 13 and 1 5 , t a b l e 1) i n d i c a t e s a simple method t o determine Y 2 f r o m t h e width of t h e experimental curves and y l from t h e i r amplitude. A t h i g h modulation f r e q u e n c i e s , f o r example,the d i s p e r s i o n curve peaks a t a / y Z = I , which g i v e s an immediate measurement of '(2. Once y2 i s known, y l can b e determined i n t h e f o l l o w i n g way. Keeping t h e phase e x c u r s i o n m and t h e de- t u n i n g a f i x e d , t h e amplitude C 1 o f t h e e r r o r s i g n a l i s measured a t two frequencies:

(&, y2 and Um2

>>

y2. I n s e r t i n g t h e e x p e r i m e n t a l v a l u e s C l ( % l ) and C 2 ( ( & 2 ) in t o eqs 1 3 and 15 y i e l d s

(6)

ffl ffl

"

w .rl

0 rn h

4 0

g 8 I"

rn

.

8

.i 0

3 "

B 8

A

r-

=!

0

-

" z 5 2

~ I L

II

e

V V

s s

CI

0 I

- N Y - I

II II II a

-

4J

- s

8

-

Y ,

8

;

A-

- $

U h .rl

::

2 2

+ A

" " ; 31; V G

v 2 g

I

31;

'I ?I

0

-

"I U rn

- - S

N

*

N II

A A A A

N m ln W

=! - 5 " - 5

T' 2

al

m

"

ffl

B

u

"

A

8 I

.rl C rn

N

A

*

N

$ 2 +

.rl rn rn

-

+

g 8

U

-

I

3 2

4 3

I b -

II II E 4

-

0

-

II

V

2? #

2:

e

a m

I al .r( rn

4

4

* : :

rn

819

2

+ N

u rn

-

N

,I ,I

0

-

4-1 4

b

-

+J II

-

N

-

4

u

9

A

I 8

2

2: I

u (I

8 G

rn +

N

-

..

";,

N

-

(7)

JOURNAL DE PHYSIQUE

Once y2 and

yl

a r e de'termined, t h e modulation frequency and t h e modulation index can b e chosen s o a s t o o p t i m i z e t h e s l o p e o f A1 ( x ) =

(c: + s:)%

n e a r o = 0 , u s i n g t h e c u r v e s no 3 , 4. I t should b e n o t e d t h a t Al, t h e maximum amplitude o f t h e s i g n a l , r a t h e r t h a n C1 o r S1, i s t h e r e l e v a n t parameter f o r determining t h e d i s c r i m i n a t i n g s l o p e s i n c e C1 and S 1 a r e b o t h e q u a l t o z e r o a t o = 0 and a r e p r o p o r t i o n a l t o each o t h e r n e a r

a

= 0. I n o t h e r words t h e phase s e t t i n g o f t h e phase s e n s i t i v e d e t e c t o r i n a servo-loop u s i n g A ( 2 ) ( t ) a s an e r r o r s i g n a l s e r v e s o n l y t o maximize t h e s i g n a l b u t i n t r o d u c e s no s h i f t i n t h e s t a b i l i z e d frequency. That i s t r u e f o r pure s i n e - wave a n d . p u r e square-wave modulation, b u t it may n o t h o l d f o r an a r b i t r a r y modula- t i o n s i g n a l .

4. Experimental.- I n o r d e r t o check t h e r e s u l t s e s t a b l i s h e d i n t h e p r e c e d i n g sec- t i o n , we have used a s e t u p v e r y s i m i l a r t o t h e one used normally i n Rb frequency s t a n d a r d s : a Rb-87 lamp, followed by a Rb-85 f i l t e r , p r o v i d e s t h e pumping l i g h t f o r a Rb-87 c o a t e d c e l l w i t h o u t b u f f e r - g a s . The RF f i e l d i s produced from t h e 5 MHz o u t p u t of a Cs-clock, phase modulated, m u l t f p l i e d by 1368 and mixed w i t h t h e o u t - p u t o f a swept frequency s y n t h e t i z e r . I n o r d e r t o avoid any coupling o f t h e RF sidebands w i t h t h e m a g n e t i c - f i e l d dependent Zeeman s u b s t a t e s a t t h e h i g h e s t modu- l a t i o n f r e q u e n c i e s ( - 10 kHz), a r a t h e r l a r g e DC magnetic h i e l d o f 0.5 Gauss was used t o s e p a r a t e t h e Zeeman l e v e l s by

-

350 kHz.

Fig. 1 Amplitude A1 o f t h e f i r s t harmonic o f t h e i n v e r s i o n ( t ) v e r s u s RF-atom d e t u n i n g ( t h e o r y and experiment).

Y P

= 2050 s - l , h+,, = 1 4 . 4 . 1 0 ~ s - l , sine-wave phase modulation, m = 1.4

Fig. 1 shows t h e shape of t h e resonance (amplitude A1 of t h e f i r s t harmonic of

A ( ' )

( t ) a s a f u n c t i o n o f t h e RE'-atom d e t u n i n g

a ) .

I n t h i s exemple t h e modulation frequency i s much l a r g e r t h a n t h e r e l a x a t i o n r a t e s , s o t h a t w e l l r e s o l v e d sidebands appear a t i n t e g e r v a l u e s o f t h e r a t i o

o / ~ .

The q u a n t i t y o f i n t e r e s t f o r a frequen- cy s t a n d a r d i s t h e s l o p e of t h e curve n e a r

a

= 0 , which we d e f i n e a s

P I = aA_

a c a / r ~ ) (18)

(8)

Fig. 2a Slope of t h e d i s c r i m i n a t i n g s i g n a l v e r s u s modulation frequency f o r

y1/Y2

= 0.3; 0.7; 1.5; 3.0, sine-wave phase modulation ( m = 2 ) s o l i d l i n e s : eq. 11; o: experiment

Fig. 2 b Slope of t h e d i s c r i m i n a t i n g s i g n a l v e r s u s modulation frequency for

Y1/Y2 = 0 - 3 ; 0 - 7 ; 1.5; 3.0, square-wave modulation m = ~ / 4 ; s o l i d l i n e s : eq. 17 ( t a b l e 1) ; o: experiment

(9)

C8- 196 JOURNAL DE PHYSIQUE

The d i s c r i m i n a t i n g s l o p e [ ~ o l t s / ~ z ] i s t h e n given by

where V i s t h e DC v o l t a g e change g e n e r a t e d a t t h e photo-detector o u t p u t when t h e RF power l e v e l i s switched from

B

= 0 t o

B

>> y l y 2 ( s a t u r a t i o n ) , t h u s inducing an atomic i n v e r s i o n v a r i a t i o n e q u a l t o

A'

(eq. 5 ) .

F i g u r e s 2a and 2b show t h e dependence o f P l on the modulation frequency f o r seve- r a l v a l u e s of t h e r a t i o y1/y2. For low v a l u e s of %, P1 i n c r e a s e s w i t h modulation frequency b u t i s independent of Y1. However, t h e modulation frequency a t which P1 r e a c h e s a maximum and t h e maximum v a l u e i t s e l f both depend on y l . A measurement o f P I a s a f u n c t i o n o f

y,

a l l o w s , a s d e s c r i b e d b e f o r e , a simple experimental determi- n a t i o n o f y1/Y2. I n t h e c o n d i t i o n s of o u r experiment, t h e d a t a f i t t h e t h e o r e t i c a l curve corresponding t o Y1/y2 = 0.7 ( f i g .

g:

square-wave modulation w i t h m = T/4;

f i g .

&:

sine-wave modulation w i t h m = 2 ) . The r e l a x a t i o n r a t e s y; and y; ( s e e e q s 3, 5 ) c o u l d be measured by r e p e a t i n g t h e s e measurements a t v a r i o u s pumping r a t e s and e x t r a p o l a t i n g t o z e r o l i g h t i n t e n s i t y .

The dependence of PI on (sine-wave) modulation frequency i s shown i n f i g . 3 f o r v a r i o u s modulation depths. For low v a l u e s of t h e modulation index m ( m 2)

,

t h e optimum modulation frequency s t a y s c o n s t a n t b u t t h e s l o p e PI i n c r e a s e s with m. For m

5

2 , t h e maximum s l o p e s t a y s c o n s t a n t b u t t h e optimum modulation frequency de- c r e a s e s with i n c r e a s i n g m: t h e l a r g e s t s i g n a l i s o b t a i n e d when t h e frequency excur- s i o n

mm

i s roughly e q u a l t o t h e width y 2 o f t h e resonance.

Fig. 3 Slope o f t h e d i s c r i m i n a t i n g s i g n a l v e r s u s modulation frequency (sine-wave modulation) f o r v a r i o u s modulation d e p t h s ~ 1 / Y 2 = 0.7.

S o l i d l i n e s : eq. 11; experimental d a t a :

+

(m = 0 . 5 ) ; 0 (m = 1 ) ; o ( m = 2 ) ; A ( m = 5 )

F i g . 4 shows how t h e s l o p e P1 o f t h e e r r o r s i g n a l depends on t h e phase e x c u r s i o n m f o r b o t h sine-wave and square-wave modulation. I n t h e l a t t e r c a s e , P I i s pro- p o r t i o n a l t o sin2m. The maximum s l o p e i s t h u s o b t a i n e d when m = T/4, r e g a r d l e s s o f a l l o t h e r parameters. I n sine-wave modulation PI depends i n a more complicated way on both t h e modulation index and t h e modulation frequency b u t t h e optimum s l o p e

(10)

can be up t o 50% l a r g e r t h a n i n square-wave modulation.

Fig. 4 Slope of t h e d i s c r i m i n a t i n g s i g n a l v e r s u s phase e x c u r s i o n m f o r sine-wave phase modulation and square-wave phase modulation

(wm/y2 = 0 . 7 7 ) . S o l i d l i n e s : sine-wave (eq. 11); square-wave (eq. 1 7 ) experiment: o sine-wave phase modulation;

+

square-wave phase

modulation, ( s l o p e i n a r b i t r a r y u n i t s )

5. Conclusions.- A dynamical c a l c u l a t i o n of t h e double-resonance l i n e s h a p e s i n t h e presence of phase-modulation o f t h e RF f i e l d h a s been performed. T h i s calcu- l a t i o n i s v a l i d f o r any combination of modulation frequency and depth b u t i s r e s - t r i c t e d t o u n s a t u r a t e d resonances. I t allows t o p r e d i c t t h e modulation parameters t h a t w i l l maximize t h e d i s c r i m i n a t o r s l o p e once t h e r e l a x a t i o n r a t e s o f t h e system a r e known. The r e l a x a t i o n r a t e s can b o t h be measured, u s i n g t h e same t h e o r e t i c a l r e s u l t s , by comparing t h e amplitude o f t h e s i g n a l a t low and h i g h modulation f r e - quencies. Experimental r e s u l t s a r e i n good agreement with t h e o r e t i c a l p r e d i c t i o n s and show t h a t t h e assumptions underlying t h e c a l c u l a t i o n s a r e j u s t i f i e d , p a r t i c u - l a r l y concerning t h e n e g l e c t of Zeeman pumping.

Acknowledgements

We thank D r . H. Brandenberger f o r having p o i n t e d o u t t h a t problem t o u s and f o r h e l p f u l d i s c u s s i o n s .

References

KARPLUS R . , Phys. Rev.

73

(1948) 1027

HALBACH K . , H e l v e t i c a Physica Acta

2

(1954) 259 HALBACH K., H e l v e t i c a Physica Acta

2

(1956) 37 PRIMAS H . , ~ e l v e t i c a Physica Acta

2

(1958) 17 MISSOUT G . , VANIER J . , Can. J . Phys.

53

(1975) 1030 WILSON G . V . H . , J. Appl. Phys.

34

(1963) 3276

BURGESS J.H., BROWN R.M., J. o f S c i . I n S t r .

2

(1952) 3 3 4 BUCKMASTER H.A., SKIRROW J . D . , J. o f Maqn. Res.

5

(1971) 285

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to