• Aucun résultat trouvé

THERMODYNAMICS OF EQUILIBRIUM AND NON-EQUILIBRIUM CRYSTALLIZATION OF Ge AND Si

N/A
N/A
Protected

Academic year: 2021

Partager "THERMODYNAMICS OF EQUILIBRIUM AND NON-EQUILIBRIUM CRYSTALLIZATION OF Ge AND Si"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: jpa-00221793

https://hal.archives-ouvertes.fr/jpa-00221793

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THERMODYNAMICS OF EQUILIBRIUM AND NON-EQUILIBRIUM CRYSTALLIZATION OF Ge

AND Si

D. Turnbull

To cite this version:

D. Turnbull. THERMODYNAMICS OF EQUILIBRIUM AND NON-EQUILIBRIUM CRYSTAL- LIZATION OF Ge AND Si. Journal de Physique Colloques, 1982, 43 (C1), pp.C1-259-C1-269.

�10.1051/jphyscol:1982136�. �jpa-00221793�

(2)

JOURNAL DE P H Y S I Q U E

CoZZoque CI, suppldment au nOIO, Tome 43, octobre 1982 page C1-259

THERMODYNAMICS OF E Q U I L I B R I U M AND NON-EQUILIBRIUM CRYSTALLIZATION OF Ge AND S i

D. Turnbull

Division o f Applied Sciences, Hamard University, Pierce HaZZ, MA 02138 Cambridge, U . S. A.

Resume.- A l a p r e s s i o n d'une atmosphgre, l ' c t a t c r i s t a l l i n , c-sc, d e G e o u S i s e l i q u e f i e thermodynamiquement a l a temperature T e t donne un l i q u i d e metal-

cR

l i q u e ( R m ) . Un & a t amorphe semiconducteur, a-sc, e s t forme p a r d i v e r s e s tech- niques de d e p o s i t i o n , bombardement i o n i q u e du c r i s t a l ou d e S i , en trempant ultra-rapidementtm. Les r e s u l t a t s obtenus pour l e s c h a l e u r s d e c r i s t a l l i s a t i i o n

des e t a t s a-sc d e Ge e t S i s e r o n t p r e s e n t e s e t compares 2 ceux obtenus pour Rm + c-sc. A l ' a i d e de c e s c h a l e u r s , e t en u t i l i s a n t l e peu d e donnees connues pour l e s c h a l e u r s c a p a c i t i v e s e t un modgle de l ' e n t r o p i e i3O°K de a-sc, l ' e n e r - g i e l i b r e d e a-sc a e t 6 c a l c u l B e r e l a t i v e m e n t B c-sc. L ' a n a l y s e i n d i q u e qu'une t r a n s f o r m a t i o n dans l e regime m e t a s t a b l e e s t admise comme d t a n t d e pre- mier o r d r e pour a-sc + Rm B T * 0,8 TcR pour Ge e t 0,9 TcR pour S i .

aR

La c o m p a t i b i l i t 6 d e c e s c a l c u l s avec l e s connaissances d e c i n e t i q u e de r e c r i s - t a l l i s a t i o n de c-sc qui c o n d u i t i c o u v r i r c-sc de couches endommagees e t Z former a-sc ii p a r t i r d e Rm p a r trempe u l t r a - r a p i d e e s t d i s c u t e e .

Abstract.- A t one atmosphere p r e s s u r e t h e c r y s t a l l i n e s t a t e , c-sc, of Ge o r S i m e l t s thermodynamically a t temperature T to a m e t a l l i c l i q u i d (Ern). An

cR

amorphous semiconducting s t a t e , a-sc, i s formed i n v a r i o u s d e p o s i t i o n proces- s e s , by i o n bombardment of t h e c r y s t a l o r , of S i , by u l t r a - r a p i d quenching of Rm. Measurements of t h e h e a t s of c r y s t a l l i z a t i o n of t h e a-sc s t a t e s of Ge and S i w i l l be reviewed and compared w i t h t h o s e of Rm + c-sc. Using t h e s e h e a t s , i n c o n j u n c t i o n w i t h l i m i t e d h e a t c a p a c i t y d a t a and a model c a l c u l a t i o n o f t h e O°K e n t r o p y of a-sc t h e f r e e energy of a-sc r e l a t i v e t o t h e c-sc s t a t e h a s been computed. The a n a l y s i s i n d i c a t e s a t r a n s f o r m a t i o n i n t h e m e t a s t a b l e regime-assu- med, b u t n o t proven, t o be f i r s t o r d e r o f a-sc + Rm a t T ". 0.8 TcR f o r Ge and

". 0.9 TcQ f o r S i . aR

The c o n s i s t e n c y of t h e s e c a l c u l a t i o n s w i t h experience on t h e k i n e t i c s o f regrowth of c-sc i n t o damaged o v e r l a y s on c-sc and on t h e formation o f a - s c from Rm i n u l t r a - r a p i d quenching i s d i s c u s s e d .

1. I n t r o d u c t i o n . - The condensed phases which t a k e p a r t i n t r a n s f o r m a t i o n s o c c u r r i n g i n t h e high energy f l u e n c e p r o c e s s i n g of S i ( o r Ge) a t low p r e s s u r e a r e t h e c r y s t a l l i n e ( c - s c ) , l i q u i d m e t a l l i c (Em) and amorphous semiconducting ( a - s c ) . I n t h e s e t r a n s f o r m a t i o n s , i m p u r i t y c o n c e n t r a t i o n s f a r beyond t h o s e a t thermodynamic e q u i l i b r i u m may become i n c o r p o r a t e d o r "trapped" i n t h e growing phase. The thermo- dynamic i n t e r r e l a t i o n of t h e c-sc and Rm phases i s f a i r l y w e l l c h a r a c t e r i z e d b u t t h a t of a-sc t o c-sc o r Rm i s s t i l l q u i t e u n c e r t a i n .

The e x i s t i n g thermodynamic and k i n e t i c o b s e r v a t i o n s e s t a b l i s h t h a t a-sc i s l e s s s t a b l e t h a n c-sc a t a l l temperatures from O°K t o w e l l above t h a t , TcR, a t which c-sc and Rm c o e x i s t a t e q u i l i b r i u m . Also, it seems c l e a r from t h e s e o b s e r v a t i o n s , a s

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982136

(3)

C1-260 JOURNAL DE PHYSIQUE

w e l l a s from t h e m e l t i n g behavior of c-sc, t h a t t h e Rm phase i s more s t a b l e t h a n a-sc from T > TcR t o temperatures w e l l below TcR, and s o i n t h e range of Rm mesta- s t a b i l i t y , r e l a t i v e t o c-sc. However, t h e measured e n t h a l p i e s , AH^^, of a-sc-c-sc i n d i c a t e t h a t a-sc i s more s t a b l e t h a n Rm a t T = O°K. It f o l l o w s t h a t , i f

c r y s t a l l i z a t i o n i s avoided, t h e r e should be a temperature, Tag, between O°K and TcR a t which a thermodynamic t r a n s i t i o n I?m++a-sc would occur [1,21. Whether t h i s t r a n s i t i o n would be thermodynamically continuous o r d i s c o n t i n u o u s i s n o t e s t a b l i s h e d though, i n view of t h e a t t e n d a n t change i n c o o r d i n a t i o n number, i t i s p l a u s i b l e t h a t it would b e d i s c o n t i n u o u s . There i s a l s o t h e problem of how unique o r thermodykun- i c a l l y d e f i n e d t h e a-sc s t a t e would be a t T

cR'

2. S t r u c t u r a l R e l a x a t i o n and Thermal P r o p e r t i e s of t h e a-sc S t a t e . - A s p r e p a r e d , a-sc specimens a r e i n c o n f i g u r a t i o n a l l y f r o z e n s t a t e s and s o , depending on t h e c o n d i t i o n s of t h e i r p r e p a r a t i o n , t h e y e x h i b i t sope specimen t o specimen d i s p e r s i o n of e n t h a l p i e s .

The e n t h a l p y of c r y s t a l l i z a t i o n , AH^^, of a-sc may c o n s i s t of c o n t r i b u t i o n s ( a ) from p o i n t (e.g. d a n g l i n g bonds) and extended i m p e r f e c t i o n s (e.g. i n t e r n a l boundaries) i n t h e amorphous s t r u c t u r e and (b) due t o d i s t o r t i o n s of t h e bond a n g l e s from t h e i r i d e a l t e t r a h e d r a l v a l u e s . Upon a n n e a l i n g some i r r e v e r s i b l e d e c r e a s e s i n energy p r i o r t o c r y s t a l l i z a t i o n may occur owing t o a n n i h i l a t i o n of p o i n t d e f e c t s and o t h e r s t r u c t u r a l r e l a x a t i o n p r o c e s s e s . The temperature of t r a n s i t i o n between a-sc and Rm should b e h i g h e r t h e g r e a t e r is t h e d e g r e e of r e l a x a t i o n of a-sc. There may e x i s t a f u l l y r e l a x e d 131 semiconducting f l u i d s t a t e of a-sc which would be i n e q u i l i b r i u m w i t h Rm a t some c h a r a c t e r i s t i c maximum Tag. Such a s t a t e might be s i m i l a r

s t r u c t u r a l l y and dynamically t o t h e l i q u i d s t a t e of f u s e d s i l i c a . I f t h e CRN model i s a p p r o p r i a t e f o r i t s s t r u c t u r e i t s excess enthalpy over t h a t of c-sc should be due p r i m a r i l y t o t h e bond d i s t o r t i o n s b u t w i t h some c o n t r i b u t i o n from p o i n t d e f e c t s p r e s e n t i n thermal e q u i l i b r i u m .

Assuming t h a t s t r u c t u r a l r e l a x a t i o n occurs by a s i n g l e t h e r m a l l y a c t i v a t e d p r o c e s s , i t s time c o n s t a n t , T, may be expressed a s :

T = T~ exp ~ Q , , ~ / R T )

where Q i s t h e a c t i v a t i o n energy f o r r e l a x a t i o n . When a-sc i s h e a t e d a t some r e 1

c o n s t a n t r a t e , ?, i t s s t r u c t u r a l r e l a x a t i o n should be v i r t u a l l y completed, i f c r y s t a l l i z a t i o n does n o t i n t e r v e n e , a t some temperature, Tx. By a crude a n a l y s i s , assuming Q >> RT T may b e r e l a t e d t o + a s follows:

r e 1 x x

-

Qs+ T(T ) . ( 1 )

R

It seems r e a s o n a b l e t o suppose t h a t t h e upper l i m i t i n g v a l u e of T would correspond t o t h e time c o n s t a n t , 'TD, f o r t h e d i f f u s i v e jump of a network atom i n t h e c-sc c r y s t a l which may be expressed a s :

(4)

where A i s t h e n e a r e s t neighbor spacing and D i s t h e s e l f - d i f f u s i v i t y i n c-sc.

From t h e s e l f - d i f f u s i v i t y and eq. ( 1 ) upper l i m i t i n g v a l u e s of Tx f o r s p e c i f i e d h e a t i n g r a t e s can be e v a l u a t e d numerically. These may t h e n be compared w i t h t h e temperatures, Tkc, a t which t h e c r y s t a l l i z a t i o n r a t e of a-sc r e a c h e s i t s maximum d u r i n g measurement of t h e c r y s t a l l i z a t i o n enthalpy a t corresponding $. They should a l s o l i e i n t h e temperature range of t h e g l a s s t r a n s i t i o n temperatures e s t i m a t e d e a r l i e r [31.

The Arrhenius c o n s t a n t s , D and QD i n the equation D = D exp [-QD/RTI

which d e s c r i b e t h e experimental s e l f - d i f f u s i v i t i e s i n t h e c-sc phase of Ge and S i a r e l i s t e d i n Table 1. Also shown i n t h e Table a r e t h e computed d i f f u s i v i t i e s a t TcQ and t h e upper l i m i t i n g v a l u e of T s c a l e d w i t h TcQ(i.e.

X - T ~ / T ~ ~ ) c a l c u l a t e d

T r x - from e q u a t i o n ( l ) , with T = r f o r t h e h e a t i n g r a t e s C! = 1 and 100°/min.

D'

Table 1: Arrhenius c o n s t a n t s f o r s e l f d i f f u s i o n i n c-sc ~e~ and sib and reduced temperatures f o r complete r e l a x a t i o n of a-sc s t a t e s a t 2 h e a t i n g r a t e s c a l c u l a t e d therefrom.

Element Q D ( T )

2 0°-l zcR T r x

(cm s e c ) ( e . v . ) (cm s e c - l ) ? = 1°/min ? = 100°/min

Ge 10 3.0 6 X 1 0 - l ~ 0.61 0.68

a . LETAW A.H., PORTNOY W.M. and SLIFKIN L . , Phys. Rev.

102 (1956) 636;

b. GRFIELD J.M. and MASTERS B.J., J. Appl. Phys. 38

(1967) 3148.

There have been a number of measurements, beginning w i t h t h a t of Chen and Turnbull [41, of t h e enthalpy of c r y s t a l l i z a t i o n of t h e a-sc s t a t e of Ge p r e p a r e d by a v a r i e t y of t e c h n i q u e s (vapor-,electro-deposition, e t c . ) . Excepting f o r a s i n g l e measurement of Rudee [51 t h e temperature r a n g e s and e n t h a l p i e s of c r y s t a l l i z a t i o n obtained i n t h e s e v e r a l i n v e s t i g a t i o n s [4,5,6,71 a r e i n f a i r agreement. The most r e c e n t d e t e r m i n a t i o n by Fan and Andersen [81 on s p u t t e r d e p o s i t e d f i l m s , and of Donovan e t a l . [91, on f i l m s amorphized by i o n damage and c r y s t a l l i z e d by e p i t a x i a l regrowth of t h e undamaged c r y s t a l a l s o g i v e AH and Tkc v a l u e s i n g o d agreement

a c

w i t h t h e e a r l i e r d e t e r m i n a t i o n s . These f a t t e r r e s u l t s and t h o s e of Chen and Turnbull a r e summarized i n Table 2. Also shown a r e t h e approximate h e a t i n g r a t e s i n t h e experiments and t h e c a l c u l a t e d T v a l u e s corresponding t o them.

r x

We n o t e t h a t t h e r e i s g o d agreement on N 0.305 f o r t h e r a t i o of t h e c r y s t a l l i z a t i o n e n t h a l p y of a-sc Ge t o t h a t of t h e Rm phase a t e q u i l i b r i u m . The e s t i m a t e d tempera- t u r e s , T ~ a t complete r e l a x a t i o n a r e somewhat l a r g e r t h a n t h o s e , Trkc, when t h e ~ , c r y s t a l l i z a t i o n r a t e s a r e maximum a t t h e s p e c i f i e d $. However, s i n c e t h e d i f f e r - ences T r x - Trkcr a r e n o t l a r g e it seems l i k e l y t h a t much of t h e r e l a x a t i o n may have occurred b e f o r e t h e c r y s t a l l i z a t i o n o n s e t .

(5)

C1-262 JOURNAL DE PHYSIQUE

Table 2: Enthalpy and temperature of c r y s t a l l i z a t i o n of a-sc s t a t e s Germanium

hcR = 0.386e.v. TcL = 1233OK

Method of

p r e p a r a t i o n 5 (O/min) -

&cR Vapor-or e l e c t r o -

d e p o s i t i o n 80 0.308tO. 015 0.63 0.68 141

S p u t t e r d e p o s i t i o n 10 0.303+_0.025 0.63 0.645 [81

iw i o n damage 40 0.315+0.025 0.58 0.66 191

S i l i c o n

AH^^ = 0.528e.v. TcL = 1693OK

S p u t t e r d e p o s i t i o n 10 0.197+0.02 0.63 0.69 [81

S p u t t e r d e p o s i t i o n S i Ge

1-x x

Xe,Ar Ion Damage 40 0.221**+0.01 0.555 0.71 [91

x+O e x t r a p o l a t i o n

* * average of 20 d e t e r m i n a t i o n s

Recently two s e t s of measurements of t h e e n t h a l p y of c r y s t a l l i z a t i o n of a-sc S i have been r e p o r t e d [8,91. The r e s u l t s a r e a l s o summarized i n Table 2. Those of Fan and Andersen [81 on s p u t t e r d e p o s i t e d f i l m s s c a t t e r e d q u i t e widely and we n o t e t h a t t h e i r average AH f o r f i l m s with no Ge admixture l i e s w e l l below t h e e x t r a p o l a t i o n

a c

of AH of t h e i r a-sc SilexGex films t o x=O. The r e s u l t s of Donovan e t a l . 191cx-1 a-sc a c

f i l m s formed by A o r Xe i o n damage s c a t t e r e d much l e s s and gave a n average AH,^

.-.

which l i e s between t h e Fan and Andersen d i r e c t and e x t r a p o l a t e d v a l u e s . Donovan e t a l . deduced t h e r a t e of regrowth, a - s c + c - s c , and i t s temperature dependence, u ( T ) , from t h e r a t e s of h e a t r e l e a s e measured on some of t h e i r specimens. T h e i r u(T) was i n f a i r agreement w i t h t h a t o b t a i n e d by Czepregi e t a l . [ l o ] from Rutherford Back S c a t t e r i n g measurements on f i l m s produced by i o n damage.

The reduced v a l u e , 0.22, of t h e c r y s t a l l i z a t i o n enthalpy of a-sc S i lies w e l l below t h a t , 0.31, of a-sc Ge. This l a c k of s c a l i n g with AH^^ was unexpected b u t t h e c u r r e n t s t a t e of t h e microscopic t h e o r y f o r cohesion i s h a r d l y adequate f o r assessment of i t s s i g n i f i c a n c e .

The temperatures T and Trkc from t h e v a r i o u s h e a t i n g r a t e s used i n t h e r x

c r y s t a l l i z a t i o n s were c a l c u l a t e d f o r S i i n t h e same way a s t h o s e f o r Ge. We n o t e t h a t T f o r i o n amorphized f i l m s of both S i and Ge, a r e c o n s i d e r a b l y below t h o s e

r k c

of s p u t t e r o r vapor d e p o s i t e d a-sc f i l m s s o t h a t t h e displacement of T from T r x r k c i s c o n s i d e r a b l y h i g h e r . T h i s behavior probably r e f l e c t s t h a t i o n amorphized f i l m s a r e more p u r e , s o t h a t t h e i m p u r i t y d r a g on c r y s t a l growth i s l e s s , t h a n a r e a-sc f i l m s prepared by t h e o t h e r t e c h n i q u e s .

TO c a l c u l a t e t h e temperature, Tag, of t h e m e t a s t a b l e a-sc Rm e q u i l i b r i u m we need f o r t h e a-sc, b e s i d e s i t s e n t h a l p y of c r y s t a l l i z a t i o n , t h e temperature dependence

(6)

of i t s e n t h a l p y , H(T), and i t s entropy r e l a t i v e t o c-sc a t some temperature. Chen and Turnbull [41 measured H(T) of a-sc G e from 300°K t o Tkc. Bagley and Chen [ I ] and Spaepen and t h e a u t h o r [21, independently, used t h e s e r e s u l t s t o e s t i m a t e T

a % Both c a l c u l a t i o n s were based on p l a u s i b l e , b u t f a r from r i g o r o u s , e x t r a p o l a t i o n s of H(T) from Tkc t o TaR and on model assessments of t h e entropy d i f f e r e n c e between t h e a-sc and c-sc s t a t e s a t O°K, Asac(0). I n t h e a n a l y s i s of Spaepen and t h e w r i t e r

[ l l ASac(Ol was equated t o t h e upper l i m i t i n g c o n f i g u r a t i o n a l entropy of t h e 4-coordinated random metwork, a s computed by Spaepen [ I l l f o l l o w i n g B e l l and Dean's procedure [121 f o r SiOZ. Both c a l c u l a t i o n s gave T (=T /.T 0.8, a temperature

r a t aR cR

w e l l above Trkc and Trx a t t h e h e a t i n g r a t e s used i n t h e c r y s t a l l i z a t i o n s t u d i e s , f o r t h e s c a l e d temperature of t h e e q u i l i b r i u m , assumed t o b e f i r s t o r d e r .

Following t h e procedure of Spaepen and t h e w r i t e r [Z], Donovan e t a l . [91 e s t i m a t e d from t h e i r t h e r m a l d a t a that TraRN0.9 f o r a-sc S i . They assumed t h a t t h e h e a t capacity-temperature r e l a t i o n C (T) f o r a-sc S i s c a l e s , w i t h TcR, a s t h a t f o r a-sc

P

Ge. The h i g h e r T f o r S i , r e l a t i v e t o Ge, r e f l e c t s t h e lower s c a l e d AHac of S i . r a t

The major concern w i t h t h e s e T c a l c u l a t i o n s i s on t h e v a l i d i t y of assuming t h a t r a t

t h e m e t a s t a b l e a - s c + c R t r a n s i t i o n i s thermodynamically d i s c o n t i n u o u s . A thermo- dynamically continuous t r a n s i t i o n would b e a t t e n d e d by l a r g e i n c r e a s e s i n C (TI of

P a-sc i n t h e t r a n s i t i o n range which, because of r a p i d c r y s t a l l i z t i o n , is h a r d l y a c c e s s i b l e t o measurement. However t h e assumption t h a t t h e t r a n s i t i o n i s

d i s c o n t i n u o u s i s supported by c e r t a i n o b s e r v a t i o n s on t h e c r y s t a l l i z a t i o n k i n e t i c s of t h e Rm and a-sc phases. I n p a r t i c u l a r , Rm Ge h a s been undercooled t o

temperatures a s low a s 0.8TcR [131 with no measurable c r y s t a l n u c l e a t i o n and when s o undercooled it seemed q u i t e f l u i d , and i t s c r y s t a l l i z a t i o n , when i n i t i a t e d , occurred much more r a p i d l y t h a n would have t h a t of a similar mass of a-sc. Also, t h e o b s e r v a t i o n s of ~ o k o r o w s k i e t a l . [I41 t o b e d i s c u s s e d l a t e r , t h a t e p i t a x i a l regrowth of S i c-sc i n t o a-sc o v e r l a y s p e r s i s t s on i t s Arrhenius course from low temperature t o T approaching TcR i n d i c a t e t h a t no continuous t r a n s i t i o n occurred.

3 . Survey of E p i t a x i a l Regrowth K i n e t i c s . - The f o r m a l t h e o r y f o r t h e k i n e t i c s and morphology of t h e movement of crystal-amorphous i n t e r f a c e s h a s been reviewed comprehensively i n o t h e r p u b l i c a t i o n s [ I S ] . A b r i e f summary and c e r t a i n a s p e c t s of t h e t h e o r y a r e p r e s e n t e d h e r e .

The movement occurs by a two s t e p sequence:

(1) atomic rearrangement of t h e i n t e r f a c e and

( 2 ) t r a n s p o r t of t h e h e a t of t r a n s i t i o n and i m p u r i t y t o o r from t h e i n t e r f a c e . The v e l o c i t y u of a p l a n a r i n t e r f a c e i n a p u r e system i s r e l a t e d t o t h e k i n e t i c c o n s t a n t , ui, of t h e i n t e r f a c i a l rearrangement p r o c e s s by t h e expression:

-AS (T -T )

m m i

u - u , 1 1 - e x p [ RTi I )

(7)

JOURNAL DE PHYSIQUE

where u = fXki i

k . = i n t e r f a c i a l rearrangement frequency f = f r a c t i o n of growth s i t e s on i n t e r f a c e

= i n t e r f a c e displacement/rearrangement T . = i n t e r f a c e temperature

T = e q u i l i b r i u m temperature m

AS = entropy of t r a n s f o r m a t i o n t o amorphous s t a t e . m

I n t h e l i n e a r k i n e t i c regime t h i s e q u a t i o n reduces t o :

u a l s o may b e r e l a t e d t o t h e r a t e of h e a t t r a n s p o r t by a n e x p r e s s i o n having the

a p p l i c a b l e where t h e temperature i s uniform i n t h e e x t e r n a l phase (e.g. o v e r l a y on C-SC) where

K = t h e r m a l c o n d u c t i v i t y of phase through which h e a t i s e x t r a c t e d 8 = gram atomic volume; assumed e q u a l in t h e 2 phases

AH = gram atomic e n t h a l p y of t r a n s i t i o n m

(grad T)i = thermal g r a d i e n t a t t h e i n t e r f a c e

A t s t e a d y s t a t e u i s c o n s t a n t and t h e d e p a r t u r e , Ti, of t h e i n t e r f a c e temperature from e q u i l i b r i u m becomes, i n t h e l i n e a r k i n e t i c regime

-K (grad T) RTi - T m - T i = * T i z ( ni

) (

(Asm) Tm

)

Provided t h e i n t e r f a c e i s moving, i t s temperature must l i e between T and t h e m

temperature of t h e h e a t source ( i n m e l t i n g ) o r s i n k ( i n c r y s t a l l i z a t i o n ) . Such displacements of t h e i n t e r f a c e t e m p e r a t u r e s from e q u i l i b r i u m a r e , of c o u r s e , r e q u i r e d f o r t h e d e p o s i t i o n of m e t a s t a b l e s t a t e s (e.g. s u p e r s a t u r a t e d s o l u t i o n s o r amorphous phases) by t h e moving f r o n t .

When t h e i n t e r f a c e p r o c e s s i s slow compared w i t h thermal t r a n s p o r t

[ i . e . gr grad T) i>>ui] Ti approaches ( s e e F i g . 1 ) t h e s o u r c e o r s i n k temperature and t h e i n t e r f a c e motion i s s a i d t o be " i n t e r f a c e l i m i t e d " .

The t h e r m a l l y a c t i v a t e d s o l i d state e p i t a x i a l regrowth of c-sc i n t o amorphous a-sc o v e r l a y s i s , i n t h i s s e n s e , i n t e r f a c e l i m i t e d even when t h e thermal g r a d i e n t i s minute. A t t h e o p p o s i t e l i m i t [u.>?-K(grad T ) . 1 T. i s l i t t l e d i s p l a c e d from

1 1

e q u i l i b r i u m and i n t e r f a c e motion i s s a i d t o be " d i f f u s i o n l i m i t e d " . With a p p l i e d g r a d i e n t s of t h e u s u a l magnitude, t h e growth of m e t a l and c-sc c r y s t a l s i n t o t h e i r pure undercooled m e t a l m e l t s i s i n t h i s d i f f u s i o n l i m i t e d regime. The u l t i m a t e l i m i t on t h e speed of t h e i n t e r f a c e p r o c e s s would be imposed by t h e frequency of c o l l i s i o n s of atoms from t h e m e l t o n t o t h e i n t e r f a c e [16,171, i n which c a s e u

i

(8)

would correspond t o t h e sound speed, u , i n t h e l i q u i d 1151. A n a n a l y s i s of C o r i e l l and t h e a u t h o r 1181 i n d i c a t e d t h a t t h e growth speed of N i d e n d r i t e s i n h i g h l y under- cooled molten N i [I91 may be s o l i m i t e d .

F i g . 1 : schematic r e p r e s e n t a t i o n of p o s i t i o n s of c r y s t a l - m e l t i n t e r f a c e temperatures, T., r e l a t i v e t o e q u i l i b r i u m t e m p e r a t u r e s , TcR andt Tal, and h e a t s h k teraperature, T , i n undercooling, o r h e a t s o u r c e temperature, T+, i n s u p e r h e a t i n g .

I n high energy f l u e n c e p r o c e s s i n g , t h e thermal g r a d i e n t s may b e s o extreme t h a t t h e r e w i l l b e l a r g e displacements of T from e q u i l i b r i u m even i f t h e i n t e r f a c e

i

p r o c e s s e s a r e v e r y r a p i d . It i s under t h e s e c o n d i t i o n s t h a t e x t e n s i v e i m p u r i t y t r a p p i n g s o r m e t a s t a b l e phase d e p o s i t i o n may occur. Large i n t e r f a c i a l under- c o o l i n g s c a n b e s u s t a i n e d d u r i n g growth only provided the frequency of homophase c r y s t a l n u c l e a t i o n remains v e r y low. A c t u a l l y , t h e e x i s t i n g e x p e r i e n c e i n d i c a t e s t h a t t h e s e f r e q u e n c i e s do n o t reach measurable l e v e l s i n l i q u i d m e t a l s , u n l e s s t h e reduced undercooling ~r =(?) exceeds, a t l e a s t , 0.20 t o 0.25 I201 .

S i m i l a r l y , s u b s t a n t i a l s u p e r h e a t i n g of t h e i n t e r f a c i a l r e g i o n must a t t e n d u l t r a - r a p i d heterogeneous m e l t i n g which o c c u r s because of t h e c o n s i d e r a b l e r e s i s t a n c e of c r y s t a l i n t e r i o r s t o homophase n u c l e a t i o n of t h e melt.

4. ImpurityTrapping.- The thermodynamic c o n d i t i o n s f o r t h e non-equilibrium

i n c o r p o r a t i o n of i m p u r i t i e s i n c r y s t a l s d u r i n g t h e i r growth were s e t f o r t h by Baker and Cahn [211. I m p u r i t i e s a r e s a i d t o be trapped when, f o l l o w i n g t h e p a s s a g e of t h e c r y s t a l l i z a t i o n f r o n t , t h e y a r e lodged i n t h e c r y s t a l z i t a chemical p o t e n t i a l l e v e l h i g h e r t h a n t h a t i n t h e m e l t a t t h e i n t e r f a c e . Trapping i s thermodynamically p e r m i t t e d when t h e t o t a l f r e e energy of t h e system i s decreased by passage of t h e f r o n t .

(9)

C1-266 JOURNAL DE PHYSIQUE

Suppose t h a t t h e motion of t h e c r y s t a l - m e l t f r o n t i n a d i l u t e b i n a r y melt of B i n A is " d i f f u s i o n l e s s " ; i . e . t h e r e i s no i m p u r i t y r e d i s t r i b u t i o n accompanying t h e growth. The thermodynamic c o n d i t i o n f o r such motion i s t h e n :

AGc = (1-xB) AD +x Au < 0

A B E

where AGc i s t h e o v e r a l l f r e e energy of c r y s t a l l i z a t i o n

xB = atom f r a c t i o n of t h e i m p u r i t y B; e q u a l i n melt and c r y s t a l AuB = The d i f f e r e n c e between t h e chemical p o t e n t i a l of B, a t x g , a t

t h e s p e c i f i e d temperature, f n t h e c r y s t a l and t h e melt.

ApA = The d i f f e r e n c e between t h e chemical p o t e n t i a l of t h e major c o n s t i t u e n t A, a t x and T, i n t h e c r y s t a l m e l t .

B

When A!+, > 0 t h i s c o n d i t i o n i s s t i l l f u l f i l l e d i f AuA i s s u f f i c i e n t l y n e g a t i v e . The c o n d i t i o n AG = 0 d e f i n e s a temperature-composition r e l a t i o n T (X ) , l y i n g

0 B

between t h e l i q u i d u s and s o l i d u s r e l a t i o n s , below which t h e c r y s t a l growth can b e d i f f u s i o n l e s s . For d i l u t e s o l u t i o n s t h e chemical p o t e n t i a l changes i n d i f f u s i o n - l e s s growth should be, approximately,

AV, A S ~ ( ? ~ - T ~ ) = A S ~ A T A i ApB = R T ~ (l/ke) R ~ where :

AS: = entropy of c r y s t a l l i z a t i o n of p u r e A TR = l i q u i d u s temperature a t composition x

B

ke = e q u i l i b r i u m d i s t r i b u t i o n c o e f f i c i e n t of B between c r y s t a l and melt a t i n t e r f a c e temperature T

i

The d e p r e s s i o n of t h e i n t e r f a c e temperature below t h e l i q u i d u s must t h e n f u l f i l l t h e c o n d i t i o n :

The maximum amounts of v a r i o u s i m p u r i t y r e p o r t e d by White e t a l . [221 t o be t r a p p e d i n S i d u r i n g r a p i d e p i t a x i a l regrowth would r e q u i r e i n t e r f a c i a l undercoolings ranging, depending on t h e i m p u r i t y , from 10 t o 70°c. A r e c e n t a n a l y s i s of t h e k i n e t i c s of impurity t r a p p i n g was p r e s e n t e d by Aziz 1231.

5. a - s c t f R m T r a n s i t i o n . - We have noted t h a t t h i s t r a n s i t i o n should occur i n t h e temperature range where c-sc i s t h e most s t a b l e phase. T h e r e f o r e , i t s exposure r e q u i r e s t h a t c r y s t a l l i z a t i o n be bypassed i n t h e h e a t i n g of a-sc o r t h e deep under- c o o l i n g of Rm. Such exposure would be favored by u l t r a - r a p i d quenching of Rm o r h e a t i n g of a-sc. I t a l s o r e q u i r e s t h a t t h e frequency of homophase n u c l e a t i o n of c-sc i n a-sc and Rm be r e l a t i v e l y low a t t h e t r a n s i t i o n temperature and t h a t t h e number d e n s i t y of e x t r a n e o u s c r y s t a l l i z a t i o n c e n t e r s b e k e p t minimal. P.L. Liu e t a l . [241 and Tsu e t a l . [25] discovered t h a t t h i n amorphous o v e r l a y s were formed on t h e s u r f a c e of i n i t i a l l y p e r f e c t S i c r y s t a l s i r r a d i a t e d under c e r t a i n c o n d i t i o n s by picosecond l a s e r p u l s e s . The d i f f r a c t i o n and o p t i c a l r e f l e c t i v i t y behavior of

(10)

t h e s e o v e r l a y s proved t o be t h e same a s t h a t of a-sc formed by o t h e r t e c h n i q u e s . J . M . Liu e t a l . 1261 showed t h a t a-sc a l s o formed when p r e c a u t i o n s were t a k e n t o i n s u r e t h a t t h e s i l i c o n s u r f a c e s were oxide f r e e d u r i n g i r r a d i a t i o n . h hey supposed

124,26J t h a t it d e r i v e d from Rm which had been undercooled t o temperatures w e l l below Tat d u r i n g t h e extreme quench.

Spaepen and t h e a u t h o r [I51 proposed t h a t i f T1 l i e s s u f f i c i e n t l y below Tat a-sc w i l l be formed i n p r e f e r e n c e t o c-sc a t t h e c-sc-Rm i n t e r f a c e . Thus, beyond some c r i t i c a l i n t e r f a c i a l undercooling a-sc r a t h e r t h a n c-sc would be d e p o s i t e d by t h e advancing i n t e r f a c e . Such a t r a n s i t i o n i n t h e mode of regrowth r e q u i r e s t h a t t h e p r o d u c t f k i , between t h e growth s i t e f r a c t i o n and t h e i n t e r f a c i a l rearrangement frequency, be much h i g h e r f o r a-sc f Rm t h a n f o r c-sc f Rm regrowth. Indeed, we e x p e c t t h a t f f o r t h e a-sc-Em i n t e r f a c e should l i e w e l l above t h a t f o r low index f a c e s i n c o n t a c t with Rm. The o b s e r v a t i o n s of Ohdomari e t a l . [271 t h a t a - s c , r a t h e r t h a n c-sc, d e p o s i t s from t h e vapor on c l e a n c-sc s u r f a c e s i n d i c a t e t h a t i n t h i s p r o c e s s a l s o t h e i n t e r f a c e attachment r a t e i s h i g h e r on a-sc t h a n on c-sc.

Recently C u l l i s e t a l . [281 r e p o r t e d formation of a-sc on c-sc S i i n h i g h energy nanosecond p u l s i n g where t h e c a l c u l a t e d regrowth speed exceeded some c r i t i c a l valve, u*, c h a r a c t e r i s t i c of t h e s u r f a c e o r i e n t a t i o n . u* was 15-20 meters/sec. on (100) f a c e s and somewhat l e s s t h a n t h i s v a l u e on (111) f a c e s . I n t h e model of Spaepen and t h e a u t h o r 1151, t h e i n t e r f a c i a l undercooling a t which t h e t r a n s i t i o n from c r y s t a l t o amorphous regrowth occurs should be a t l e a s t a s l a r g e a s t h e displacement of T from T @ 200-250° according t o t h e e s t i m a t e of Donovan e t a l . t91.

aR cR'

Taking 250° a s t h e i n t e r f a c i a l undercooling a t t h e growth t r a n s i t i o n we o b t a i n , from eq. (41, ui .-. 35 meters/sec. on (100) which i s a b o u t a f a c t o r of l o 2 lower

t h a n t h e speed of sound i n Ilm S i . This r e s u l t i m p l i e s t h a t t h e p r o d u c t of t h e growth s i t e f a c t o r , f , and a c t i v a t i o n f a c t o r , e -Qu'RTi, where Q i s an a c t i v a t i o n

u

energy f o r growth, N - lo-' on (100) a t 1450°K; t h u s , f 9 0.01 and QU 4 0.57 e.v.

Kurz [29] e s t i m a t e s t h a t regrowth speeds of 50 t o 60 meters/sec., a t l e a s t , were reached by a-sc i n t h e picosecond l a s e r p u l s i n g experiments. I t appears t h a t t h e a c t i v a t i o n energy f o r t h i s regrowth should be determined p r i m a r i l y by t h e change i n l o c a l o r d e r a t t h e i n t e r f a c e and s o should d i f f e r l i t t l e from t h a t f o r regrowth t o c-sc. I f s o , it would f o l l o w t h a t t h e growth s i t e f r a c t i o n on (100) would be no more t h a n 10-I of t h a t a t t h e a-sc-Rm i n t e r f a c e s o t h a t Q 0.3 e.v.

u

The evidence on whether t h e r e v e r s e t r a n s i t i o n a - s c + Rm o c c u r s i n S i a t temperatures w e l l below TcR s t i l l appears c o n t r a d i c t o r y . B a e r i e t a l . [301 i n f e r r e d from t h e i r thermal a n a l y s i s and m i c r o s t r u c t u r a l o b s e r v a t i o n s t h a t an a-sc f i l m on c-sc S i d i d , i n f a c t , melt a t t e m p e r a t u r e s s e v e r a l hundred degrees below TcR d u r i n g pulsed e-beam h e a t i n g . Recently C u l l i s e t a l . [311 observed a c e l l u l a r s e g r e g a t i o n p a t t e r n of I n w i t h i n an amorphous a-sc l a y e r regrown on S i a f t e r 2.5 nanosecond l a s e r i r r a d i a t i o n of an I n i o n amorphized a-sc l a y e r . This s e g r e g a t i o n was explained by supposing t h a t t h e o r i g i n a l l a y e r melted t o h i g h l y undercooled Rm.

(11)

C1-268 JOURNAL DE PHYSIQUE

F u r t h e r i n d i r e c t evidence f o r t h e occurrence of an a-sc+Rm t r a n s i t i o n i s provided by t h e "explosive" c r y s t a l l i z a t i o n of t h i n f i l m s of a-sc Ge i n which t h e

c r y s t a l l i z a t i o n f r o n t moves a t speeds i n t h e meters/sec. range. Gilmer and Leamy [32] p r e s e n t e d a model f o r t h i s p r o c e s s according t o which t h e r a p i d growth i s s u s t a i n e d through a t h i n l a y e r of Rm formed between t h e a-sc and c-sc by l i b e r a t i o n of t h e h e a t of c r y s t a l l i z a t i o n . To t r i g g e r t h e r a p i d growth, it i s n e c e s s a r y o n l y t h a t Ti r e a c h a temperature s l i g h t l y exceeding T

aR'

I n c o n t r a s t , Knapp and Picraux 1331 and Kokorowski e t a l . [I41 have p r e s e n t e d evidence t h a t a-sc l a y e r s on c-Si p e r s i s t , a t l e a s t f o r s h o r t p e r i o d s , t o temperatures w e l l above t h e c a l c u l a t e d TaR. I n p a r t i c u l a r , a s a l r e a d y noted, Kokorowski e t a l . r e p o r t e d t h a t t h e c-sc r a t e s of regrowth i n a - s c f o l l o w , w i t h i n experimental e r r o r , a s i n g l y a c t i v a t e d Arrhenius c o u r s e from low t e m p e r a t u r e s t o TcR. However, s i n c e t h e regrowth r a t e mustga t o z e r o a t t h e a - s c + - s c e q u i l i b r i u m t h i s behavior i n d i c a t e s , provided t h e t e m p e r a t u r e s were c a l c u l a t e d c o r r e c t l y , t h a t the e q u i l i b r i u m temperature, T a c must l i e f a r above TcR w i t h t h e c o r o l l a r y t h a t t h e thermodynamic Tat must b e w e l l below TcR 131. The a u t h o r s u g g e s t e d [31 t h a t t h e a p p a r e n t s u p e r h e a t i n g i n t h e s e experiments might r e f l e c t t h e r e s i s t a n c e of t h e ran- dom network (cRN) s t r u c t u r e t o im n u c l e a t i o n . An e s t i m a t e based on simple nucleation t h e o r y , i n c o n j u n c t i o n with t h e undercooling behavior of Rm, i n d i c a t e d t h a t a super- h e a t i n g of o r d e r 20% of TaR may be r e q u i r e d f o r measurable n u c l e a t i o n w i t h i n an i d e a l CRN s t r u c t u r e . Thus, a t s m a l l s u p e r h e a t i n g Rm wouId only n u c l e a t e a t t h e ex- t e r n a l s u r f a c e o r a t i n t e r n a l i m p e r f e c t i o n s , e . g . v o i d s , and t h e r e could b e ,

depending on t h e method of specimen p r e p a r a t i o n and s u r f a c e t r e a t m e n t , widespecimen t o specimen v a r i a t i o n s i n t h e k i n e t i c s and morphology of i t s formation.

Acknowledgement: This r e s e a r c h was supported i n p a r t by a N a t i o n a l Science Foundation g r a n t NSF-DMR80-20247. The a u t h o r h a s b e n e f i t e d from d i s c u s s i o n w i t h E.P. Donovan, J . M . Poate and F. Spaepen.

References.

1. BAGLEY B.G. and CHEN H.S., Am. I n s t . Phys. Conf. Proc. 50 (1979) 97.

2. SPAEPEN F. and TURNBULL D., Am. I n s t . Phys. Conf. Proc. 50 (1979) 50.

3. TURNBULL D . , Mats. Res. Soc. Sym. Proc.,Ed. by P i c r a u x S.T. and Choyke W . J . North Holland, Amsterdam (1982) 103-108.

4. CNEN H.S. and TURNBULL D . , J . Appl. Phys., 40 (1969) 4214.

5. RUDEE M.L., Thin S o l i d Films, 3 (1972) 207,

6. LYTLE F.W., SAYERS D.E. and EIKUM A.K.. 3. Non-Cryst. S o l i d s , 13 (1973) 68.

7. TEMKIN R.J. and PAUL W., Proc. F i f t h I n t e r n a t i o n a l (Garmisch) Conference on Amorphous Semiconductors, ~ d . by Stuke 3. and Brenig W., Taylor and F r a n c i s

(1974) 1193-1200.

8 . FlPN J.C.C. and ANDERSEN H . , J. Appl. Phys. 2 (1981) 4003.

9. DONOVAN E.P., SPAEPEN F., TURNBULL D., POATE J . M . and JACOBSON D.C., submitted t o Phys. Rev. L e t t e r s .

10. CZEPREGI L., KENNEDY E.F., MAYER J . W . and SIGMON T.W., J. Appl. PhyS. 49

(1978) 3906.

11. SPAEPEN F., P h i l . Mag. 30 (1974) 417.

12. BELL R. J. and DEAN P., Phys. Chem. GkiSS 9 (1968) 125.

13. TURNBULL D. and CECH R.E., J. Appl. Phys. 1 (1950) 804.

14. KOKOROWSKI S.A., OLSEN G.L. and HESS L.D., J. Appl. Phys. 2 (1982) 921.

15. SPAEPEN F. arid TURNBULL D . , "Laser Annealing of S o l i d s " , Ed. by P o a t e J . M . and Mayer J . W . , i n p r e s s , Academic P r e s s , NY (1982).

(12)

TURNBULL D., J. de Physique 35, (1974) C-4.1-9.

TURNBULL D. and BAGLEY B.G., " T r e a t i s e on S o l i d S t a t e Chemistry", Ed. by Hannay N.B., Plenum P r e s s , 5 (1975) 513-554.

CORIELL S.C. and TURNBULL D., Acta M e t a l l u r g i c a , i n p r e s s .

WALKER J . L . , Presented i n B. Chalmers, " P r i n c i p l e s of S o l i d i f i c a t i o n s " , Chapter 4, Wiley, NY (1964).

TURNBULL D . , Contemporary Phys. 10 (1969) 873.

BAKER J.C. and CAHN J . W . , " S o l i d i f i c a t i o n " , Am. Soc. Metals, Metal Park, Ohio (1971) 23-58.

WHITE C.W., WILSON S.R., APPLETON B.R. and YOUNG F.W., J. Appl. PhyS. 51

(1980) 738.

A Z I Z M.J., 3. Appl. Phys. 53 (1982) 1158.

LIU P.L., YEN R., BWlEMBERGEN N., and HODGSON R.T., Appl. PhyS. L e t t . 34

(1979) 864.

TSU R., HODGSON R.T. , TAN T.Y. and BAGLIN J.E. , Phys. Rev. L e t t . 42 (1979) 1356.

LIU J . M . , YEN R., DONOVAN E.P., BLOEMBERGEN N. and HODGSON R.T., ~ p p l . Phys.

L e t t . 38 (1981) 617.

OHDOMARI I., KAKUMU M., SUGAHARA H . , BORI M. and SAITO T., J. Appl. Phys- 52 (1981) 6617.

C U L ~ S A.G., WEBBER H. C., CHEW N.G. , POATE J . M . and BAERI P. , PhyS . Rev. L e t t . 49 (1982) 219.

KUR;~-H., P r i v a t e ~ o m u n i c a t i o n , s e e a l s o LIU J.M., YEN R. ,KURZ H. and BLOEMBERGEN N., Appl. PhyS. L e t t . 39 (1981) 755.

BAERI P., FOTI G., POATE J.M. and CULLIS A.G., Phys. Rev. L e t t . 5 (1980) 2036.

CULLIS A.G., WEBBER H.C. and CHEW N.G., Appl. Phys. Rev. L e t t . % (1982) 998.

G I W R G.H. and LEAMY H . J . , "Laser and E l e c t r o n Beam P r o c e s s i n g of M a t e r i a l s " , Ed. by White C.W. and Peercy P.S., Academic P r e s s , NY (1980) 227-233.

KNAPP J . A . and PICRAUX S.T., Appl. Phys. L e t t . 38 (1981) 873.

H.F. MATARE.- You showed t h a t t h e energy o f c r y s t a l l i z a t i o n i s lower i n t h e c a s e of s i l i c o n t h a n i n t h e c a s e of germanium, i s t h e r e an e x p l a n a t i o n i n view o f t h e o t h e r p r o p e r t i e s which a r e q u i t e s i m i l a r ? With t h e h i g h e r m e l t i n g p o i n t o f s i l i c o n one would e x p e c t t h e o p p o s i t e .

D. TURNBULL.- The v a l u e s shown were e n e r g i e s s c a l e d t o t h o s e o f c r y s t a l l i z a t i o n . I n a c t u a l magnitude t h e energy o f c r y s t a l l i z a t i o n of t h e amorphous phase o f s i l i c o n i s approximately e q u a l t o t h a t of germanium. We have no e x p l a n a t i o n f o r why t h e s c a l i n g c o r r e l a t i o n does n o t work i n t h i s c a s e . However t h e r e seems t o b e no w e l l founded microscopic t h e o r y f o r why t h e s c a l i n g r e l a t i o n s do work f o r such o t h e r p r o p e r t i e s a s t h e s h e a r moduli and s e l f d i f f u s i o n c o e f f i c i e n t s .

R. BARTON.- Are you o f t h e o p i n i o n t h a t most amorphous f i l m s encountered i n p r a c t i c e r e p r e s e n t t h e m e t a s t a b l e s t a t e o r some o t h e r "frozen i n " u n s t a b l e s t a t e ? And what i s t h e o r i g i n o f your f r e e energy curve f o r a-Si ?

D. TURNBULL.- My view i s t h a t most amorphous S i o r Ge f i l m s can be d e s c r i b e d a s

"frozen" from a m e t a s t a b l e random network s t r u c t u r e i n which v a r i o u s i m p e r f e c t i o n s ( v o i d s , e t c ) have been i n c o r p o r a t e d . The method of c a l c u l a t i o n o f t h e f r e e energy of t h e amorphous r e l a t i v e t o t h e c r y s t a l l i n e s t a t e o f S i is d e s c r i b e d i n t h e w r i t t e n t e x t of t h e paper.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to