• Aucun résultat trouvé

PHONONS IN GRAPHITE INTERCALATION COMPOUNDS

N/A
N/A
Protected

Academic year: 2021

Partager "PHONONS IN GRAPHITE INTERCALATION COMPOUNDS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00221618

https://hal.archives-ouvertes.fr/jpa-00221618

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PHONONS IN GRAPHITE INTERCALATION COMPOUNDS

S. Solin

To cite this version:

S. Solin. PHONONS IN GRAPHITE INTERCALATION COMPOUNDS. Journal de Physique Col-

loques, 1981, 42 (C6), pp.C6-283-C6-288. �10.1051/jphyscol:1981682�. �jpa-00221618�

(2)

Department o f P h y s i c s , Michigan S t a t e U n i v e r s i t y , E a s t Lansing, Michigan 4882'4, U . S . A.

Abstract.

-

Vibrational excitations in p r i s t i n e graphite and in graphite intercalation compounds a r e discussed. Modes associated with carbon atom i n t r a l a y e r motions and with the internal excitations of guest molecular species are emphasized.

1. Introduction.

-

The study of phonons in graphite intercalation compounds (GIC1s) i s by now a r e l a t i v e l y mature ~ u b j e c t . " ~ ' ~ The road towards t h i s maturity i s char- acterized by recent spurts in the growth of our knowledge of GIC1s i n general and of phonons in GIC's

i n

p a r t i c u l a r . Not surprisingly, our understanding of phonons in-GIC's i s intimately coupled t o an understanding of phonons i n p r i s t i n e graphite i t s e ~ f . ~ ' ~

D u r i n g

the past several years research e f f o r t s on vibrations in GIC's have focused on f i v e sub-areas: phonons i n p r i s t i n e graphiteY5 phonons associated with the i n t r a l a y e r motions of carbon atoms i n G I C ' s , ' - ~ internal molecular modes of guest species in G I C ' s , ~ ' ~ i n t e r l a y e r c-axis modes involving both guest and host layers ,8'9 and i n t e r c a l a t e i n t r a l a y e r modes.1° In t h i s brief manuscript, I would l i k e t o address the f i r s t three of the above mentioned areas. Thus, t h i s paper c o n s t i t u t e s an introductory s e t t i n g f o r the l a t t e r two topics which a r e under active investigation and a r e considered in other papers i n t h i s proceedings. Space limi- t a t i o n s also preclude the presentation of introductory material on GIC1s, staging, sample preparation techniques, e t c . Readers unfamiliar with those topics a r e re- ferred t o recent review a r t i c l e s . 11,12

2. P r i s t i n e Graphite.

-

Hexagonal graphite c r y s t a l l i z e s in the D6h space group with

4

four atoms in the primitive c e l l .I3 The zone center o p t i c modescan be group theo- r e t i c a l l y decomposed i n t o the following irreducible representation 14

r

= 2

E~~ + E~~

+ + 2

B~~

opt

of which the E modes and the EIU and

A2,

modes a r e respectively Raman and infrared active i n f i r s t order. All of the o p t i c a l l y a c t i v e modes have now been observed ex- 29 p e r i m e n t a l l ~ . ~ " They a r e shown in Figs. 1 and 2 which a l s o show the eigenvectors

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981682

(3)

C6-284 JOURNAL DE PHYSIQUE

Fig. 1: The Raman spectra obtained from a cleaved surface of graphite and the atomic displacements of the Raman active

EZg

modes.

1 0 (Dl

0 8 -

-

E C

w 0 6 - t

/ - E C 0 2 -

Fig. 2: The

E 1

C and E I l C reflectance of graphite and the atomic displacements of

O O 1000 " ' zooo ~ 3000 ' ~ m a ' t h e IR active modes. The

E

Ilc spectrum

FREQUENCY ( C ~ - I I has been normalized f o r surface damage.

THI 5 0 40

3 0 2 0 1 0 0

M K I-

WAVE VECTOR Fig. 3 : Phonon dispersion curves f o r gra-

phite in the [OOl],

[loo]

and [ l l O ] direc- t i o n . From r e f . 16.

associated with each mode.

Of p a r t i c u l a r importance i s the AZu mode a t 848 c i l . Prior t o i t s observation, the available Rarnan, IR and neutron s c a t t e r i n g data ( t h e l a t t e r of which were limited t o < 500 cm- 1 ) had been used t o t e s t several models f o r the phonon dispersion curves of graphite.15 Although each of t h e available theoretical models " f i t " the avail- able data, t h e i r calculated values f o r t h e

A2,

frequency ranged from 800 cm-' t o 1400 cm-l. Armed with the crucial AZu frequency, Horie and coworkers16 constructed an a x i a l l y asymmetric Born-von Kaman model which provides phonon dispersion curves t h a t a r e in excellent agreement

w i t h

a l l the available experimental data. The re- s u l t s of t h e i r calculations a r e shown

i n

Fig. 3. Note,

i n

p a r t i c u l a r , t h a t the max- imum phonon energy i s not a t t h e

r

point, but occurs along the l i n e between

r

and

M.

(4)

GIC1s was the nearest layer model.19 In t h i s model i t was noted t h a t in an nth stage GIC n +

3,

the EZg 1580 c i l i n t r a l a y e r mode would develop a s a t e l l i t e caused by the small perturbation of the bounding i n t e r c a l a t e layers. Thus f o r n

3

t h e Raman spectra of GICts will contain a pair of l i n e s a t

5

1580 cm- 1 . One of these i s associated with i n t e r i o r carbon layers which have a nearest layer environment identical t o t h a t in p r i s t i n e graphite. One i s associated with bounding carbon layers perturbed by the intercalated layer. In stages

1

and 2 GIC's there e x i s t s only one type of nearest layer environment and thus only a single l i n e should be ob- served in the 1580 cm-I region. The above statements a r e verified by the Raman spectra of potassium graphite G I C ' s ~ ~ which a r e shown in Fig. 4. These spectra a r e c h a r a c t e r i s t i c of the stage dependence of t h e Raman spectra of a l l GIC1s studied t o date.' Moreover, the stage dependence of t h e r e l a t i v e i n t e n s i t i e s of the members of the 1580 cm-' doublet can be quantitatively accounted f o r

by

t h e nearest layer model. 1

Ramon rhlft (cm-')

Fig.

4:

Raman spectra of stage n , na 2

K-

GICts with compositions ClZnK.

Stage 1 a l k a l i GICts e x h i b i t a Raman spectrum which i s c h a r a c t e r i s t i c a l l y d i f -

f e r e n t from those of Fig.

4,

but which provide an elegant v e r i f i c a t i o n of the c a l -

culated dispersion curves of Fig.

3.'

Note from the Raman spectrum of stage

l

RbC8 and C$C8 shown in Fig. 5 the polarized members of a t r i p l e t of modes in the

580 cm-' region." This t r i p l e t i s quantitatively accounted f o r by the dispersion

curves of Fig.

2

and i s associated with

M

point out of plane motions of the carbon

atoms.' These

M

point modes which a r e f i r s t order Raman inactive i n p r i s t i n e

(5)

C6-286 JOURNAL DE PHYSIQUE

Fig. 5: P o l a r i z e d Raman spectra o f t h e t r i p l e t r e g i o n f o r t h e stage 1 (a) Cs; and ( b ) Rb GIC's w i t h t h e i n c i d e n t p o l a r i z a t i o n perpendicular and t h e s c a t t e r e d p o l a r i z a - t i o n p a r a l l e l t o t h e s c a t t e r i n g plane.

P o l a r i z e d modes (A o r A1) a r e f o r b i d d e n i n t h i s c o n f i g u r a t i o n ?

STAGE I FeC13 - Graphltc

300 200 100

RAMAN SHIFT Icm-')

F i g . 6: P o l a r i z e d Raman spectra o f t h e i n t e r c a l a n t i n t r a l a y e r modes o f stage 1 FeC1 3-graphite.

g r a p h i t e are a c t i v a t e d by b o t h d i s o r d e r induced s c a t t e r i n g 2 ' and B r i l l o u i n zone f o l d i n g e f f e c t s 3 i n t h e 3-0 r e l a t i v e l y ordered s t r u c t u r e s o f stage 1 RbC8 and CsC8. 23 The stage 1 a l k a l i GIC's a l s o e x h i b i t a broad Fano resonance a t e l 5 0 0 cm-l ( n o t shown) which a r i s e s from electron-phonon coup1 i n g between Raman a c t i v e phonons i n t h e 800-1600 cm-l range and what appears t o be an e l e c t r o n i c continuum background. 24 4. I n t e r n a l Molecular Modes.

-

To d a t e t h e r e i s very l i t t l e d a t a on i n t e r n a l mole- c u l a r modes o f guest species i n GIC's. T h i s l a c k of data i s n o t f o r want o f serious e f f o r t s t o observe such modes s i n c e several groups have made serious attempts i n t h i s regard.

The f i r s t observation o f molecular modes i n a GIC was t h a t o f Br2 molecular modes i n bromine graphite.6 However, t h e Raman spectrum o f t h a t m a t e r i a l e x h i b i t s t h e m u l t i p l e i n t e n s e overtone peaks which a r e c h a r a c t e r i s t i c o f s t r o n g resonance Raman s c a t t e r i n g . The c l a s s i c example o f t h i s phenomena i s given i n t h e Raman res- onance spectrum o f

c ~ s . ' ~

To my knowledge t h e o n l y o t h e r system i n which i n t e r n a l modes o f the guest species have been observed from a GIC i s FeC13 graphite.7 The low frequency p o l a r i z e d Raman s p e c t r a o f stage 1 FeC13 g r a p h i t e i s shown i n Fig. 6.

(6)

understanding o f v i b r a t i o n a l e x c i t a t i o n s i n GIC1s. For GIC's t h e molecular modes and carbon atom i n t r a l a y e r modes can o n l y b e c o n v e n i e n t l y probed u s i n g o p t i c a l tech- niques, e.g. Raman s c a t t e r i n g and IR spectroscopy. During t h e p a s t year new and e x c i t i n g neutron s c a t t e r i n g r e s u l t s on i n t e r l a y e r guest-host modes i n GIC's and on 9 i n t r a l ayer i n t e r c a l a t e modes i n moni o n i c guest species1' have been reported. I n a d d i t i o n t h e former have a l s o been observed i n t h e Raman spectra o f several stages o f a l k a l i ~ 1 ~ ' s . ~ These new neutron and Raman r e s u l t s a r e t h e subjects o f o t h e r papers i n t h i s conference. 8,lO

6. Acknowledgements.

- I

g r a t e f u l l y acknowledge i m p o r t a n t c o n t r i b u t i o n s from my c o l l a b o r a t o r s N. Caswell

,

G. Lucovsky, R. J. Nemanich and G.N. Papatheodorou.

T h i s work was supported by t h e NSF under g r a n t number DMR 80-10486.

References 1. S o l i n , S.A., Physica B!J, (1980) 443.

2. Dresselhaus, M.S., and Dresselhaus, G., t o be published.

3. Dresselhaus, M.S., Dresselhaus, G., Ecklund, P.C., and Chung, D.D.L., Mat. Sci.

and Eng.

2

(1977) 141.

4. Nicklow, R., Wakabayashi, N., and Smith, H.G., Phys. Rev.

85,

(1971) 4951.

5. Nemanich, R.J., Lucovsky, G., and S o l i n , S.A., i n Proceedings o f t h e I n t e r - n a t i o n a l Conference on L a t t i c e Dynamics, Bal kanski

,

M., ed. ( F l ammarion, P a r i s , 19781, p. 619. Also, Nemanich, R.J., Lacovsky, G., and S o l i n , S.A., S o l i d S t a t e Commun.

3

(1977) 117.

6. Song, J.J., Chung, D.D.L., Ecklund, P.C., and Dresselhaus, M.S., S o l i d S t a t e Commun.

g

(1976) 1111.

7. Caswell

,

N., and Sol i n , S.A., Sol i d S t a t e Commun.

27

(1978) 961.

8. Wada, N., K l e i n , M.V., and Zabel, H., t h i s conference and t o be published.

9. Magerl, A . , and Zabel, H., Phys. Rev. L e t t .

46

(1981) 44.

10. Kami takahara, W.A., Wada, N., and Sol i n , S.A., t h i s conference and t o be pub1 ished.

11. S o l i n , S.A., Advances i n Chemical Physics, i n press.

12. Dresselhaus, M.S., and Dresselhaus, G., Advances i n Physics

2

(1981) 139.

(7)

C6-288 JOURNAL DE PHYSIQUE

Wycoff, R.W . G . , C r y s t a l S t r u c t u r e s , Vol

.

1 (Oxford Univ. Press, London, 1962), p. 26.

Mani, K., and Ramani, R., Phys. S t a t . Sol.

B61

(1974) 659.

See references 1, 8 and 9 and references t h e r e i n .

Maeda, M., Kuramoto, Y., and Horie, C., Proc. of t h e Phys. Soc. o f Japan, 47 (1979) 337.

Nemanich, R.J., and S o l i n , S.A., Phys. Rev.

820

(1979) 392.

Lueng, S.Y., Dressel haus, G., and Dressel haus, M.S., t o be pub1 ished.

Nemanich, R.J., S o l i n , S.A., and Guerard, D., Phys. Rev.

816

(1977) 2965.

S o l i n , S.A., and Caswell

,

N., J. Raman Spectroscopy

10

(1981) 129.

S o l i n , S.A., Mat. Sci. and Eng.

2

(1977) 153.

Caswell

,

N., and S o l i n , S.A., Phys. Rev.

&

(1979) 2551.

See references 11 and 12 and references t h e r e i n .

Miyazaki, H., Hatano, T., Kusunoki, G., Watanabe, T., and Horie, C., Physica 1058 (1981) 381.

-

L e i t e , R.C.C., and Porto, S.P.S., Phys. Rev. L e t t .

11

(1966) 10.

Papatheodorou, G.N., and S o l i n , S.A., unpublished.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to