• Aucun résultat trouvé

INFLUENCE OF SURFACE CORRUGATIONS ON SURFACE ELECTROMAGNETIC WAVES

N/A
N/A
Protected

Academic year: 2021

Partager "INFLUENCE OF SURFACE CORRUGATIONS ON SURFACE ELECTROMAGNETIC WAVES"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00224148

https://hal.archives-ouvertes.fr/jpa-00224148

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INFLUENCE OF SURFACE CORRUGATIONS ON SURFACE ELECTROMAGNETIC WAVES

E. Koteles, Y. Chen, G. Sonek, J. Ballantyne

To cite this version:

E. Koteles, Y. Chen, G. Sonek, J. Ballantyne. INFLUENCE OF SURFACE CORRUGATIONS ON

SURFACE ELECTROMAGNETIC WAVES. Journal de Physique Colloques, 1984, 45 (C5), pp.C5-

213-C5-218. �10.1051/jphyscol:1984530�. �jpa-00224148�

(2)

JOURNAL DE PHYSIQUE

Colloque C5, supplément au n04, Tome 45, a v r i l 1984 page CS-2 13

INFLUENCE OF SURFACE CORRUGATIONS ON SURFACE ELECTROMAGNETIC WAVES

E . S . Koteleç, Y . J . Chen,C.J. sonek* and J.M. ~ a l l a n t ~ n e *

C1'E L a b o m t o r i e s I n c o m o r a t e d , 40 SyZoan iîoad, WaZi;ham, Massachusetts 0 2 2 5 4 , U.S.A.

* ~ a t i o n a ~ Resenrch and Resource F a c i Z i t y f o r Submicron S t m c t u r e s a t CorrreZZ U n i v e r s i t y , Ithaca, New York 13853, U . S . A .

RESUME

Ce p a p i e r présente l a preuve expérimentale de l ' i n f l u e n c e de l ' u n i f o r - m i t é des p r o f i l s d ' u n réseau sur l e couplage des ondes électromagnéti- ques de surface e t l e s courbes de d i s p e r s i o n de ces ondes l o r s q u ' e l l e s se propagent s u r des surfaces à échelons périodiques.

ABSTRACT

We p r e s e n t experimental evidence of t h e influence of g r a t i n g p r o f i l e u n i f o r m i t y on surface electromagnetic wave (SEWI coupling a n d dispersion c u r v e s f o r SEWs p r o p a g a t i n g on periodically c o r r u g a t e d surfaces.

Recently, considerable i n t e r e s t has developed i n t h e p r o p e r t i e s a n d electrodynamics o f surface electromagnetic waves (SEWs) on r o u g h interfaces (e.g., surface enhanced Raman scattering, l i g h t emission f r o m metal-oxide-metal junctions, e t c . ) /1-9/. A systematic method o f i n v e s t i g a t i n g these, a n d similar phenomena is t o determine t h e e f f e c t o f a well defined c o r r u g a t e d surface (a g r a t i n g ) on t h e properties o f SEWs /IO-14/. T h e presence o f a g r a t i n g on t h e surface permits coupling between radiative modes a n d SEWs, which a r e non- radiative, and also c o u p l i n g between SEWs. T h e theoretical methods developed b y Toigo e t al /5/ have been widely applied i n t h i s f i e l d a n d exact numerical calculations have been c a r r i e d o u t b y Mills, Maradudin and more r e c e n t l y b y Garcia a n d coworkers i n a number o f systems /6-9/. U p t o now, most experimental a n d theoretical w o r k has concentrated on t h e e f f e c t o f g r a t i n g amplitude a n d p e r i o d on t h e coupling between SEWs and r a d i a t i v e waves and t h e dispersion of t h e SEW. Garcia's calculations have demonstrated t h e influence of t h e g r a t i n g p r o f i l e on t h e c o u p l i n g a n d t h i s has been confirmed experimentally f o r t h e case of h i g h e r o r d e r coupling i n t h e minigap region where a degeneracy exists between counterpropagating SEWs /14/. Unfortunately, d u e t o t h e scarcity of theoretical w o r k on h i g h e r o r d e r coupling, it has n o t been possible t o compare experimental r e s u l t s w i t h theoretical predictions. T h e g r a t i n g p r o f i l e e f f e c t is more important f o r h i g h e r o r d e r coupling since h i g h e r o r d e r harmonics p r e s e n t i n a non-sinusoidal g r a t i n g p r o f i l e can lead t o complicated interference effects /15/. I n addition, g r a t i n g s fabricated i n real l i f e i n general d o n o t have optically smooth surfaces a n d precisely defined periods.

Fluctuations i n t h e g r a t i n g p e r i o d generate sidebands on t h e g r a t i n g constant which can generate s i g n i f i c a n t consequences i n SEW c o u p l i n g and dispersion c u r v e s 1 6 I n t h i s paper, we i l l u s t r a t e t h e significance o f these considerations b y comparing SEW dispersion c u r v e s i n t h e v i c i n i t y o f h i g h e r o r d e r minigaps f o r t w o g r a t i n g s o f similar p e r i o d a n d amplitude, b u t w i t h d i f f e r e n t degrees of g r a t i n g fluctuations.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984530

(3)

C5-2 14 J O U R N A L DE PHYSIQUE

T h e g r a t i n g equation t o c o u p l i n g SEWs i s :

w h e r e k(w) = (w/c)sinO, w is t h e p h o t o n e n e r g y , c i s t h e speed of l i g h t a n d 8 t h e i n c i d e n t angle; k t o f i r s t o r d e r , is t h e wavevector o f t h e SEW i n t h e

SP'

absence o f a g r a t i n g ( e x c e p t i n t h e minigap regions); n is an i n t e g e r a n d G = 2 n / d is t h e r e c i p r o c a l " l a t t i c e " v e c t o r of t h e g r a t i n g ( d i s t h e g r a t i n g s p a c i n g ) . Degenerate States o c c u r when t h e d i s p e r s i o n c u r v e s f o r " f o r w a r d " p r o p a g a t i n g ( + k s p ) a n d " b a c k w a r d " p r o p a g a t i n g ( - k ) modes cross, as i l l u s t r a t e d i n F i g u r e

SP

1. I f t h e i n t e r a c t i o n between t h e modes i s s t r o n g , r e p u l s i o n can o c c u r a n d a gap forms i n t h e d i s p e r s i o n r e l a t i o n . T h e m a g n i t u d e of t h e repulsion, i . e . , t h e minigap size, is determined by t h e SEW-SEW c o u p l i n g s t r e n g t h . We have s t u d i e d minigaps a t t h e crossings o f t h e f o l l o w i n g modes: (-1,2) [ i . e . , k = k

s P -G a n d k = -ksp+2G,] (-2,2) a n d (-1,3).

MOMENTUM ( 2 ~ x l o 4 cm -1)

F i g u r e 1. Schematic diagrarn o f the dispersion c u r v e s of s u r f a c e plasmons o n a grating w i t h a periodicity of d=27/G (solid lines).

The dash-dotted line is the dispersion curve of a free space electro-

magnetic w a v e a n d the dotted l i n e indicates the slope of a typical

experimental scan. The m i n i g a p s discussed in this paper a r e shaded.

(4)

EXPERIMENT

T h e experiment was p e r f o r m e d b y m o n i t o r i n g t h e i n t e n s i t y o f l i g h t r e f l e c t e d f r o m a metallic g r a t i n g w h i l e t h e e n e r g y o f t h e l i g h t was v a r i e d . T h i s was accomplished b y m a k i n g constant a n g l e scans i n w h i c h t h e angle o f incidence was k e p t f i x e d a n d t h e wavelength o f t h e i n c i d e n t l i g h t was v a r i e d (see t h e d o t t e d l i n e i n F i g u r e 1 ) . When t h e e n e r g y a n d momentum of t h e i n c i d e n t l i g h t matched t h a t of a SEW, c o u p l i n g o c c u r r e d a n d t h e r e f l e c t e d l i g h t i n t e n s i t y decreased. T h e magnitude a n d w i d t h o f t h e r e f l e c t i v i t y " d i p " is determined b y t h e c o u p l i n g s t r e n g t h o f t h e SEW mode a n d t h e c o r r e s p o n d i n g d i e l e c t r i c a n d r a d i a t i v e ( s c a t t e r i n g a n d d i f f r a c t i o n ) losses. B y i n c r e m e n t i n g t h e i n c i d e n t angle, 8, a n d m o n i t o r i n g t h e p h o t o n e n e r g y a t w h i c h t h e d i p occurs, SEW d i s p e r s i o n c u r v e s w e r e mapped o u t .

T h e p e r i o d i c i t y o f t h e g r a t i n g s was set a t 21. l p m i n o r d e r t h a t several o r d e r s o f minigaps b e accessible t o Our d y e laser system. T h e y were f a b r i c a t e d o n silicon s u b s t r a t e s a t t h e National Research a n d Resource F a c i l i t y f o r Submicron S t r u c t u r e s a t C o r n e l l U n i v e r s i t y .

T h e g r a t i n g p a t t e r n was established b y f i r s t e x p o s i n g an i n t e r f e r e n c e hologram o n p h o t o r e s i s t coated silicon s u b s t r a t e s . T h e p a t t e r n was t h e n etched i n t o t h e silicon u s i n g e i t h e r a r e a c t i v e ion e t c h i n g t e c h n i q u e (RIE) o r an ion m i l l i n g t e c h n i q u e ( I M ) . T h e g r a t i n g amplitudes w e r e measured u s i n g a scanning e l e c t r o n microscope a n d w e r e f o u n d t o b e similar ( t h e t y p i c a l g r a t i n g amplitude was = 500 A ) . However, t h e p r o f i l e s o f t h e t w o g r a t i n g s w e r e q u t t e d i f f e r e n t as shown i n F i g u r e 2. T h e I M g r a t i n g h a d a clean, w e l l - d e f i n e d a n d c o n s t a n t g r a t i n g p e r i o d w h i l e t h a t o f t h e RIE g r a t i n g was q u i t e i r r e g u l a r . The w i d t h s o f i n d i v i d u a l lines o f t h e RIE g r a t i n g v a r i e d b y as much as 30%. I n addition, t h e R I E c o r r u g a t i o n p r o f i l e was approximately sinusoidal, b u t w i t h a f l a t t o p w h i l e t h e IM p r o f i l e was more t r i a n g u l a r .

S i l v e r was chosen as t h e metaflic o v e r c o a t i n g because o f i t s low d i e l e c t r i c loss t h r o u g h o u t t h e v i s i b l e . O p t i c a l l y t h i c k ( = 5000 A ) s i l v e r films w e r e t h e r m a l l y evaporated o n t 0 p r e p a r e d silicon s u b s t r a t e s i n a vacuum o f 1 x 1 0 - ~ to r r . T o minimize t a r n i s h i n g , t h e samples were f r e s h l y coated a n d were mounted i n a d r y n i t r o g e n f i l l e d enclosure d u r i n g measurement. A d y e laser purnped b y a k r y p t o n i o n laser was t h e t u n a b l e light s o u r c e w h i c h p e r m i t e d us t o p r o b e t h r e e separate minigaps i n t w o spectral ranges. P y r o e l e c t r i c d e t e c t o r s and l o c k - i n amplifiers w e r e employed t o d e t e c t t h e normalized r e f l e c t e d i n t e n s i t y . T h e data f r o m t h e experimental scans w e r e collected w i t h a microcornputer c o n t r o l l e d data acquisition system.

Figure 2. T h e scanning electron micrographs of grating profiles of the reactive ion etched (RIE) grating and t h e i o n milLed ( I M ) grating.

Note that the IM grating is a lot smoother than the RIE grating.

Details a r e discussed i n the text.

(5)

J O U R N A L DE PHYSIQUE

MOMENTUM ( 2 ~ x 103 cm-') 1.42

- 1.38

.- l

5

w

O 7

5 1.34

>

LU z

W 1.30

1.26

Figure 3. The experimentally measured SEW dispersion curves in the vicinity of the (-1,2) minigap for the RIE grating.

I

I

I

I

I

I I I I I

- 6 ( - 1,2) MlNlGAP -

* Y REACTIVE ION

- S x ETCHED GRATING -

8 v .

/

- -

4 *5Q

. * .

- . . 4 -

*. 4-

- -

. e V

0.

- . -

.

- . -

- w

I 1

I

1

I

1 1

I I

1

3.4 3.8 4.2 4.6 5.0 5.4

MlNlGAP LLED GRATING

Figure 4. Experimentally determined SEM dispersion curves in the

vicinity of the (-1,2) minigap for the IM grating.

(6)

RESULTS

T h e measured d i s p e r s i o n c u r v e s o f t h e k = - k +2G a n d k = k -G SEWS

SP s P

(termed +2 a n d -1 coupling processes, r e s p e c t i v e l y ) i n t h e v i c i n i t y o f t h e i r c r o s s i n g a r e g l v e n i n F i g u r e 3 f o r t h e R I E g r a t i n g a n d i n F i g u r e 4 f o r t h e I M g r a t i n g . T h e crossings o c c u r a t a b o u t t h e same e n e r g y (1.320 x 10 cm-' f o r 4 R I E a n d 1.247 x l o 4 cm-' f o r IM) since t h e g r a t i n g p e r i o d s w e r e similar (1.106 urn f o r RIE a n d 1.183 pm f o r I M ) . I n addition, t h e magnitudes o f t h e minigaps a r e almost identical ( - 100 cm-' f o r RIE and - 110 cm-' f o r I M ) . As t h e i n c i d e n t angle 6 was varied, t h e c o u p l i n g s t r e n g t h ( t h e m a g n i t u d e of t h e d i p ) o f t h e +2 mode decreased r a p i d l y t o zero a t ( k = 4 . 5 8 x h x 10 cm-') f o r t h e RIE 3 g r a t i n g a n d t h e n j u s t as q u i c k l y reappeared, b u t a t a h i g h e r e n e r g y /14/. I n e f f e c t , an additional l a r g e (185 c m - l ) "gap" opened u p i n t h e dispersion

- .

3 - 1 4 -1

relation f o r t h e

+

2 mode at kZ4.58 x 2n x 10 cm , a n d ~ ~ 1 . 3 1 x 10 cm .

T h i s s t r u c t u r e is asymmetric i n t h a t n o analogous f e a t u r e i s p r e s e n t on t h e - 1 mode at t h e same e n e r g y . F o r t h e IM g r a t i n g however, while t h e i n t e n s i t y o f t h e

+

2 mode w e n t t h r o u g h a minimum a t about t h e same k , n o additional "gap"

was e v i d e n t . T h e w i d t h o f t h e coupling d i p f o r t h e RIE g r a t i n g was about 50%

l a r g e r t h a n t h a t f o r t h e IM g r a t i n g . T h i s cannot b e a t t r i b u t e d t o o v e r c o u p l i n g since t h e g r a t i n g amplitudes a r e t h e same. More l i k e l y , t h i s b r o a d e n i n g i s a r e s u l t of t h e f l u c t u a t i o n s i n t h e RIE g r a t i n g s p e r i o d which, i n effect, allows c o u p l i n g t o SEWs o v e r a d i s t r i b u t i o n o f i n c i d e n t angles. We suspect t h a t these f l u c t u a t i o n s , b y p r o d u c i n g i n t e r f e r e n c e between t h e sideband a n d t h e weak + 2 mode, may also b e t h e cause o f t h e additional f e a t u r e on t h e +2 b r a n c h .

Similar r e s u l t s a r e o b s e r v e d f o r t h e (-1.3) m i n i g a p . F o r t h e RIE g r a t i n g , t h e r e is a l a r g e (2290 c m - l ) a d d i t i o n a l "gap" p r e s e n t o n t h e

+

3 mode above t h e minigap ( w h i c h has a magnitude o f 2360 cm-') i n a r e g i o n where t h i s mode's c o u p l i n g i n t e n s i t y decreased t o zero. No such additional gap s t r u c t u r e was observable on t h e IM g r a t i n g . F u r t h e r , t h e minimum i n t h e +3 mode i n t e n s i t y o c c u r e d a t an e n e r g y below t h e minigap e n e r g y a n d t h e minigap w i d t h (1140 cm-'1 was s i g n i f i c a n t l y smaller t h a n was t h e case f o r t h e RIE g r a t i n g . These effects a r e l i k e l y d u e t o the influence o f t h e harmonic content o f t h e g r a t i n g p r o f i l e o n h i g h e r o r d e r SEW c o u p l i n g . We p l a n a systematic s t u d y o f SEW g r a t i n g c o u p l i n g a n d d i s p e r s i o n c u r v e s i n t h e v i c i n i t y o f minigaps f o r a v a r i e t y o f w e l l - d e f i n e d g r a t i n g p r o f i l e s i n o r d e r t o f u r t h e r elucidate t h e e f f e c t o f g r a t i n g p r o f i l e a n d u n i f o r m i t y on SEWs.

ACKNOWLEDGEMENT

W e would like to thank Dr. R.J. Seymour for helpful discussion and his critical reading of the manuscript.

REFERENCES

1 . D . Maystre, "Electromagnetic S u r f a c e Modes," e d i t e d b y A . D . B o a r d - man (John Wiiey & Sons, New Y o r k , 1982), p . 661.

2 . J . C . Tsang, J . R . K i r t l e y a n d J . A . Bradley, Phys. Rev. L e t t . 43,

772, (1979).

3. W. Knoll, M.R. Philpott, J . D . Swalen, a n d A . Girlando, J. Chem.

P h y s . 77, 2254 (1982).

(7)

C 5-2 1 X J O U R N A L DE PHYSIQUE

4 . Y . J . Chen a n d G.M. C a r t e r , A p p l . P h y s . L e t t . 41, 307 (1982).

5. F. Toigo, A . M a r v i n , V. C e l l i a n d N . R . Hill, P h y s . R e v . 0 3 , 5618 (1977).

6. B . Laks, D.L. M i l l s a n d A . A . M a r a d u d i n , P h y s . R e v . 823, 4965

(1981) a n d N . E . Glass a n d A . A . M a r a d u d i n _824, 595 (1981).

7. D . L . Mills, P h y s . R e v . B 27, 4036 (1975).

8 . M. Weber a n d D . L . Mills, P h y s . R e v . 8 3 , 2698 (1983).

9 . N. Garcia O p t . Commun. @, 307 (1983)

10. R . H . Richie, E . T . Arakawa, J . J . Cowan a n d R.N. Harnn, P h y s . R e v . L e t t . z, 1530 (1968); J . J . Cowan a n d E . T . Arakawa, Z . P h y s . 235, 97 (1970).

11. J . E . Stewart, a n d W.S. Galloway, A p p l . O p t . 1, 421 (1962).

12. R . U l r i c h a n d M. Tacke, A p p l . P h y s . L e t t . 22, 251 (1973).

13. M.C. H u t l e y , " D i f f r a c t i o n G r a t i n g " , (Acadernic Press, New Y o r k , 19821, p. 207.

14. Y . J . Chen, E.S. Koteles, R . J . Seymour, G.J. Sonek a n d J . M . Ballan- t y n e , S o l i d State Commun, g, 95 (1983).

15. E.H. Rosengant a n d 1 . Pockrand, O p t . L e t t . 1, 194 (1977).

16. A . Basu a n d J . M . Ballantyne, A p p l . O p t i c s 18, 2578 (1979)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to