• Aucun résultat trouvé

ABSORPTION AND LUMINESCENCE EXPERIMENTS IN SEMICONDUCTOR SUPERLATTICES

N/A
N/A
Protected

Academic year: 2021

Partager "ABSORPTION AND LUMINESCENCE EXPERIMENTS IN SEMICONDUCTOR SUPERLATTICES"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: jpa-00224194

https://hal.archives-ouvertes.fr/jpa-00224194

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

EXPERIMENTS IN SEMICONDUCTOR SUPERLATTICES

M. Voos

To cite this version:

M. Voos. ABSORPTION AND LUMINESCENCE EXPERIMENTS IN SEMICONDUC- TOR SUPERLATTICES. Journal de Physique Colloques, 1984, 45 (C5), pp.C5-489-C5-498.

�10.1051/jphyscol:1984573�. �jpa-00224194�

(2)

J O U R N A L D E PHYSIQUE

Colioque C5, suppl6rnent au n04, Tome 45, avril 1984 page C5-489

ABSORPTION AND LUMINESCENCE EXPERIMENTS IN SEMICONDUCTOR SUPERLATTICES

M . Voos

Groupe de Physique des ~ o ~ i d e s * de ZrEcoZe NormaZe Supgrieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

R6sumB - Nous prBsentons i c i des r B s u l t a t s expBrimentaux obtenus rBcemment 2 p a r t i r de mesures o p t i q u e s f a i t e s s u r des super-r6seaux semiconducteurs. Ces 6 t u d e s o n t donnB des i n f o r m a t i o n s i n t s r e s s a n t e s s u r l e s p r o p r i s t 6 s B l e c t r o n i - ques de c e s systBmes B deux dimensions q u i o n t o u v e r t un nouveau champ de r e c h e r c h e en physique des semiconducteurs

.

A b s t r a c t - We p r e s e n t h e r e some e x p e r i m e n t a l r e s u l t s o b t a i n e d r e c e n t l y on semiconductor s u p e r l a t t i c e s from o p t i c a l measurements. These s t u d i e s g i v e i n t e r e s t i n g i n f o r m a t i o n s on t h e e l e c t r o n i c p r o p e r t i e s o f t h e s e two- d i m e n s i o n a l systems which have opened up a new f i e l d of i n v e s t i g a t i o n s i n semi c o n d u c t o r p h y s i c s

.

I - INTRODUCTION

Semiconductor s u p e r l a t t i c e s , which have been proposed by E s a k i and Tsu / I / , c o n s i s t of t h i n a l t e r n a t e l a y e r s of two semiconductors which, g e n e r a l l y , c l o s e l y match i n l a t t i c e $ o n s t a n t . I n t h e s e p e r i o d i c s t r u c t u r e s , t h e t h i c k n e s s of t h e l a y e r s r a n g e s from 10 A t o a few hundred A a b o u t , s m a l l e r t h a n o r comparable t o t h e e l e c t r o n mean f r e e p a t h , b u t l a r g e r t h a n t h e i n t e r a t o m i c s p a c i n g . Thus, t h e c o n s i d e r e d system i s two-dimensional, a t l e a s t i n f i r s t a p p r o x i m a t i o n , and quantum e f f e c t s can be e x p e c t e d , changing t h e e l e c t r o n i c s t r u c t u r e of t h e h o s t m a t e r i a l s and g i v i n g r i s e t o unusual p r o p e r t i e s . The d i f f e r e n t band gaps Eg of t h e h o s t semiconductors c r e a t e a one-dimensional p e r i o d i c p o t e n t i a l i n t h e z d i r e c t i o n p e r p e n d i c u l a r t o t h e p l a n e of t h e l a y e r s . T h i s l e a d s t o t h e c r e a t i o n of an a r t i f i c i a l p e r i o d i c i t y , which i s l o n g e r t h a n t h e atomic s p a c i n g and i s s u p e r p o s e d t o t h e n a t u r a l p e r i o d i c i t y of t h e c r y s t a l . This p o t e n t i a l c a u s e s a f o l d i n g of t h e B r i l l o u i n zone, r e s u l t i n g i n a s e r i e s of q u a n t i z e d subbands i n b o t h t h e c o n d u c t i o n and v a l e n c e b a n d s , a s shown i n F i g . 1 . One can c o n s i d e r t h a t t h e c a r r i e r s a r e c o n f i n e d i n quantum p o t e n t i a l w e l l s and t h a t t h e i r motion i s q u a n t i z e d i n t h e z d i r e c t i o n , t h e c o n d u c t i o n ( v a l e n c e ) subbands such a s E l , E2..

.

( H i , H2.. .) l y i n g a t h i g h e r (lower) e n e r g y t h a n t h e bottom ( t o p ) of t h e conduction ( v a l e n c e ) band of t h e h o s t semiconductor. Tunneling i n t e r a c t i o n s between s u c c e s s i v e p o t e n t i a l w e l l s can g i v e r i s e t o an a p p r e c i a b l e width of t h e subbands i n t h e z d i r e c t i o n , c o r r e s p o n d i n g t o a c e r t a i n d i s p e r s i o n r e l a t i o n of t h e energy a s a f u n c t i o n of t h e e l e c t r o n wavevector k,. B e s i d e s , t h e c a r r i e r motion i s n o t q u a n t i z e d i n t h e x , y p l a n e of t h e l a y e r s , and each subband p r e s e n t s a l s o a d i s p e r s i o n r e l a t i o n a s a f u n c t i o n of k, and ky which approximates t h a t of t h e c o r r e s p o n d i n g b u l k semiconductor i n most s u p e r l a t t i c e s .

Two t y p e s o f s u p e r l a t t i c e s , I and 11, have been e x t e n s i v e l y i n v e s t i g a t e d .

G ~ A S - A ~ , G ~ ~ - ~ A S s t r u c t u r e s c o r r e s p o n d / 2 / t o t y p e I , and t h e s i t u a t i o n i s schemati- c a l l y d e s c r i b e d i n F i g . 1 . The GaAs c o n d u c t i o n band edge i s a t lower energy t h a n t h a t of A1,Gal-,As, w h i l e i t s v a l e n c e band edge i s a t h i g h e r energy t h a n t h a t of

A 1 Gal-,As. x The GaAs l a y e r s a r e t h u s p o t e n t i a l w e l l s f o r b o t h e l e c t r o n s and h o l e s which a r e c o n f i n e d i n t h e s e l a y e r s . I n InAs-GaSb s t r u c t u r e s 1 3 1 , which b e l o n g t o t y p e I1 s t r u c t u r e s , t h e InAs c o n d u c t i o n band edge l i e s a t lower e n e r g y t h a n t h e GaSb v a l e n c e band edge, a s s c h e m a t i z e d i n F i g . 2 ( a ) . The InAs and GaSb l a y e r s s e r v e a s p o t e n t i a l w e l l s f o r e l e c t r o n s and h o l e s , r e s p e c t i v e l y . E l e c t r o n s and h o l e s a r e spa-

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984573

(3)

t i a l l y s e p a r a t e d , b u t photon a b s o r p t i o n o r emission a r e n e v e r t h e l e s s p o s s i b l e because t h e e l e c t r o n and h o l e wavefunctions o v e r l a p . Furthermore, e x p e r i m e n t a l i n v e s t i g a t i o n s have shown / 4 / r e c e n t l y t h a t HgTe-CdTe s u p e r l a t t i c e s , which belong a t f i r s t s i g h t t o type I s t r u c t u r e s , have i n f a c t q u i t e d i f f e r e n t c h a r a c t e r i s t i c s from t h o s e of GaAs-AlGaAs s y s terns.

conduction

band

:qgp'p

F i g u r e 1 : S c h e m a t i z a t i o n o f a semiconductor s u p e r l a t t i c e c o n s i s t i n g h e r e i n a l t e r - n a t e l a y e r s of GaAs and AlxGal-xAs. The t o t a l t h i c k n e s s of t h e s u p e r l a t t i c e i s g e n e r a l l y of t h e o r d e r of 1 urn, and t h a t of t h e s u b s t r a t e i s t y p i c a l l y 500 pm. Also shown i s t h e v a r i a t i o n of t h e conduction and v a l e n c e bands i n such a s t r u c t u r e i n t h e z d i r e c t i o n p e r p e n d i c u l a r t o t h e l a y e r s . S e v e r a l conduction ( E l , E2) and v a l e n c e ( H I , h l , H2, h 2 ) subbands a r e r e p r e s e n t e d h e r e , where H1 and H2 correspond t o heavy- h o l e s , w h l l e h l and h 2 a r e l i g h t - h o l e subbands. The s u p e r l a t t i c e band gap i s Eo = El - H I .

I n a d d i t i o n t o t h e s p a t i a l s e p a r a t i o n of e l e c t r o n and h o l e s , t h e r e i s a n o t h e r impor- t a n t d i f f e r e n c e between GaAs-A1,Ga ,As and Ids-GaSb s u p e r l a t t i c e s . The e l e c t r o n e f f e c t i v e mass i n InAs (0.023 mo) );/ i s much l i g h t e r t h a n i n GaAs (0.066 mo) 151, which l e a d s t o s t r o n g e r t u n n e l i n g i n t e r a c t i o n s between InAs l a y e r s t h a n between GaAs l a y e r s . Thus, i n InAs-GaSb s t r u c t u r e s , even f o r r a t h e r l a r g e v a l u e s of t h e l a y e r t h i c k n e s s e s (% 200 i), t h e El subband h a s / 3 / an a p p r e c i a b l e width AE1 i n t h e z d i r e c t i o n , w h i l e AE1 i s o f t e n n e g l i g i b l e i n GaAs-AlxGal-xAs s u p e r l a t t i c e s .

Furthermore, due t o t h e l a r g e heavy-hole e f f e c t i v e mass i n 1 1 1 - V compounds

(% 0 . 3 mo) 1 5 1 , t h e width of t h e H1 subband i n t h e z d i r e c t i o n , AH^, i s approximate- l y e q u a l t o z e r o .

I t i s n o t p o s s i b l e t o review h e r e a l l t h e o p t i c a l s t u d i e s performed on semiconductor s u p e r l a t t i c e s , and we w i l l o n l y d e s c r i b e some of t h e r e s u l t s which have given i n t e - r e s t i n g i n f o r m a t i o n s on t h e i r e l e c t r o n i c p r o p e r t i e s . We w i l l focus on

GaAs-A1,Gal-xAs and I d s - G a S b s u p e r l a t t i c e s , which a r e t h e most e x t e n s i v e l y i n v e s t i - g a t e d s t r u c t u r e s , and we w i l l a l s o d e s c r i b e b r i e f l y some a s p e c t s of HgTe-CdTe super- l a t t i c e s . However, i t s h o u l d be n o t e d t h a t o t h e r s u p e r l a t t i c e s , such a s

In,Gal-,As-InP 161 and GaSb-AlSb / 7 / systems f o r example, a r e now b e i n g i n v e s t i g a t e d .

(4)

F i g u r e 2 : S c h e m a t i c e n e r g y diagram o f a n InAs-GaSb s u p e r l a t t i c e . Ecl (Ec2) and Evl (Ev2) a r e t h e c o n d u c t i o n and v a l e n c e band e d g e s o f GaSb ( I n A s ) . E l and H I a r e r e s p e c t i v e l y t h e ground c o n d u c t i o n and v a l e n c e subbands of t h e s u p e r l a t t i c e . Semi- c o n d u c t i n g ( a ) and s e m i m e t a l l i c ( b ) s i t u a t i o n s .

I1 - OPTICAL ABSORPTION AND LUMINESCENCE

A b s o r p t i o n e x p e r i m e n t s done a t h e l i u m t e m p e r a t u r e s i n GaAs-A1xGal-xAs s u p e r l a t t i c e s grown by m o l e c u l a r beam e p i t a x y (MBE) h a v e g i v e n s t r o n g e v i d e n c e f o r c a r r i e r c o n f i - nement i n t h e GaAs p o t e n t i a l w e l l s / 2 , 8 / . T y p i c a l d a t a a r e shown i n F i g . 3 which p r e s e n t s t r a n s m i s s i o n ( i . e . a b s o r p t i o n ) and e x c i t a t i o n s p e c t r a 181. E x c i t a t i o n s p e c t r o s c o p y , which g i v e s t h e same i n f o r m a t i o n s a s o p t i c a l a b s o r p t i o n , c o n s i s t i n s c a n n i n g t h e e x c i t i n g l i g h t w a v e l e n g t h from a dye l a s e r w h i l e t h e d e t e c t i n g s p e c t r o - m e t e r i s s e t a t a n e n e r g y where t h e sample e x h i b i t s l u m i n e s c e n c e , i . e . h e r e a t

1.525 eV ( s e e F i g . 3 ) . P e a k s a r e f o u n d a t e n e r g i e s c o r r e s p o n d i n g t o p o s s i b l e t r a n s i - t i o n s shown i n t h e i n s e t o f F i g . 3 a s a r e s u l t o f p h o t o n a b s o r p t i o n by t h e c o r r e s p o n - d i n g e n e r g y l e v e l s f o l l o w e d by r a p i d r e l a x a t i o n o f t h e e x c i t e d c a r r i e r s t o t h e l u m i n e s c e n t l e v e l w h e r e t h e y r e c o m b i n e r a d i a t i v e l y . I n f a c t , t h e p e a k s i n F i g s 3 ( b ) and 3 ( c ) a r e c h a r a c t e r i s t i c o f l i g h t a b s o r p t i o n by f r e e e x c i t o n s 1 2 1 , a n d , t h e o b s e r v e d o p t i c a l t r a n s i t i o n s a r e i d e n t i f i e d i n F i g . 3 where t h e n = l e - hh p e a k , f o r i n s t a n c e , i s a t t r i b u t e d t o a b s o r p t i o n by a f r e e e x c i t o n c o r r e s p o n d i n g t o t h e n = 1 e l e c t r o n ( E l subband) and heavy-hole ( H I subband) s t a t e s shown i n t h e i n s e t . C a r r i e r c o n f i n e m e n t i s c l e a r l y o b s e r v e d s i n c e , i n b u l k GaAs, t h e a b s o r p t i o n s p e c t r u m p r e s e n t s 1 2 1 o n l y a f r e e e x c i t o n peak a t 1.515 eV, namely a t lower e n e r g y t h a n t h e t r a n s i t i o n s s t u d i e d h e r e . The e n e r g y p o s i t i o n o f t h e peaks i n F i g . 3 i s i n good agreement w i t h c a l c u l a t i o n s o f t h e c o n d u c t i o n and v a l e n c e subband e n e r g i e s performed i n a s i m p l e model where t h e GaAs l a y e r s c o r r e s p o n d t o n o n - i n t e r a c t i n g quantum w e l l s h a v i n g a f i n i t e d e p t h 121. A d d i t i o n a l a b s o r p t i o n e x p e r i m e n t s 1 2 1 i n s i m i l a r s u p e r -

l a t t i c e s d e m o n s t r a t e t h a t , when t h e GaAs l a y e r t h i c k n e s s i s d e c r e a s e d , t h e f r e e e x c i t o n p e a k s move t o h i g h e r e n e r g i e s and t h e d i s t a n c e between t h e s e p e a k s i n c r e a s e s , a s c a n be e x p e c t e d i n a s i m p l e quantum w e l l model. From s u c h i n v e s t i g a t i o n s , t h e d i s c o n t i n u i t y AEc (AE,) o f t h e c o n d u c t i o n ( v a l e n c e ) band a t e a c h i n t e r f a c e h a s been found 121 t o b e e q u a l t o 225 meV (30 meV) :or x % 0 . 2 . T h i s was o b t a i n e d by f i t t i n g t h e e n e r g y p o s i t i o n s o f t h e o b s e r v e d t r a n s i t i o n s i n s e v e r a l s u p e r l a t t i c e s h a v i n g d i f f e r e n t GaAs l a y e r t h i c k n e s s e s t o s i m p l e c a l c u l a t i o n s c o r r e s p o n d i n g a g a i n t o non- i n t e r a c t i n g quantum w e l l s of f i n i t e d e p t h s 121. More s o p h i s t i c a t e d t h e o r e t i c a l i n v e s - t i g a t i o n s i n t h e e n v e l o p e f u n c t i o n a p p r o x i m a t i o n 1 9 1 of t h e s u p e r l a t t i c e band

s t r u c t u r e p r o v i d e s , i n f a c t , s i m i l a r r e s u l t s . Luminescence e x p e r i m e n t s h a v e a l s o b e e n performed i n s u p e r l a t t i c e s grown by MBE 1 8 1 and by m e t a l o r g a n i c c h e m i c a l v a p o r

(5)

d e p o s i t i o n / l o / . F i g . 3 ( a ) g i v e s t y p i c a l r e s u l t s o b t a i n e d 1 8 1 i n t h e same s t r u c t u r e a s t h e one used i n t h e a b s o r p t i o n e x p e r i m e n t s d e s c r i b e d p r e v i o u s l y . From t h e absorp- t i o n and e x c i t a t i o n s p e c t r a , t h e two luminescence l i n e s i n F i g . 3 ( a ) a r e a s s i g n e d t o t h e r e c o m b i n a t i o n o f f r e e e x c i t o n s i n v o l v i n g t h e n = 1 e l e c t r o n s t a t e and t h e n = 1 heavy and l i g h t - h o l e s t a t e s , r e s p e c t i v e l y . It i s noteworthy t h a t , i n such s t r u c t u r e s where t h e i m p u r i t y d e n s i t y i s low (NA - ND ". 10" - 10" ~ m - ~ ) , t h e luminescence spectrum does n o t show i n t e n s e l i n e s i n v o l v i n g i m p u r i t i e s w h i l e , i n b u l k GaAs w i t h a s i m i l a r i m p u r i t y c o n c e n t r a t i o n , i t i s dominated / 1 I / by e x t r i n s i c recombination p e a k s , b u t t h i s d i f f e r e n c e w i t h b u l k GaAs i s n o t u n d e r s t o o d .

".I e-hh MULTI-QUANTUM WELLS GaAl-Gao,7ALo3AI

23 X 188;

I . 8 K

n - l e - l h

n.2a-hh

FORBIDDEN '

TRANSITION

5

rn TRANSMISSION (bl

Q

"

u rn 5

t z

0.

LUMINESCENCE l a )

PHOTON ENERGY (eVI

F i g u r e 3 : Luminescence ( a ) , a b s o r p t i o n (b) and e x c i t a t i o n s p e c t r a ( c ) o f a GaAs;A10.3Ga0.7As s u p e r l a t t i c e c o n s i s t i n g of 25 GaAz l a y e r s whose t h i c k n e s s i s 188 A , w h i l e t h a t of t h e A10e3Ga0.7As l a y e r s i s 19 A . I n t h e i n s e t a r e shown p o s s i - b l e o p t i c a l t r a n s i t i o n s i n such a s t r u c t u r e . Here n = l e , 2e c o r r e s p o n d s t o t h e E l , E2 subbbands, and n = 1 hh, 2 h h , 1 l h , 2 l h c o r r e s p o n d t o t h e H I , H z , h l and h2 subbands shown i n F i g . ] . I n such a s t r u c t u r e , o p t i c a l t r a n s i t i o n s a r e allowed f o r An = 0. ( A f t e r R e f . 8 ) .

O p t i c a l a b s o r p t i o n e x p e r i m e n t s have been done i n PE-grown InAs-GaSb s u p e r l a t t i c e s 1121 f o r l a y e r t h i c k n e s s e s r a n g i n g from 15 t o 30 A about. They g i v e e v i d e n c e f o r t h e e x i s t e n c e o f a s u p e r l a t t i c e s t r u c t u r e , b u t no f r e e e x c i t o n t r a n s i t i o n s have been o b s e r v e d , which i s n o t s u r p r i s i n g b e c a u s e t h e s p a t i a l s e p a r a t i o n of e l e c t r o n s and h o l e s i s n o t f a v o r a b l e t o t h e f o r m a t i o n o f f r e e e x c i t o n s 191. The a b s o r p t i o n e d g e , which i s found t o depend on t h e l a y e r t h i c k n e s s , d e t e r m i n e s t h e s u p e r l a t t i c e band gap Eo = El - H I . By comparing t h e s e d a t a t o t h e t h e o r e t i c a l v a r i a t i o n of Eo w i t h t h e l a y e r t h i c k n e s s c a l c u l a t e d by t h e LCAO method / 1 3 / , one o b t a i n s Es ". 150 meV, where Es i s t h e d i f f e r e n c e between t h e InAs c o n d u c t i o n band edge and t h e GaSb valen- ce band edge a t e a c h i n t e r f a c e . B e s i d e s , luminescence e x p e r i m e n t s have been p e r f o r - med i n InAs-GaSb s u p e z l a t t i c e s 1141 where t h e InAs and GaSb l a y e r t h i c k n e s s e s were r e s p e c t i v e l y d l = 30 A and d2 = 50 1. The o b s e r v e d s p e c t r a , which a r e shown i n F i g . 4 , l i e around 250 meV, and a r e t h e r e f o r e a t much lower energy t h a n t h e band gaps / 5 / o f b u l k InAs (410 meV) and GaSb (815 meV), i n d i c a t i n g t h e f o r m a t i o n of subbands i n t h e s u p e r l a t t i c e . I n t h i s s y s t e m , LCAO c a l c u l a t i o n s of t h e s u p e r l a t t i c e band s t r u c t u r e /13,15/ g i v e AE1 = 60 meV, w h i l e AH1 ". 0. T h e r e f o r e , t h e h o l e d e n s i t y of s t a t e s i s a c t u a l l y two-dimensional, b u t t h a t of e l e c t r o n s i s n o t s t r i c t l y two- d i m e n s i o n a l a s a r e s u l t of t h e non-zero width of E l . Taking i n t o a c c o u n t t h e a c t u a l e l e c t r o n and h o l e d e n s i t i e s o f s t a t e s , a s w e l l a s t h e c a l c u l a t e d o p t i c a l m a t r i x element which, i n t h e s e s t r u c t u r e s , depends /16/ on k,, t h e o r e t i c a l f i t s of t h e main l i n e i n F i g . 4 show t h a t i t i s due, o v e r t h e whole t e m p e r a t u r e range i n v e s t i g a t e d , t o band-to-band r e c o m b i n a t i o n between f r e e e l e c t r o n s i n t h e El subband and f r e e h o l e s

(6)

i n t h e H1 subband. I n a d d i t i o n , t h e s u p e r l a t t i c e band gap, Eo, o b t a i n e d a t 2 K from s u c h a f i t i s e q u a l t o 262 meV, i n s a t i s f y i n g agreement w i t h t h e t h e o r e t i c a l v a l u e 19,131 (280 meV). As c a n b e s e e n i n F i g . 4 , when T i s reduced below 300 K , t h e lumi- n e s c e n c e s p e c t r u m e x h i b i t s a t a i l o r a bump on i t s low-energy s i d e which i n d i c a t e s t h e e x i s t e n c e of e n e r g y s t a t e s i n t h e s u p e r l a t t i c e band gap. They may c o r r e s p o n d t o i m p u r i t i e s whose b e h a v i o r i n s u p e r l a t t i c e s h a s been s t u d i e d t h e o r e t i c a l l y by B a s t a r d 1171. They may a l s o a r i s e 1141, a s o b s e r v e d i n G a t l ~ - A l ~ G a l - ~ systems 1181, from i n t e r f a c e d e f e c t s l o o k i n g l i k e s u r f a c e roughness and c o r r e s p o n d i n g t o t h i c k n e s s f l u c t u a t i o n s w i t h i n e a c h l a y e r . However, a t t h i s s t a g e , i t does n o t seem p o s s i b l e t o d e t e r m i n e which p r o c e s s e s a r e r e s p o n s i b l e f o r t h i s low-energy t a i l .

PHOTON ENERGY hv ( m e V )

F i g u r e 4 : Luminescence s p e c t r a o b s e r v e d i n an I d s - G a S b s u p e r l a t t i c e a t d i f f e r e n t t e m p e r a t u r e s . ( A f t e r Ref. 1 4 ) .

I11 - MAGNETO-ABSORPTION EXPERIMENTS

At f i r s t , i t i s i m p o r t a n t t o n o t e t h a t E s a k i e t a l . have s u g g e s t e d 13,131 t h a t a semiconductor-semimetal t r a n s i t i o n s h o u l d t a k e p!ace i n InAs-GaSb s u p e r l a t t i c e s when t h e l a y e r t h i c k n e z s becomes of t h e o r d e r of 100 A. When t h e l a y e r t h i c k n e s s i s s m a l l e r t h a n 100 A ( F i g . 2 ( a ) ) , t h e El subband, mainly l o c a l i z e d i n t h e InAs l a y e r s , i s a t h i g h e r energy t h a n t h e H1 subband, which i s c o n f i n e d i n t h e GaSb l a y e r s . T h e r e f o r e , t h e s u p e r l a t t i c e band g a p , Eo = El - H i , i s p o s i t i v e and c o r r e s p o n d s t o a s e m i c o n d u c t i n g s i t u a t i o n which was s t u d i e d i n t h e p r e v i o u s s e c t i o n . When t h e l a y e r t h i c k n e s s i s i n c r e a s e d , El i s lowered and Hi i s r a i s e d , i n f i r s t a p g r o x i m a t i o n a s i n a s i m p l e quantum w e l l . When t h e l a y e r t h i c k e n s s i s l a r g e r t h a n 100 A a b o u t , H I i s a t h i g h e r e n e r g y t h a n El and El - HI i s n e g a t i v e ( F i g . 2 ( b ) ) , t h e c o r r e s p o n d i n g

s t r u c t u r e b e i n g s e m i m e t a l l i c . I n s u c h a s i m p l e model 1191, e l e c t r o n s t r a n s f e r from H1 t o E l , namely from GaSb t o InAs l a y e r s , and t h e Fermi l e v e l , EF, l i e s between E l and Hi, c l o s e t o H1 b e c a u s e of t h e l a r g e heavy-hole mass.

I n t e r e s t i n g i n f o r m a t i o n s h a v e been o b t a i n e d from f a r - i n f r a r e d (FIR) magneto- a b s o r p t i o n e x p e r i m e n t s 120-221 performed i n MBE-grown InAs-GaSb s u p e r l a t t i c e s (S1, S2) whose InAs and GaSb t h i c k n e s s e s a r e g i v e n i n T a b l e I. I n t h e s e e x p e r i m e n t s t h e f a r - i n f r a r e d t r a n s m i s s i o n o f t h e s e samples was s t u d i e d a t f i x e d p h o t o n e n e r g i e s a s a f u n c t i o n of t h e m a g n e t i c f i e l d B, which was p e r p e n d i c u l a r t o t h e p l a n e of t h e l a y e r s , t h e i n f r a r e d r a d i a t i o n b e i n g n e a r normal i n c i d e n c e t o t h e l a y e r s . F i g u r e 5 g i v e s t y p i c a l t r a n s m i s s i o n s p e c t r a i n sample S1, showing t h a t t h e t r a n s m i s s i o n s i g n a l v e r s u s B e x h i b i t s pronounced o s c i l l a t i o n s . I n F i g . 6 a r e shown, a s a f u n c t i o n of B, t h e i n f r a r e d photon e n e r g y p o s i t i o n s of t h e t r a n s m i s s i o n minima ( i . e . absorp-

(7)

t i o n maxima) o b t a i n e d from t h e o b s e r v e d o s c i l l a t i o n s ( F i g . 5 )

F i g u r e 5 : T r a n s m i s s i o n s p e c t r a v e r s u s B f o r d i f f e r e n t i n f r a r e d w a v e l e n g t h s ( A f t e r Ref. 2 0 ) .

As c a n b e deduced from s i m p l e t h e o r e t i c a l a n a l y s e s 120-221, t h e p h o t o n e n e r g i e s , h v , a t which t h e s e minima o c c u r depend a l m o s t l i n e a r l y on B. E x t r a p o l a t i o n t o B = 0 r e s u l t s i n hv = 0 f o r t h e l i n e n o t e d C R , hv = - 39 meV f o r t h e l i n e s l a b e l l e d 1 , 2 , 3 . . . , and hv = - 16 meV f o r t h e l i n e n o t e d 0'. The CR l i n e ( F i g . 6 ) i s a t t r i b u t e d t o e l e c t r o n c y c l o t r o n r e s o n a n c e , i . e . t o t r a n s i t i o n s from t h e l a s t f i l l e d t o t h e f i r s t empty Landau l e v e l o f E l . The c u r v e s c o n v e r g i n g t o hv = - 39 meV a r e a s s i g n e d t o i n t e r b a n d t r a n s i t i o n s from H1 t o El Landau l e v e l s a t k, = 0. The l i n e 0 ' i s a s s o c i a - t e d t o s i m i l a r i n t e r b a n d t r a n s i t i o n s o c c u r i n g a t t h e s u p e r l a t t i c e B r i l l o u i n zone boundary i . e . a t k, = n / d , where d i s t h e s u p e r l a t t i c e p e r i o d i c i t y . These i n t e r b a n d t r a n s i t i o n s a r e r e p r e s e n t e d i n F i g . 7 ( a ) which g i v e s t h e band s t r u c t u r e o f a s u p e r - l a t t i c e a l o n g k, w i t h and w i t h o u t m a g n e t i c f i e l d i n t h e s e m i m e t a l l i c model. As mentioned p r e v i o u s l y , t h e El s u b b a n d , which i s below H I , h a s a f i n i t e w i d t h AEl , b u t t h a t o f HI i s e s s e n t i a l l y z e r o . Under a m a g n e t i c f i e l d , El and H I e x h i b i t b o t h a s e r i e s o f Landau l e v e l s moving upward and downward, r e s p e c t i v e l y , when B i s i n c r e a - s e d . I t i s c l e a r t h a t e a c h Landau l e v e l o f H1 s h o u l d g i v e r i s e t o a s i n g l e peak i n t h e d e n s i t y of s t a t e s ( F i g . 7 ( b ) ) . However, El i s f l a t a t k, = 0 and k Z = n l d , s o t h a t t h e r e s h o u l d b e two p e a k s i n t h e c o r r e s p o n d i n g d e n s i t y o f s t a t e s f o r each Landau l e v e l . I f t h e s e l e c t i o n r u l e s f o r i n t e r b a n d t r a n s i t i o n s a r e t a k e n t o be Ak, = 0 and AN = 0 , where N i s t h e Landau i n d e x , two s e t s o f t r a n s i t i o n s can b e e x p e c t e d , a t k, = 0 and .rr/d, r e s p e c t i v e l y , a s s c h e m a t i z e d i n F i g . 7 ( a ) , where t h e i n t e r b a n d t r a n s i t i o n s a t k, = 0 a r e n o t e d 1 , 2 and t h o s e o c c u r i n g a t k z = n l d a r e l a b e l l e d 0 ' , 1 ' .

The Landau l e v e l s and H ] , N o f El and H i , r e s p e c t i v e l y , can be c a l c u l a t e d u s i n g a s i m p l e t h e o r e t i c a l model /19-221. To o b t a i n El , N , t h e InAs c o n d u c t i o n band non- p a r a b o l i c i t y i s t a k e n i n t o a c c o u n t on t h e b a s i s o f t h e s i m p l i f i e d v e r s i o n o f t h e Kane model 119-221, l e a d i n g t o t h e f o l l o w i n g r e l a t i o n :

(8)

F i g u r e 6 : P o s i t i o n of t h e t r a n s m i s s i o n minima a s a f u n c t i o n of t h e i n f r a r e d photon energy and B (+,e). The s o l i d l i n e s correspond t o t h e o r e t i c a l f i t s a s d e s c r i b e d i n t h e t e x t . The curves n o t e d 1 , 2

...

correspond t o t r a n s i t i o n s a t k, = 0 from H i 1 andau l e v e l s up t o El Landau l e v e l s w i t h the same Landau i n d e x , i . e . N = 1 , 2 . . . ; t h e one n o t e d 0 ' corresponds t o s i m i l a r t r a n s i t i o n s a t k, = ~ r / d w i t h N = 0 . The i n s e t shows s c h e m a t i c a l l y t h e geometry of t h e experiment. ( A f t e r Ref.21).

where Eg i s t h e band gap of bulk InAs and i s e q u a l / 5 / t o 410 meV. DN i s given by :

Here wc = e ~ / m , * i s t h e e l e c t r o n c y c l o t r o n frequency i n bulk InAs, m t b e i n g i t s band edge mass e q u a l / 5 / t o 0.023 mo. B e s i d e s , a l l t h e e n e r g i e s a r e measured from t h e conduction band e d g ~ o f bulk InAs. Furthermore, HI ,N = H I - (N + 112) Muv, w i t h o, = e ~ / m $ where m, = 0.33 mo i s t h e GaSb heavy-hole e f f e c t i v e mass 151.

For CR t r a n s i t i o n s , hv = El ~ + 1 - E ~ , N , N b e i n g such t h a t EF i s between E ~ , N and El , N + l . For i n t e r b a n d t r a n s i t i o n s a t k, = 0 , hv = E l N - HI , N with t h e p r e v i o u s s e l e c t i o n r u l e s . F i t s of t h e experimental d a t a t o t h i s simple model a r e p r e s e n t e d i n F i g . 6 and g i v e t h e v a l u e s of El and H 1 a t B = 0 which a r e l i s t e d i n Table*l f o r samples S1 and S2. Also given i n Table 1 i s t h e s u p e r l a t t i c e e l e c t r o n mass m which has been determined from t h e CR d a t a . I t i s c l e a r t h a t m * i s l a r g e r than t h e band edge mass of bulk InAs, and i t has been shown 1201 t h a t t h i s i s due t o t h e InAs c o n d u c t i o n band n o n - p a r a b o l i c i t y . This demonstrates t h a t e l e c t r o n s a r e a c t u a l l y c o n f i n e d i n t h e InAs l a y e r s . I n a d d i t i o n , i t should be noted t h a t El - Hi i s n e g a t i - v e , a s expected i n a s e m i m e t a l l i c s i t u a t i o n . Using t h e same model, t h e i n t e r b a n d t r a n s i t i o n s a t k, = ~ r / d can be a l s o c a l c u l a t e d , r e p l a c i n g E l by El + AE1 i n Eq.2.

I n F i g . 6 a r e p r e s e n t e d t h e o r e t i c a l f i t s of t h e d a t a f o r N = 0 ' . They y i e l d AE1 a t B = 0 whose v a l u e , o b t a i n e d 121,221 from t h e s e s t u d i e s , i s given i n Table 1 f o r b o t h samples. Table 1 g i v e s a l s o t h e v a l u e s of E l , El and AE1 c a l c u l a t e d by t h e LCAO method /13,15/ showing t h a t t h e e x p e r i m e n t a l and t h e o r e t i c a l r e s u l t s compare favora- b l y i n b o t h samples.

(9)

F i g u r e 7 : ( a ) S c h e m a t i c band s t r u c t u r e o f a s e m i m e t a l l i c InAs-GaSb s u p e r l a t t i c e a l o n g kZ

.

The dashed c u r v e s a r e w i t h o u t m a g n e t i c f i e l d , t h e s o l i d c u r v e s a r e t h e c o r r e s p o n d i n g Landau l e v e l s u n d e r m a g n e t i c f i e l d , and EF i s t h e Fermi l e v e l . The t r a n s i t i o n s shown h e r e c o r r e s p o n d t o t h o s e d e f i n e d i n t h e t e x t and t h e c a p t i o n of F i g . 6 . ( b ) D e n s i t y o f s t a t e s a s s o c i a t e d w i t h t h e El and Hi subbands under magne- t i c f i e l d . The h a t c h e d a r e a c o r r e s p o n d s t o s t a t e s o c c u p i e d by e l e c t r o n s . ( A f t e r Ref.21).

T a b l e 1 : T h i c k n e s s of t h e I d s ( d l ) and GaSb (d2) l a y e r s f o r samples S 1 and S2.

The e x p e r i m e n t a l * a n d t h e o r e t i c a l v a l u e s of E l , H i and AE1, and t h e measured e l e c t r o n c y c l o t r o n mass m a r e a l s o shown h e r e .

The o b s e r v a t i o n o f a n e g a t i v e e n e r g y gap i s c o n s i s t e n t w i t h t h e proposed semi- m e t a l l i c n a t u r e o f t h e s e s u p e r l a t t i c e s 13,131, and t h e s e s t u d i e s h a v e p r o v i d e d t h e

f i r s t e x p e r i m e n t a l d e t e r m i n a t i o n i n t h e s e s t r u c t u r e s o f t h e subband e n e r g i e s El and Hi, and a l s o of AE1. I n a d d i t i o n , t h e measurement o f AE1 d e m o n s t r a t e s t h a t t h e e l e c t r o n s y s t e m i n s u c h InAs-GaSb s u p e r l a t t i c e s e x h i b i t s a t h r e e - d i m e n s i o n a l c h a r a c - t e r , d e v i a t i n g t h e r e f o r e from t h e s t r i c t t w o - d i m e n s i o n a l i t y c o r r e s p o n d i n g t o un- c o u p l e d quantum w e l l s . F i n a l l y , i t i s p e r h a p s w o r t h m e n t i o n i n g t h a t s i m i l a r e x p e r i - ments done i n s e m i c o n d u c t i n g InAs-GaSb s u p e r l a t t i c e s e x h i b i t o n l y t r a n s i t i o n s due t o c y c l o t r o n resonance.

S i m i l a r f a r - i n f r a r e d magneto-absorption e x p e r i m e n t s have b e e n done 1 4 1 r e c e n t l y a t 1.6 K i n a M3E grown HgTe-CdTe s u p e r l a t t i c e c o n g i s t i n g of 200 a l t e r n a t e l a y e r s of HgTe and CdTe whose t h i c k n e s s e s a r e 180 and 44 A, r e s p e c t i v e l y . The d a t a have a l s o been i n t e r p r e t e d i n terms of i n t e r b a n d t r a n s i t i o n s from v a l e n c e t o c o n d u c t i o n sub-

(10)

b a n d s , and from t h e s e i n v e s t i g a t i o n s i t h a s b e e n p o s s i b l e t o deduce t h e s u p e r - l a t t i c e band s t r u c t u r e a l o n g t h e growth a x i s . T h i s band s t r u c t u r e i s shown i n F i g . 8 ( b ) , t h a t o f b u l k HgTe and CdTe b e i n g r e p r e s e n t e d i n F i g . 8 ( a ) . These s t u d i e s show, i n p a r t i c u l a r , t h a t t h e c o n s i d e r e d s t r u c t u r e i s a q u a s i - z e r o e n e r g y gap semi- c o n d u c t o r , and p r o v i d e t h e f i r s t d e t e r m i n a t i o n o f t h e o f f s e t A between t h e HgTe and CdTe v a l e n c e bands which i s % 40 meV.

' 8

HgTe

F i g u r e 8 : ( a ) Band s t r u c t u r e o f b u l k HgTe and CdTe.

( b ) Band s t r u c t u r e a l o n g t h e growth a x i s o f t h e HgTe-CdTe s u p e r l a t t i c e i n v e s t i g a t e d i n Ref.4. E l , HH1, and h l a r e t h e ground c o n d u c t i o n , heavy-hole and l i g h t - h o l e s u b b a n d s . LH1 i s a l i g h t - h o l e subband d e r i v e d from t h e rth HgTe s t a t e s . ( A f t e r Ref. 4 ) .

I V - CONCLUSION

T h i s s h o r t r e v i e w i s c e r t a i n l y n o t e x h a u s t i v e , b u t d e s c r i b e s b r i e f l y some o p t i c a l s t u d i e s which have b e e n h e l p f u l t o u n d e r s t a n d t h e e l e c t r o n i c p r o p e r t i e s o f semi- c o n d u c t o r s u p e r l a t t i c e s . By c h o o s i n g t h e h o s t s e m i c o n d u c t o r s and t h e l a y e r t h i c k - n e s s e s , i t i s c l e a r t h a t one can grow a t a i l o r - m a d e m a t e r i a l w i t h a band s t r u c t u r e q u i t e d i f f e r e n t from t h a t o f t h e b a s i s s e m i c o n d u c t o r s . One can c e r t a i n l y c o n s i d e r t h a t t h e s e s y s t e m s , t o g e t h e r w i t h modulation-doped h e t e r o j u n c t i o n s , c o n s t i t u t e a new c l a s s o f two-dimensional s y s t e m s which h a s opened up a v e r y a c t i v e and impor- t a n t f i e l d o f r e s e a r c h i n s e m i c o n d u c t o r p h y s i c s .

ACKNOWLEDGEMENTS

The a u t h o r would l i k e t o t h a n k L.L. Chang and L. E s a k i from I B M and a l s o

J.P. F a u r i e and A . M i l l i o n from LIR-LET1 ( G r e n o b l e ) f o r h e l p f u l d i s c u s s i o n s and t h e s u p p l y o f t h e InAs-GaSb (IBM) and HgTe-CdTe (LIR-LETI) s u p e r l a t t i c e s i n v e s t i g a t e d i n h i s l a b o r a t o r y . He w i s h e s a l s o t o t h a n k h i s c o l l e a g u e s , G. B a s t a r d , Y . G u l d n e r , J . P . V i e r e n and P . V o i s i n who p a r t i c i p a t e d v e r y c l o s e l y t o t h e s t u d i e s performed on t h e s e s t r u c t u r e s a t t h e Groupe de P h y s i q u e d e s S o l i d e s de 1'E.N.S. He w a n t s , a l s o t o acknowledge t h e e f f i c i e n t and k i n d c o l l a b o r a t i o n o f J . C . Maan from t h e MPI i n Grenoble where h i g h - m a g n e t i c f i e l d e x p e r i m e n t s on InAs-GaSb s u p e r l a t t i c e s were done.

(11)

REFERENCES

* ~ a b o r a t o i r e a s s o c i 6 a u C.N. R. S.

1. E s a k i L. and Tsu R., IBM J. Res. Develop. 14 (1970) 61.

2. S e e , f o r example, D i n g l e R., i n F e s t k o p e r p r o b l e m e (Advances i n P h y s i c s ) , e d . by H.J. Q u e i s s e r (Pergamon-Vieweg, B r a u n s c h w e i g , 1 9 7 5 ) , Vo1.15, p . 2 1 . 3. S e e , f o r e x a m p l e , E s a k i L. and Chang L.L., J. Magn. Magn. Mater. fi (1979) 208.

4. G u l d n e r Y . , B a s t a r d G . , V i e r e n J . P . , Voos M . , F a u r i e J . P . and M i l l i o n A., 5th I n t e r n a t i o n a l C o n f e r e n c e o n t h e E l e c t r o n i c P r o p e r t i e s o f Two D i m e n s i o n a l S y s t e m s , O x f o r d , U n i t e d Kingdom, 1983, t o b e p u b l i s h e d .

5 . Handbook o f E l e c t r o n i c M a t e r i a l s , e d . by M. N e u b e r g e r (Plenum, New York, 1 9 7 1 ) , v 0 1 . 2 .

6. Voos M., J . Vac. S c i . Technol. B1 (1983) 404. -

7. V o i s i n P . , B a s t a r d G . , Voos M . , Mendez E . E . , Chang C.A., Chang L.L. and E s a k i L., J. Vac. S c i . T e c h n o l . B_1 (1983) 409.

8. Weisbuch C . , M i l l e r R. C . , D i n g l e R. and G o s s a r d A.C., S o l . S t . Commun. 2 (1981) 219.

9. B a s t a r d G . , i n P r o c e e d i n g s o f t h e NATO S c h o o l on MBE and H e t e r o s t r u c t u r e s , E r i c e , I t a l y , 1983 ( M a r t i n u s N i j h o f f P u b l i s h e r s , The N e t h e r l a n d s ) , t o b e p u b l i s h e d .

10. s e e , f o r e x a m p l e , F r i j l i n k P.M. a n d Maluenda J . , J a p . J. Appl. Phys. 2 (1982) L 574.

1 1 . S e e , f o r e x a m p l e , Weisbuch C., T h e s i s , U n i v e r s i t e P a r i s V I I ( 1 9 7 7 ) .

12. S a i - H a l a s z G.A., Chang L . L . , W e l t e r J . M . , Chang C.A. a n d E s a k i L . , S o l . S t . Commun. 7 (1978) 935.

13. S a i - H a l a s z G.A., E s a k i L. and H a r r i s o n W . , Phys. Rev. B18 (1978) 2812.

14. V o i s i n P . , B a s t a r d G., G o n ~ a l v S s d a S i l v a C.E.T., Voos M . , Chang L.L. and E s a k i L . , S o l . S t . Commun. 39 (1981) 79.

15. C a l c u l a t i o n s done i n t h e e n v e l o p e f u n c t i o n a p p r o x i m a t i o n g i v e i n f a c t q u i t e s i m i l a r r e s u l t s . S e e B a s t a r d G . , R e f . 9 .

16. V o i s i n P . , B a s t a r d G. and Voos M . , P h y s . Rev., t o b e p u b l i s h e d . 17. B a s t a r d G . , P h y s . Rev. B g (1981) 4714.

18. S e e , f o r e x a m p l e , P e t r o f f P.M., G o s s a r d A . C . , Wiegmann W. and S a v a g e A., J. C r y s t a l Growth 44 (1978) 5 .

19. F o r a d e t a i l e d d i s c u s s i o n , s e e V o i s i n P . , T h e s i s , U n i v e r s i t y o f P a r i s - S u d , O r s a y ( 1 9 8 3 ) .

20. G u l d n e r Y . , V i e r e n J . P . , V o i s i n P . , Voos M . , Chang L.L. a n d E s a k i L . , P h y s . Rev.

L e t t . 45 (1980) 1719.

21. Maan Jx., G u l d n e r Y . , V i e r e n J . P . , V o i s i n P. , Voos M., Chang L.L. a n d saki L . , S o l . S t . Commun. 2 (1981) 689.

22. Voos M . , S u r f a c e S c i . 113 (1982) 9 4 .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to