• Aucun résultat trouvé

ORIGIN OF THE LOW FREQUENCY INTERNAL FRICTION BACKGROUND IN PURE METALS AND DILUTE SOLID SOLUTIONS

N/A
N/A
Protected

Academic year: 2021

Partager "ORIGIN OF THE LOW FREQUENCY INTERNAL FRICTION BACKGROUND IN PURE METALS AND DILUTE SOLID SOLUTIONS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00225438

https://hal.archives-ouvertes.fr/jpa-00225438

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ORIGIN OF THE LOW FREQUENCY INTERNAL FRICTION BACKGROUND IN PURE METALS AND

DILUTE SOLID SOLUTIONS

J. Baur, M. Bujard, W. Benoit

To cite this version:

J. Baur, M. Bujard, W. Benoit. ORIGIN OF THE LOW FREQUENCY INTERNAL FRICTION BACKGROUND IN PURE METALS AND DILUTE SOLID SOLUTIONS. Journal de Physique Colloques, 1985, 46 (C10), pp.C10-239-C10-242. �10.1051/jphyscol:19851054�. �jpa-00225438�

(2)

ORIGIN OF THE LOW FREQUENCY INTERNAL FRICTION BACKGROUND IN PURE METALS AND DILUTE SOLID SOLUTIONS

J . BAUR, M. BUJARD AND W . BENOIT

Institut de GBnie Atomique, Institut Federal Suisse.de

~ ~ ~ h n o l o g i e , PJG3-Ecublens, CH-1015 Lausanne, Switzerland

R6sum6 - Nous B t u d i o n s l e fond de F.I. basse frCquence d t 6 c h a n t i l l o n s d l o r contenant de f a i b l e s c o n c e n t r a t i o n s de Pt. Les mesures systBmatiques en f o n c t i o n de l a frgquence e t de l ' a m p l i t u d e montrent que l e fond de F.I. dG aux d i s l o c a t i o n s ne p e u t B t r e e x p l i q u 6 p a r des processus de r e l a x a t i o n . A b s t r a c t - We s t u d y t h e I.F. background a t low frequency o f g o l d samples c o n t a i n i n g low c o n c e n t r a t i o n s o f Pt. Systematic measurements o f I.F. as a f u n c t i o n o f frequency and s t r a i n a m p l i t u d e show t h a t t h e I.F. background due t o d i s l o c a t i o n s cannot be e x p l a i n e d by r e l a x a t i o n processes.

I. I n t r o d u c t i o n

D i s l o c a t i o n motion c o n t r i b u t e s s i g n i f i c a n t l y t o t h e i n t e r n a l f r i c t i o n (I.F.) o f metals. T h i s c o n t r i b u t i o n i s commonly i n t e r p r e t e d by t h e Granato-Lucke ,model [I ]

( h e n c e f o r t h : GL model), which c o n s i d e r s t h e d i s l o c a t i o n as a v i s c o u s l y damped s t r i n g p i n n e d a t i t s e x t r e m i t i e s . The GL model was s u c e s s f u l l y v e r i f i e d i n t h e MHz frequency range by A l e r s and Thompson, who observed t h e p r e d i c t e d behavior o f t h e u l t r a s o n i c a t t e n u a t i o n as a f u n c t i o n o f frequency [z]. Moreover, t h e magnitude o f t h e v i s c o u s f r i c t i o n c o n s t a n t t h a t t h e y determined from t h e i r experiments i s i n good agreement w i t h t h e t h e o r e t i c a l v a l u e c a l c u l a t e d by L e i b f r i e d i n a model o f phonon s c a t t e r i n g by d i s l o c a t i o n s [3]. Furthermore, i n t h e low frequency range, t h e p r e d i c t e d e v o l u t i o n o f t h e I.F. and t h e modulus d e f e c t o f a sample under i r r a - d i a t i o n has been l a r g e l y observed [4, 51. F o l l o w i n g these b e a u t i f u l v e r i f i c a t i o n s , t h e GL model has been e x t e n s i v e l y used f o r i n t e r p r e t a t i o n o f e x p e r i m e n t a l obser- v a t i o n s i n a l l frequency ranges.

However, some d i s c r e p a n c i e s appeared i n t h e low frequency range between t h e GL p r e d i c t i o n s and t h e e x p e r i m e n t a l observations. As p o i n t e d o u t by A l e r s and Thompson, t h e v a l u e o f t h e v i s c o u s damping c o n s t a n t c a l c u l a t e d from MHz experiments l e a d s t o very low values of I.F. a t low f r e q u e n c i e s [z]. Thus, t h e observed magnitude o f I.F. a t low frequency cannot be e x p l a i n e d by t h e GL model. F u r t h e r - more, t h i s model p r e d i c t s a monotonic decrease o f I.F. as a f u n c t i o n o f p o i n t d e f e c t c o n c e n t r a t i o n . Simpson e t al., however, observed an i n i t i a l i n c r e a s e o f t h e I.F. o f Cu d u r i n g an i r r a d i a t i o n experiment [6]. T h i s i n i t i a l i n c r e a s e o f I.F. as a f u n c t i o n o f p o i n t d e f e c t c o n c e n t r a t i o n , - i.e. i r r a d i a t i o n time, i s known as t h e peaking e f f e c t , and was l a t e r observed i n Mg, Ag and A1 [7]. The peaking e f f e c t was n o t o n l y observed d u r i n g i r r a d i a t i o n experiments, b u t a l s o by quenching, as a f u n c t i o n o f vacancy c o n c e n t r a t i o n , i n Cu [ 8 ] and r e c e n t l y i n CuZnAl [9]. I t was a l s o measured as a f u n c t i o n o f i m p u r i t y c o n c e n t r a t i o n i n g o l d based d i l u t e s o l i d s o l u t i o n s [ l o ] . Thus, t h e peaking e f f e c t seems t o be a g e n e r a l f e a t u r e o f t h e i n t e r a c t i o n s between d i s l o c a t i o n s and p o i n t d e f e c t s . However, i t cannot be des- c r i b e d by t h e GL model.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19851054

(3)

C10-240 JOURNAL DE PHYSIQUE

To overcome t h e s e d i f f i c u l t i e s , Simpson and S o s i n i n t r o d u c e i n t h e GL model an a d d i t i o n a l v i s c o u s f r i c t i o n term due t o p o i n t d e f e c t dragging by d i s l o c a t i o n s [ll]. The h i g h I.F. v a l u e observed a t low frequency as w e l l as t h e peaking e f f e c t c o u l d , then, be explained. However, even m o d i f i e d , t h e GL model d e s c r i b e s a r e l a x a t i o n , and thus, a frequency dependent I.F. Therefore, i t cannot e x p l a i n t h e f a c t t h a t , a t low frequency, t h e observed I.F. i s more o r l e s s frequency inde- pendent [I 21.

I n t h i s work, we want t o show t h a t a v i s c o u s l y damped s t r i n g equation, on which t h e GL model i s based, i s n o t s u i t a b l e t o d e s c r i b e t h e I.F. background o f metals.

To t h i s end, we s t u d y t h e I.F. o f d i l y t e s o l i d o l u t i o n s o f P t i n Au as a f u n c t i o n B

o f s t r a i n a m p l i t u d e i n t h e range 10- t o 2.10- , frequency i n t h e range 0.3 t o 3 kHz, and i m p u r i t y c o n c e n t r a t i o n . Two d i f f e r e n t m i c r o s t r u c t u r a l s t a t e s , l e a d i n g t o a low and a h i g h I.F. background, a r e measured.

11. E x p e r i m e n t a l R e s u l t s

The experiments a r e performed on g o l d samples o f p u r i t y 99.9999 L a l l o y e d w i t h v a r i o u s c o n c e n t r a t i o n s o f P t (0 - 1000 ppm). The sam l e has t h e form o f a c a n t i - l e v e r beam notched i n t h e m i d d l e o f i t s f r e e end ~157. T h i s shape g r e a t l y reduces p a r a s i t i c i n t e r a c t i o n s w i t h t h e clamps [14], and t h u s improves t h e measurement accuracy and r e p r o d u c i b i l i t y . To p e r f o r m measurements a t d i f f e r e n t temperatures, t h e sample i s mounted i n a c l o s e d c y c l e c r y o g e n i c r e f r i g e r a t o r which a l l o w s t h e measurement o f I.F. i n t h e range 20 K t o 340 K. The I.F. i s measured u s i n g wave form a n a l y s i s o f t h e resonant v i b r a t i o n f r e e decay [15]. T h i s technique e l i m i n a t e s d i s t u r b a n c e s due t o c a s u a l p a r a s i t i c v i b r a t i o n s and g i v e s a weak measurement d i s - p e r s i o n , even a t low s t r a i n amplitudes 1161.

a) Low I.F. background

To i n d u c e a l o w I.F. background, t h e samples a r e deformed 5 ?A by r o l l i n g a t room temperature. They a r e t h e n s t r a i n e d 0.1 L a t 20 K t o u n p i n t h e d i s l o c a t i o n s from p o i n t d e f e c t s . A f t e r a n n e a l i n g a t room temperature, t h e samples show, b e s i d e t h e B o r d o n i peaks, a low I.F. background due t o s h o r t d i s l o c a t i o n segments.

The I.F. i s measured as a f u n c t i o n o f s t r a i n a m p l i t u d e a t 200 K and 290 K and a t f r e q u e n c i e s v a r y i n g between 0.3 and 3 kHz. A t b o t h temperatures and a t a l l t h e measured frequencies, t h e b e h a v i o r o f I.F. as a f u n c t i o n o f s t r a i n a m p l i t u d e i s t h e same. The I.F. depends l i n e a r l y on t h e s t r a i n a m p l i t u d e as shown i n F i g u r e 1 i n t h e case o f p u r e gold. The l i n e a r dependence i s c h a r a c t e r i z e d by two'parameters, t h e i n t e r c e p t and t h e slope, t h a t have d i f f e r e n t b e h a v i o r s as a f u n c t i o n o f frequency and temperature.

The i n t e r c e p t depends l i n e a r l y on temperature and e x h i b i t s a peak as a f u n c t i o n o f frequency, as shown i n F i g u r e 2. T h i s r e l a x a t i o n peak as w e l l as i t s l i n e a r dependence on temperature a r e c o m p l e t e l y e x p l a i n e d by t h e t h e r m o e l a s t i c e f f e c t due

Fig. 1 - I . F . as a function o f s t r a i n amplitude F i g . 2 - I n t e r c e p t o f the curve - I.F. vs s t r a i n i n Au 6N deformed 5 % by r o l l i n g . Temperature: - as a function of frequency a t 200 K and 290 K 200 K . Frequency: 980 Hz. Sample thickness: 0.45 i n Au 6N (same sample .as i n Fig. 1 ) . The s o l i d

mm. l i n e s represent t h e thermoelastic e f f e c t a t both

temperatures.

(4)

beam and t o t h e h i g h P o i s s o n ' s r a t i o o f g o l d , t h e modulus i n v o l v e d i n t h e f l e x u r a l v i b r a t i o n is 1.6 t i m e s g r e a t e r t h a n t h e Young's modulus. The t h e o r e t i c a l c u r v e s a r e drawn on F i g u r e 2. Thus, t h e I.F. background due t o d i s l o c a t i o n s i s z e r o when t h e s t r a i n a m p l i t u d e g o e s t o z e r o .

The s l o p e o f t h e l i n e a r dependence o f I.F. on s t r a i n a m p l i t u d e is d u e t o i n t e r - a c t i o n s between d i s l o c a t i o n s and p o i n t d e f e c t s . I t d e c r e a s e s w i t h i m p u r i t y concen- t r a t i o n , b u t is t e m p e r a t u r e i n d e p e n d e n t i n t h e r a n g e 200 K t o 290 K and f r e q u e n c y i n d e p e n d e n t f o r t h e measured f r e q u e n c i e s .

The f r e q u e n c y i n d e p e n d e n c e o f t h e I.F. due t o d i s l o c a t i o n motion a s w e l l a s i t s s t r i c t dependence on s t r a i n a m p l i t u d e show c l e a r l y t h a t a v i s c o u s l y damped s t r i n g model is n o t s u i t a b l e f o r t h e d e s c r i p t i o n o f t h e low f r e q u e n c y I.F. background.

Fig. 3 - I . F . as a function o f s t r a i n amplitude a t 290 K i n Au + 50 ppm P t

annealed 1 h a t 630 K. The value o f the 9 2 thermoelastic effect (T.E.) i s shown.

b ) High I.F. background

The s a m p l e s a r e r o l l e d 5 % a t room t e m p e r a t u r e and t h e n a n n e a l e d 1 h a t 630 K t o i n d u c e a h i g h I.F. background. S i n c e t h e a n n e a l i n g t e m p e r a t u r e c o r r e s p o n d s t o t h e b e g i n n i n g o f t h e r e c o v e r y s t a g e o f g o l d , l o n g d i s l o c a t i o n s e g m e n t s a r e c r e a t e d i n t h e s a m p l e s .

F i g u r e 3 shows t h e t y p i c a l dependence o f I.F. on s t r a i n a m p l i t u d e a f t e r t h i s t r e a t m e n t . The I.F. is v e r y h i g h f o r s t r a i n a m p l i t u d e s g r e a t e r t h a n 2 * 1 0 - ~ , and i s more o r less a m p l i t u d e i n d e p e n d e n t . B u t , f o r s m a l l e r s t r a i n a m p l i t u d e s , a s h a r p d e c r e a s e o f I.F. is o b s e r v e d . A t t h e l o w e s t measured a m p l i t u d e , t h e I.F. d r o p s t o

F i g . 4 - I.F. as a function of Pt concentration Fig. 5 - I.F. as a function o f frequency a f t e r a f t e r substracting t h e thermoelastlc e f f e c t substracting t h e thermoelastlc effect (T.E.) f o r (T.E.) for %old samples annealed 1 h a t 640 K. Au + 000 ppm P t annealed 1 h a t 650 K. S t r a i n :

S t r a i n 5-10-

.

Temperature: 290 K. 2

5.10-

.

Temperature: 290 K.

(5)

C10-242 JOURNAL DE PHYSIQUE

t h e v a l u e o f t h e t h e r m o e l a s t i c e f f e c t c a l c u l a t e d as i n s e c t i o n a). Thus, even i n t h e case o f h i g h I.F. background, t h e I.F. due t o d i s l o c a t i o n motion i s zero when t h e s t r a i n amplitude i s s m a l l e r t h a n about T h i s behavior i s s i m i l a r t o t h a t o f t h e peaking e f f e c t observed d u r i n g i r r a d i a t i o n , which disappears a t low s t r a i n amplitudes [18]. As i n t h e case o f i r r a d i a t i o n experiments, we observe a peaking e f f e c t as a f u n c t i o n o f t h e i m p u r i t y c o n c e n t r a t i o n . T h i s i s shown i n F i g u r e 4. (Note t h e q u a n t i t a t i v e d i f f e r e n c e between F i g u r e s 3 and 4 due t o a s l i g h t l y d i f f e r e n t t h e r m a l t r e a t m e n t ) .

F i g u r e 5 shows t h e I.F. background due t o d i s l o c a t i o n motion, i.e. - a f t e r sub- s t r a c t i n g t h e t h e r m o e l a s t i c e f f e c t , as a f u n c t i o n o f frequency i n t h e range 300 Hz t o 2500 Hz. Again, as f o r t h e low I.F. background, t h e I.F. due t o d i s l o c a t i o n s i s frequency independent.

111. Conclusion

The I.F. background measured i n d i l u t e s o l i d s o l u t i o n s o f P t i n Au, i s due t o two c o n t r i b u t i o n s : t h e t h e r m o e l a s t i c e f f e c t and t h e i n t e r a c t i o n s between d i s l o - c a t i o n s and p o i n t defects. The l a t t e r c o n t r i b u t i o n i s shown t o be frequency i n - dependent i n b o t h t h e m i c r o s t r u c t u r a l s t a t e s we s t u d i e d . T h i s f e a t u r e shows c l e a r l y t h a t a v i s c o u s f r i c t i o n term cannot be r e s p o n s i b l e o f t h e I.F. background measured a t low frequency. Depending on ,the m i c r o s t r u c t u r a l s t a t e , t h e I.F. decreases w i t h i m p u r i t y c o n c e n t r a t i o n i n t h e case o f s h o r t d i s l o c a t i o n segments, and shows a peaking e f f e c t f o r l o n g d i s l o c a t i o n segments. However, i n b o t h s t a t e s t h e I.F. due t o d i s l o c a t i o n motion i s e s s e n t i a l l y s t r a i n amplitude dependent so t h a t a t v e r y low amplitudes i t vanishes. T h i s main f e a t u r e o f t h e i n t e r a c t i o n s between d i s l o c a t i o n s and p o i n t d e f e c t s suggests t h a t a s l i d i n g f r i c t i o n term s h o u l d be i n c l u d e d i n t h e d e s c r i p t i o n o f these i n t e r a c t i o n s , i n s t e a d o f t h e c l a s s i c a l viscous term. T h i s s l i d i n g f r i c t i o n c o u l d be a t t r i b u t e d t o l a t t i c e f r i c t i o n [19], b u t more p r o b a b l y t o d i s l o c a t i o n m o t i o n i n an a r r a y o f weak obstacles. Our i n t e r p r e t a t i o n i s t h a t t h e I.F. background, as w e l l as t h e peaking e f f e c t , can be e x p l a i n e d b y t h e h y s t e r e t i c motion o f d i s l o c a t i o n s through an a r r a y o f weak b u t l o n g range i n t e r a c t i n g obstacles.

References

A.V. Granato and K. Lucke, J. Appl. Phys. 27, 583 and 789 (1956) G.A. A l e r s and 0.0. Thompson, J. Appl. Phys. 32, .283 (1961)

G. L e i b f r i e d , i n Theory o f D i s l o c a t i o n s , e d i t e d by J.P. H i r t h and 3. L o t h e (Mc

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to