• Aucun résultat trouvé

Application of optimal transport to data assimilation

N/A
N/A
Protected

Academic year: 2021

Partager "Application of optimal transport to data assimilation"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01097190

https://hal.inria.fr/hal-01097190

Submitted on 19 Dec 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Application of optimal transport to data assimilation

Nelson Feyeux, Maëlle Nodet, Arthur Vidard

To cite this version:

Nelson Feyeux, Maëlle Nodet, Arthur Vidard. Application of optimal transport to data assimilation.

Special semester on new trends in calculus of variation, Dec 2014, Linz, Austria. �hal-01097190�

(2)

Application of optimal transportation to data assimilation

Nelson FEYEUX, Maëlle NODET, Arthur VIDARD

Example of oceanographic data assimilation

Given a state x whose evolution is simulated through a model M, data assimilation is an inverse problem aiming at reconstructing an initial condition x

0

of x given only several partial observations ( y

io

)

i

of x . For example, the state x ( t, x, y, z ) of the ocean gathers :

Temperature T ( t, x, y, z )

Velocities u ( t, x, y, z )

Salinity S ( t, x, y, z )

Water height h ( t, x, y )

Ocean surface temperature at t

0

− 4 h

Ocean surface temperature at t

0

− 2 h

The question is then: What is the complete state of the ocean at t = 0 , x

0

( x, y, z ) ? In variational data assimilation this is done by minimizing a cost function J defined as

J ( x

0

) = 1 2

X

i

d

H

i

( x

0

) , y

oi

2

| {z }

≈ d

x

0

, x

t0

2

+ γ

2 d

x

0

, x

b0

2

, (1)

It is common for the distance d to be a weighted L

2

distance. Yet, with this L

2

distance, variational data assimilation cannot well cope with displacement errors. By choosing distances d that take into account the datas more in its entirety, we hope get a more realistic variational data assimilation. That is why we are interested in the Wasserstein distance d = W

2

.

Advantages of optimal transportation in case of displacement error

Knowing two densities ρ

0

( x ) and ρ

1

( x ), the Wasserstein distance W

2

( ρ

0

, ρ

1

) is defined as

W

22

( ρ

0

, ρ

1

) := inf

( ρ ( t, x ) , v ( t, x ))

t

ρ + div( ρv ) = 0

ρ (0 , x ) = ρ

0

( x ) , ρ (1 , x ) = ρ

1

( x )

Z Z

[0,1]×Ω

ρ ( t, x )| v ( t, x )|

2

d t d x.

Example of interpolation using Wasserstein and L

2

distances. (Interpolation in the sense of minimizing d ( ρ, ρ

0

)

2

+ d ( ρ, ρ

1

)

2

).

ρ

0

ρ

1

W

2

interpolation L

2

interpolation

For Wasserstein distance to be defined, one needs ρ

0

≥ 0, ρ

1

≥ 0 and R

ρ

0

= R

ρ

1

. Gradient descent with the Wasserstein distance

Assuming x

0

, H

i

( x

0

) and y

io

are probability measures, the cost function J

W

is J

W

( x

0

) = 1

2

X

i

W

22

H

i

( x

0

) , y

oi

The gradient descent algorithm for minimizing J

W

consists in using the following iterative algorithm

x

n+10

= x

n0

− α gradJ

W

( x

n0

)

so that J

W

( x

n+10

) < J

W

( x

n0

). To get the gradient, the differential must be com- puted and also an inner product . Indeed, gradJ ( x

0

) is such that for all η , ( η, gradJ ( x

0

)) = D J [ x

0

] .η .

The differential:

Let’s differentiate J

W

by computing J

W

( x

0

+ ǫη ) :

H

i

( x

0

+ ǫη ) = H

i

( x

0

) + ǫ L [ t

i

, x

0

] .η with L the tangent model.

• 1

2

W

22

( y + ǫµ, y

) = ǫ h µ, ψ i

2

with ψ the Kantorovich potential of optimal trans- portation between y and y

.

Then,

DJ

W

[ x

0

] .η = X

i

D

L [ t

i

, x

0

] .η , ψ

i

E

2

with ψ

i

the Kantorovich potential of the optimal transportation between H

i

( x

0

) and y

io

.

The inner product:

For convergence reason, instead of using the L

2

inner product, we use the W

2

inner product defined in x

0

by

( η, η

) = Z

x

0

∇Φ · ∇Φ

,

with Φ, Φ

s.t. η = −div( x

0

∇Φ) , η

= −div( x

0

∇Φ

)

Finally, the gradient of J

W

w.r.t. W

2

inner product is, ( L

is the adjoint model ), gradJ

W

( x

0

) = −div x

0

X

i

L

[ t

i

, x

0

] .ψ

i

!!

.

Assimilation of non-probability measure variables

In the case where H

i

( x

0

) and y

0

are probability measures, but not x

0

, it is not possible to write the background term J

b

with W

2

. For example, for the Shallow-water system

( ∂

t

h + div( hu ) = 0

t

u + ( u · ∇) u + g ∇ h = µ ∆ u (2)

where ( h

0

, u

0

) are to be assimilated using observations of h only. The cost function writes J ( h

0

, u

0

) = 1

2

X

i

W

22

H

i

( h

0

, u

0

) , h

oi

+ γ J

b

( h

0

, u

0

) .

As it is impossible to write W

22

( u

0

, u

b0

), we rather use the following background term J

b

( h

0

, u

0

) = inf

t

ρ + div( ρv ) = 0

t

u + div( ρw ) = 0

ρ (0 , x ) = h

0

, ρ (1 , x ) = h

b0

u (0 , x ) = u

0

, u (1 , x ) = u

b0

Z Z

[0,1]×Ω

(| v |

2

+ | w |

2

) ρ d t d x, (3)

Using this, the interpolation of two shifted ( h

0

, u

0

) and ( h

1

, u

1

) is in-between:

t = 0

t =

12

t = 1

The inner product to be chosen for computing the gradient will be η

v

,

η

v

= Z

h

0

∇Φ · ∇Φ

+ Z

h

0

∇Ψ · ∇Ψ

with Φ, Φ

, Ψ, Ψ

such that

η = −div( h

0

∇Φ) , η

= −div( h

0

∇Φ

) v = −div( h

0

∇Ψ) , v

= −div( h

0

∇Ψ

) .

Difficulties of using the Wasserstein distance

The Wasserstein distance is only defined for probability measures.

When ρ

0

, ρ

1

≈ 1, the W

2

interpolation looks like L

2

interpolation...

When J ( h

n0

) → min

h0

J ( h

0

), one only has h

n0

⇀ arg min

h0

J ( h

0

).

The computing time is larger for W

2

than for L

2

[Peyré, Papadakis, Oudet, 2013].

Results and propects

With some tests on the assimilation of (2), we compare the error k h

0

− h

t0

k

22

by using d = L

2

and d = W

2

in the cost function. The behaviors seem correct.

The background term (3) is still to be implemented.

This work has been supported by the region Rhône-Alpes.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to