• Aucun résultat trouvé

Dynamique d'un plasma non collisionnel interagissant avec une impulsion laser ultra-intense

N/A
N/A
Protected

Academic year: 2021

Partager "Dynamique d'un plasma non collisionnel interagissant avec une impulsion laser ultra-intense"

Copied!
216
0
0

Texte intégral

(1)

HAL Id: tel-01127949

https://tel.archives-ouvertes.fr/tel-01127949

Submitted on 9 Mar 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Dynamique d’un plasma non collisionnel interagissant

avec une impulsion laser ultra-intense

Rémi Capdessus

To cite this version:

Rémi Capdessus. Dynamique d’un plasma non collisionnel interagissant avec une impulsion laser ultra-intense. Autre [cond-mat.other]. Université Sciences et Technologies - Bordeaux I, 2013. Français. �NNT : 2013BOR15268�. �tel-01127949�

(2)

(3)
(4)



(5)



(6)

22 2 22 2

(7)
(8)

(9)

χe∼1

(10)

t t t t a0 ne Ex

(11)
(12)

℄ ℄ 1025 2

(13)

℄ ℄ 22 2

(14)

 ℄ ℄ ILaser>1024 2

(15)

×

(16)

1023 2 22 2 ℄ ℄

(17)

℄ F =τr ˙ F ℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄

(18)

℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄

(19)



(20)

1022 2 10 22 2 t

(21)
(22)

(23)

χe∼ 1

(24)

(ct,x) ˙ xµ γ e(c,v) aµ γ4 ev.˙cv,γe4v.˙c2v.v+γe2dvdt Pray≡(FL.v,FL) pµ emec;pe) jµ (cρ,ρv)=(A0,A) A µ Fµν=∂Aν ∂xµ− ∂Aµ ∂xν Fµν ∂Fµν ∂xl +∂F νl ∂xµ +F lµ ∂xν=0

(25)

Fµν E B Fµν=    

0 −Ex −Ey −Ez

Ex 0 −Bz By Ey Bz 0 −Bx Ez −By Bx 0     ∂Fµl ∂xµ =− 10jl, ǫ0 ǫ0≃8.85×10 −12 ∇×E=−∂B dt, ∇.B=0, ∇.E=ρ/ǫ0, ∇×B=µ0j+c12∂Edt, m F µν maµ=−e cFµνx˙ν ≡ ≃1.6×10 −19 m0≡ 9.11×10 −31 me≡ m0 λL≡ ωL≡

(26)

γe≡(1−ve2/c2)−1/2 FLe≡ (E+v×B) ne ni ωpe≡ mneeeǫ20 1/2 τr≡6πǫ0em2ec3 τr≃6.2×10 −24s ǫ0=8.85×10−12 µ0=1/(ǫ0c2) ℄ A0(r,t)= 1 4πǫ0 ρ(r′,t′ r) r−r′d3r′ A(r,t)=µ0 J(r′,t′r) r−r′d3r′ tr=t+1 cr−r′

(27)

tr t r−r′/c A(r,t)E B E=−∂A∂t−∇r.A0,B=∇r×A, ρ(r,t)=−eδ(r) J(r,t)= −eδ(r)ve E B E(r,t)=−4πǫe 0 (n−βe) γ2 er2κ3 t=tr −c4πǫe 0 n κ3r× (n−βe)× ˙βe t=tr, B(r,t)=n×E, κ=(1−n.βe),n= r−r ′ r−r′ = RR . E r−r ′2 r−r′ A = E×B µ0 R Rn n Θ r v˙e =E×Bµ 0 = 1 cµ0   −e c4πǫ0 n× n× ˙βe R   2 t=tr n. dPray dΩ = 38πτrmev˙2e 2Θ.

(28)

Θ Ω Pray=τrmev˙e2. Pray=meτraµaµ. ve 0 v µ=(γ ec;γev)=(c;0) γe=1 Pray=6πǫ1 0c3m2ee 4 Fi0F i0−FikFik= τmr ee 2E′2,k∈[1,3], E′ Pray E′= γ e(E+v×B), P=τr meγ 2 ee2(E+v×B)2−(βe.E)βe (E,B) ω mec 2 E=

(29)

0 B PT= τmr eγ 2 e(eE)2. σT= 8π 3( e 2 4πǫ0mec2) 2=8π 3r02 r0 PT=cǫ0σTγe2E2. (v×B) 2=sin2(ψ)v2B2 P = τr mee 2v2 eB2γe2 2(ψ), UB= B2 2µ0 ψ=(v;B) ψ [0,2π] P =23σTUBcγe2β2. (ve → c) Pv→c=23τrc 2 mee 2B2γ2 e. dε dt=−P ǫ

(30)

ψ=π/2 dγe dt=− τre 2B2v2 m2 ec2(1−v 2 e c2) dε dt=−τrω 2 B mec2 ε 2−(m ec2)2 ωB=eBm e. mec 2 dε dt=−τrω 2 B mec2ǫ 2 dε ε2=−τr ω2 B mec2dt

(31)

ε(t)= 1 (1 mec2 t t0+α) +mec2 t−1 0 =ωB2τr α t=0 t→ ∞ ε→ mec2 εc=(γe−1)mec 2 α t=0 ε(t=0)=γemec 2| t=0 ε(t) α= 1 (γe−1)mec2|t=0 = 1 εc|t=0 ε(t)= (γ0−1) (γ0−1)(tt0)+1+1 mec 2 εray εray(t)=ε(t=0)−ε(t). ε(t=0) = γ0mec2 ε(t) εray(t)= (γ0−1) 2(t/t 0) (γ0−1)(t/t0)+1 mec 2. t = t0 (γ0−1) t1/2

(32)

0 1 2 3 4 5 6 7 8 9 10 temps (ns) 0 10 20 30 40 50 En er gi e r ay on ne e ( Me V)

Energie cinetique (sans pertes) Energie rayonnee

Energie cinetique (avec pertes)

Energie = f(t)

1 electron. gamma=100 et B=100MG

t1/2 E= E0 √ 2cos(ωLt−

kx)ey+E√02sin(ωLt−kx)ez

ve= veex a4 0ωLτr∼1 dγe dt=−ω2Eτrγe2 ωE= eE2m0 ec=a 0ωL 2 γe(t)=1+γγ0 0ωE2tτr

(33)

εray(t)=(γ0−1) τ1+τrγ0a0/4ωL rγ0a0/4ωL t = (τrγ0a0/4ωL)−1 γ0= 1+a20 dP′ dΩ′= 3 2meτra′2sin2(Θ′) Θ′a→′;−n θ′ θ µ ≡ cos(θ) =µ′e 1+βeµ′ dµ= dµ′ γ2 e(1+βeµ′)2 dW=

(34)

γe(dW′+cdp′x)=γe(1+βeµ′)dW′ dP dΩ=dP ′ dΩ′( dt′ dt)γe3(1+βeµ′)3. dt=γedt′. dt=γe(1−βeµ)dt′.

(35)

dP dΩ= dP ′ dΩ′(dt ′ dt)γe3(1+βeµ′)3=3meτrγ 4 e(a2⊥+γe2a2//) 8π sin2(Θ′)γ2eγ16 e(1−βeµ) −3 (1+βeµ ′) = 1 γ2 e(1−βeµ) sin 2) =sin2) = sin2(θ) γ2 e(1−βeµ)2 a ′= γ2 e(a⊥+γea//) dP// dΩ = 3meτra2// 8π(1−βeµ)5sin 2(θ) γe≫ 1 (1−β e.n/c) (1−βecos(θ)) θ→ 0 1−βecos(θ)=121−βe2+θ2 +O θ2 θ∼ 1−β 2 e 1/γe2 ℄ θ sin(θ) µ sinθ∼θ µ∼1−θ2 2 βe=1−2γ12 e+O 1 γ2 e γe(1−βeµ)≃(1+(γeeθ)2) dP// dΩ = 12meτra2//(γeθ)2 π(1+(γeθ)2)5γ 8 e dP⊥ dΩ = 3me τra2⊥ 8π(1−βeµ)3(1−sin 2(θ)cos2(φ) γ2 e(1−βeµ)2) φ= ωB γet dP⊥ dΩ = 3me τra2⊥ π(1+(γeθ)2)5γ 6 e(1−2(γeθ)2cos(2φ)+(γeθ)4) cos(2φ)≃ 1 φ= ωB γet≃ ωB γe△t≃ 1 γ3 e ≪ 1 △t

(36)

dP⊥ dΩ =3meτra 2 ⊥(1−(γeθ)2)2 π(1+(γeθ)2)5 γ 6 e. a//=0 a⊥= ωB γev⊥ dP dΩ= 2e 2ω2 Bv⊥2 πc3(1+(γeθ)2)5(1−(γeθ)2)2γe4. a//= −e mecγeE// a⊥ = −e mecγeE⊥ dP dΩ= e2τ r 2πme(1+(γeθ)2)5{8γ 2 eE//2(γeθ)2+2E⊥2[1−(γeθ)2]2}γe4. dP// dΩ = 24meτr2a2//(γeθ)2γe10 (1+(γeθ)2)6 dP⊥ dΩ =6τrmea 2 ⊥{1−(γeθ)2}2 (1+(γeθ))6 γ 8 e dP dΩ= 6τrmeω 2 Bv2⊥{1−(γeθ)2}2 (1+(γeθ)2)6 γ 6 e

(37)

dP dΩ= 4τee2{4γe2E//2(γeθ)2+E⊥2(1−(γeθ)2)2} πme(1+(γeθ)2)6 γ 6 e  1 γe  κ ∆s=κ∆θ≃ 2κ γe. ∆ve = ve∆θ ∆t′=△sv γemv2∆θ △s =−e×v×Bsc in(ψ) κ=∆s ∆θ κ= ωBvγsin(ψ)e ∆t ′= 2 ωBsin(ψ) ωB = eB me ∆t=γe(1−βe)∆t′≈ △t′ 2γe △t=γ2 1 eωBsin(ψ) ψ B ∆s γ2 e  1 γe 1 γe2 (γe→ 1)

(38)

ω= ωB −7 ω B≃104 γe≈10 4 △t 10−10s ℄ dW dΩdω= e 2 16π3ǫ0c| (n×(n−β)× ˙β) 1 (1−n.β)3 t=tr eiωtdt|2. tr dt=dtr(1−n.β). t tr R0≫ n.r(tr) d dtr n×(n×β) 1−n.β = n× (n−β)× ˙β (1−n.β)2 dW dΩdω= e 2ω2 16π3ǫ0c| eiω(tr−r(tr).n/c)n×(n×β)dtr|2. n×(β×n) n,e⊥,e n×(β×n)=e⊥ vtκr −e vtr κ θ. β(tr) n tr e n

(39)

e⊥ (n,e⊥)  ≃2/γ 1 γ2 βe=1− 12 e+O 1γ2e cosθ=1−θ2 2+O 1γ2 e tr−n.r(tr)/c=tr−κc θ vtr κ = 12γ2 e 1+(γeθ) 2 t r+c 2γ2 et3r 3κ2 +O 1γ2 e θ<1 γe ctr<κ/γe d2W dΩdω= d 2W ⊥ dΩdω+ d2W dΩdω, d2W ⊥ dΩdω= e 2ω2 16π3ǫ0c| ctr κ 2γiω2 θγ2tr+c2 γ2t3 r 3κ2 dtr|2, d2W dΩdω= e 2ω2θ2 16π3ǫ0c| iω 2γ2 θγ2tr+c2 γ2t3 r 3κ2 dtr|2

(40)

θ 2 γ=(1+(θγ)2) d2W ⊥ dΩdω= 9e 2ω2 32π3ǫ0c κθ2 γ cγ2 e K 2 2/3(η), d2W dΩdω=9e 2ω2θ2 32π3ǫ0c κθ2 γ cγe K 2 5/3(η) η=ωκθ3cγ3γ3 e γe≫ 1 d dΩ → δ Ω− pp dP⊥ dΩdω=3 √ 3τrωB (α)βmec2 8π δ Ω− pp [F(x)+G(x)], dP dΩdω=3 √ 3τrωBsin(α)βmec2 8π δ Ω− pp [F(x)−G(x)], F(x)=x ∞ x dξK5/3(ξ), G(x)=xK2/3(x), x=ωω cr S(x) 35/2 8πF(x) ∞ −∞S(x)dx=1 Prad=γ 2 eτr me (eBvesin(α)) 2 d2P dωdΩ =Pωcrδ(Ω− p p)S(ωωcr) ωcr γ 3 e ωB

(41)

ωcr= ncrωB ncr= 3 2γe3sinα △t △t  pe ∼2/γe pe/pe S(x) ω S(x) ω≪ ωcr d2P dωdΩ∝(ωωcr) 1/3 ω≫ ωcr d2P dωdΩ∝ ωωcre −ω/ωcr ℄ ωcr=32γe3FLep×p2e e FLe=−e(E+ve×B) FLe a0 pe=γemeve ωcr∼ 32γe2a0ωL a0 γe ωcr≃3×106ωL ωL ωcr

(42)

P =F .ve

(43)

F =meτr da dt, medv µ dτ=− emeF µνv ν+meτrd 2vµ dτ2 e (t/τr) a µ Fµ ext vµ ℄ Fµ =P µνX ν=(ηµν+v µvν c2 )Xν Pµν v µ Xν Xν= avν+b˙vν+z¨vν PµνXν=(ηµν+vµc2vν)(avν+b˙vν+z¨vν) PµνX ν= b˙vµ+z¨vµ v µv˙ µ=0 Pµνvν=(ηµν+vµcv2ν)vν=0 b= −δm me=m+δm Pµνv¨ ν=(¨vµ+vµc2vνv¨ν) vνv¨ν=dvνv˙ν−˙vαv˙α=−˙vαv˙α z=τr mev˙µe=Fextµ +Fµ Fµ =meτr[¨v µ− ˙vαv˙α c2 vµ]

(44)

Fµ =F µ sch+Frayµ F µ sch=meτrv¨µ Frayµ =−meτrv˙ αv˙ α c2 vµ Fµ ℄ τr re− 3 2 τr λc h mec λc≃ 2.43×10−12 ℄ ℄

(45)

λc Es=mec 2 λce,  χe Es fµ L γe(FLe.βe,FLe) χe χe=(−f µ LefLe,µ)1/2 eEs χe=γeF2Le−(βe.FLe)2 1/2/eEs γe χe γe Es≃1.3×10 18 Icr≃ 2.3×10 29 2 χe χe=γe 1−βe a0ωL/mec2 χe=γeeB0cβe2sin(α)/Es B0 χe γe∼a0 a0

(46)

≃3.3×10 23 2 χe mec 2/ecτ r≃ mec2/ere re ℄ Es λc≫ re τr dvµ dτ =m−eeF µνv ν, d2vµ dτ =mee ∂Fµν ∂xµvνvle+me22ecFµνFνlvl medvµ=−eFµνvν−eτr∂F∂xµνlvkvel−τre 2 meF µlF νlvν+emer Fνlvl(Fνmvm)vµ γe≫ γ2 e≫ ℄ dpe dt=FLe+Fsf,dxcdte=βe Fsf=−eτmr e[FLe×B−eE(βe.E)]− τ r mecγ 2 e F2Le−(FLe.βe)2 βe.

(47)

ve |ve|ex γ2 e Fsf ℄ ℄ Fsf,x=− e 2 mecτrγ 2 e (Ey−cBz)2+(Ez+cBy)2 ℄ χe χe≪ ǫ Ees=12e 2 4πǫ0 ∞ ǫ dr r2

(48)

x˙ µ pµ em= ˙x µ c2Ees= e 2 8πǫ0 ˙ xµ c2 ∞ ǫ dr r2 pµ0=m0x˙µ me=m0+ e 2 8πǫ0ǫc2 x˙ µ ℄ pµ=pµ em+m0x˙µ=mex˙µ−meτrx¨µ, ˙ xµ=vµ+(˙x)µ rad (˙x)µrad≈τrx¨µ ˙ pµ=−e cFµνx˙ν−(˙p)µrad,˙xµ= p µ me+(˙x) µ rad. T µν ˙ pµ+(˙p)µ rad+d Tµ0dV=0. (˙p)µrad d dτ Tµ0dV= ecFµνx˙ν

(49)

(˙x)µ rad e cFµν(˙x)νrad ˙ x2xµx˙ µ=c2 p2=pµp µ=m2ec2 (˙x) µ rad (˙p)µrad ℄ (˙x)µ

radx˙µ=0, me(˙x)µradx¨µ=−(˙p)µradx˙µ

(˙x)µrad (˙p)µrad p2=pµp µ=m2e c2+τr2x¨2 ≤m2ec2 E2/c2=pµp µ+p2=m2ec2+p2, τ 2 r mec 2 gi ℄ d2u ds2

(50)

−epµF µν(˙x)νrad=pµ(˙pµ)rad (˙pµ) rad=mPradec2pµ, (˙xµ)

rad=mτrePPrad, erad fLµ

Prad Prad Prad,e τrfL2/me fµ L=−eF µνp ν me Prad Prad,e ˙ pµ=−eFµνx˙ ν−τrf 2 L m2 ec2p µ xµ=pµ me+ τr mef µ L p µ v 2= c2− ˙x2 rad= c2 v 2 c2 x˙ ˙ x2xµx˙ µ=c2 1+ mτr ec 2 fµ LfL,µ

(51)

χe ˙ x2≃c2 1−1.05×χ2 e v2≃ c2 χe∼ Prad F µν vµ x˙µ F˜µν eτr meF µν mevµ=pµ+ ˜Fµνpν ˜ Fµν pµ=m evµ+O(0) (τreE/mec) pµ=m evµ− ˜Fµνvν+O(˜Fµν) ℄ p=me n 0 (−1)n F˜nx F.˙˜x ˜F ikx˙ k ˜ F2.v ˜F.˜F.˙x ˜FikF˜ klx˙l

(52)

p µ m ex˙µ τr mecFLe ≪ 1 mec 2/cτ r FLe ≪ eEs pµ=m e n 0 (−1)n F˜n.˙x=1+τmrex˙µ mec2(ve.FLe) dxe dt=1+τrve mec2(ve.FLe) +mτr e Fµνv ν 1+τr mec2(ve.FLe) ve 1+ τr mec2(ve.FLe) =ve−mτr ec2(ve.FLe) ve 1+τr mec2(ve.FLe) , −eFµνv ν FLe dxe dt =c(βe+δβe) δβe=mτrec FLe−(FLe.βe)βe 1+mec2τr (ve.FLe)= (τr/c)γewe 1+mec2τr (ve.FLe) cδβe t cβ/¨xe ¨ xe ¨ xe=γ1 eme p˙e− ˙ pe.pe γ2 em2ec2pe +τrγew˙e+τrwe ˙ pe.pe γe

(53)

we≡dvdte[0]FLe−(FγeLeme.βe)βe (τreE /mec) cδβe ∼4×1025 2 δβe we δβe dpe dt=FLe−eδve×B−γe2(δβe.FLe)βe Frad ,dxe dt=c(βe+δβe) ve δve ve τr Ee dxe dt

(54)

dEe dt =−eE.(ve+δve)−γe2(δve.FLe) δve δ(x)δve δ(x) neδve d2I dΩdω=δ Ω− pe pe γ 2 e(δve.FLe)S ωω cr , d2I dΩdωdΩdω=γe2(δve.FLe)  (χe≪ 1) ℄

(55)

p x ˙ pµ=−eFµνx˙ ν− τrf 2 L m2 ec2p µ, ˙ xµ= pµ me+ τ r mef µ L φ φ=nµx µ=nx=ωt−kx nµ= ω c,k =k(1,n) k=kn n=ex ∂µAµ(φ) Aµ(φ)= 0,0,a 1meecψ1(φ),a2meecψ2(φ) a0≃0.85 I[1018W/cm2]λ2L[µm2] ψ1(φ) ψ2(φ) ψ1(φ)=sin(φ),ψ2(φ)=cos(φ) a1=a2=a0/√2 a1=a0 a2=0 ˙ pµ mex¨µ−τrf˙Lµ=−eFµνx˙ν−τrf 2 L m2 ec2mep µ nµ n µf L,µ =0 n µp µ≡ menµvµ= menµx˙µ τr/mefLµ n µf L,µ=0 xµ x˙µ x¨µ

(56)

nµ x µ φ d2φ dτ2− τrfL2 m2 ec2 dφ dτ=0 φ τ dτ dφ= dφ dτ −1 =(nµv(φ)1 µ) f 2 L d2τ dφ2= τre2 m2 ec2 ψ ′ 1(φ) 2 a2 1+ ψ ′ 2(φ) 2 a2 2 ρ≡ µ µ(φ) (φ) φ ρφ=h(φ)ρ0 =dφ ρ0/ω=(nv0)/ω=γ0(1−β.n), γ φ0 h(φ) [φ0;φ] (a0ωLτr) h(φ)=1+ρ0τr φ φ0 dϕ ψ1′(ϕ)2a2 1+ ψ ′ 2(ϕ) 2 a2 2 d dφ=dτddφdτ=dτdh(φ)ρ0

(57)

Fj(φ)≡ φφ0dϕh(ϕ)ψj′(ϕ) vµ(φ)= 1 h(φ) v0µ− c 2 2ρ0 h 2(φ)−1nµ − c h(φ)[F1(φ)ζ1µν+F2(φ)ζ2µν]v0,ν +2h(φ)ρc2 0 a 2 1F12(φ)+a22F22(φ)nµ ζjµν≡nµaν j−nνaµj v µ γ(φ)= 1h(φ)γ0+ 1 0(1−β.n)h 2(φ)−1 + +h(φ)1 1 0(1−β.n)a 2 1F1(φ)2+a22F2(φ)2 + F1(φ)ζ10,ν+F2(φ)ζ20,νp0,ν γβx(φ)= 1h(φ)ǫ±γ0β0+ 1 0(1−βx)h 2(φ)−1 + + 1 h(φ) 1 γ0(1−β.n)(a1F1γy,0βy,0+a2F2γz,0βz,0)+ 1 2γ0(1−βx)a 2 1F12+a22F22 ǫ± ǫ±=cos(k,ve) γβy(φ)=h(φ)1 [γ0βy,0+a1F1(φ)] γβz(φ)= 1h(φ)[γ0βz,0+a2F2(φ)] h(φ) h(φ) γ(φ)px(φ) γ0−px0 h(φ0) h(φ) γ(φ)−pmx(φ) ec =h(φ0) γ0− px0 mec

(58)

py pz h(φ)py(φ)−meca1F1(φ)=h(φ0)py0(φ)−meca1F1(φ0), h(φ)pz(φ)−meca2F2(φ)=h(φ0)pz0(φ)−meca2F2(φ0) ω ′ (φ) ω′= 1 h(φ)ρ0 (φ) ℄ xµ(φ)=xµ 0+ρ10   φ φ0dϕh(ϕ)v µ(ϕ)+τ r[F1(φ)ζ1µν+F2(φ)ζ2µν]vν   x µ(φ) τ=τ(φ0)+1ρ 0 φ φ0 [h(ϕ)γ(φ)+h(φ)ωτr(F1a1γβy+F2a2γβz)]dϕ, x(φ)=x(φ0)+cρ 0 φ φ0 [h(ϕ)γβx(ϕ)+h(ϕ)τrω(F1a1γβy(ϕ)+F2a2γβz(ϕ))]dϕ, y(φ)=y(φ0)+ρc 0 φ φ0 [h(ϕ)γβy(ϕ)−ρ0τrF1a1]dϕ, z(φ)=z(φ0)+ρc 0 φ φ0 [h(ϕ)γβz(ϕ)−ρ0τrF2a2]dϕ.

(59)

℄ Fj E = Ecos(φ)ey φ=ωt−kx β0,y=0 β0,z=0 ρ ω 1−βx 1+βx h(φ) F1 h(φ)=1+ωτra20 2 1−β1+βxx,0,0[(φ−φ0)−(cos(2φ)−cos(2φ0))] F1=cos(φ)h(φ)−cos(φ0)+ωτra 2 0 4 1−βx,0 1+βx,0[cos(φ)−cos(φ0)] −ωτra20

2 1−β1+βxx,0,0 sin(φ)−sin(φ0)+56[cos(φ)cos(2φ)−cos(φ0)cos(2φ0)]

+ωτra20

12

1−βx,0

1+βx,0[sin(φ)sin(2φ)−sin(φ0)sin(2φ0)]

(60)

γβx φ a0=100 γ0βx a0=200 γ0βx a0=300 γ0βx γβx βxd= a2 0 a2 0+4 x a0 γ0βx,0 a0γ0βx,0 a0 γβx,0 a0≥γβx,0 a0 γβx,0 a0 γβx,0

(61)

h(φ) γ0a 2 0 γβx,0≥ 0 h(φ)−1 βxkx≥ 0 βx∼ 1 E γ2 γβx (v.E=0) v.E ψ2(φ) sin(φ) a µ 1 aµ2 cos(φ)2 sin(φ)2 h(φ)F1 F2 h(φ)=1+ 1−β1+βx,0 x,0ωτra 2 0(φ−φ0) F1= (φ)h(φ)− (φ0)+ 1−βx,0 1+βx,0ωτra 2 0[ (φ)− (φ0)] F2= (φ)h(φ)− (φ0)+ 1−β1+βx,0 x,0ωτra 2 0[ (φ)− (φ0)] Ey Ez γ0≫ a0

(62)

γ φ a0 γβx,0 a0 γβx,0 a0 γβx,0 γ0≫ a0 ℄ a0γβx,0 a0>γ

(63)

τr q(χe) χe a0 γe γe a0 ve×B A µ (A0,A) Aµ E=−∂A ∂t−∇r(A0) B=∇r×A p mec=γe(φ)− 1h(φ)γ0−p,0 p⊥= 1h(φ) φ φ0 ∂A ∂ϕh(ϕ)dϕ γe(φ)= 1+ p 2 ⊥ (mec)2+ p2 (mec)2

(64)

γe(φ) γe(φ)= 1+(mpec)2 h(φ) 2 γ0−mecp + γ0−(mec)p h(φ) fp=−mec2∇rΓe Γ= 1+(pe/mec)2+a20 1022 2 δfi fi=fi0+δfi fi δfi≪ fi γeme∼a0me

(65)

≃1/γ2 0ω2Bτr=τB/γ0 TB 2πγ0 ωB γ 2 0ωBτr∼ 1 ℄  e2 4πǫ0cγ0ωBτr e2 4πǫ0c ωcr= (−eve×B)×pe/p2e≃γ02ωB γ0mec 2 γ0>4πǫ0c/e2 ℄ γ0>137 γ0 B =Bez p=p⊥+p p⊥=px+py,p =pz γ0≫ 1 dp2 ⊥ dt=−τB(m2ec)2 p4 ⊥ γe, dp dt=− 1 τB(mec) pp⊥ γe τB≡(τrωB2)−1 ωB≡ eB me γe γ0≫ 1)γe(t) γ(t)=γ0 1+tγτ0 B −1 γ γ ℄

(66)

u=p2 ⊥ du u2=− 2 (mec)2τBγ0 1+ tγ0 τB dt p⊥= p⊥,0 1+2p2⊥,0/(mec)2 γ0τB t1+2τBtγ0 1/2 γ2 e px+ipy dX dt=iωγe(t)B X px py px= ωB γ0t1+ γ0t 2τB p⊥,0 1+2p2⊥,0/(mec)2 γ0τB t1+ tγ0 2τB 1/2 py= ωγBt 0 1+t 2γ 0 2τB p⊥,0 1+2p2⊥,0/(mec)2 γ0τB t1+ tγ0 2τB 1/2 p⊥ p p⊥ p⊥ γ(t)dt p⊥ γ(t)dt γ(t) p⊥ p⊥ γ(t)dt= pγ⊥00 1+γ0t τB 1+2p2⊥,0/(mec)2 γ0τB t1+ tγ0 2τB 1/2dt = τB(mpec)2 ⊥,0 1+ 2p2 ⊥,0/(mec)2 γ0τB t 1+tγ 0 2τB 1/2

(67)

p p =p,0 pm⊥,0ec−mp⊥,0ec 1+2p 2 ⊥,0/(mec)2 γ0τB t1+ tγ0 2τB 1/2 p(t=0)=p,0 p⊥/p⊥,0 ωBt B 9 γ B 105 γ=1000 p⊥ p⊥ p Q=γ2 0τrωB p⊥ p

(68)

p/p,0 ωBt B 9 γ B 105 γ=1000 B B 9 γ B 105 γ=1000

(69)

Tp Tp= 1+4πQ−1τγB 0, τB= ωB2τr−1 τB Q≪ 1 Tp= 2πγ0 ωB γ(t) 1/(1+γ0t/τB) γ(t)/γ0 (1+4πQ) −1/2 ℄ θi θi=   v v2+v2 ⊥   θi ωt B 9 γ B 5 γ ≃ 1fs t≃10fs

(70)

t <1fs θi≪ 1/γ  ≃ 2/γ ℄ t≃4ps ℄ fe

(71)

dN dt=0 N = fe(r,pe,t)drdpe fe dΩ rdpe Ω {r,pe} ∇ ={∇r,∇pe}= ∂ ∂r,∂p∂e U={Ur,Upe}= dR dt={˙r,˙pe}={c(βe+δβe),FLe+F } R dN dt= Ω ∂fe ∂t+∇.(feU)dΩ=0 Ω ∇fe(r,pe,t).UdΩ= S(Ω) fe(n.U)dS n= Ω Ω S(Ω) Ω fe S(Ω) ∇ U ∂fe ∂t+∇r.(fec(βe+δβe))+∂p∂e.(fe(FLe+F ))=0 ℄ ℄ ∇.(fU)=∇f.U+f∇.U,

(72)

∂ ∂tfe+c(βe+δβe). ∂ ∂rfe+(FLe+F ). ∂ ∂pefe+ fe ∂r∂.(cβe+cδβe)+ ∂∂p e.(FLe+F ) =0 ℄ dVp dVp dt= Ω ∇pe.dpdtedΩ ∂ ∂pe.FLe ∂ ∂pe.F ∂ ∂tfe+c(βe+δβe).∂r∂fe+(FLe+F ).∂p∂efe=−fe ∂ ∂r.(cδβe)+∂p∂e.(F ) −fe∂F∂pe fγ    pγ ωΩc εγ R3dpγ ωfγ dpγ cω 2d cω dΩ

(73)

χe≪ 1 ∂fγ ∂t+cΩ·∇rfγ= τrc3 4ω3 R3dpefe(pe)γ 2 eFLe 2 meωcr 1− (ψ) 2β2 e δ Ω−ppe e S ωωcr ψ=(ve;E) Ω ω  χe≪ λcr= 2πc ωcr ∼n −1/3 e

(74)

∼ 10 22× (mi/me)2 2 ∼3×1028 2 Ex χe≪ 1 fe fγ fi (a0ωLτL) ∂fe ∂t+∂r∂.(fec(βe+δβe))+∂p∂ e.(fe(FLe+F ))=0, ∂fγ ∂t+cΩ·∇rfγ= τrc3 4ω3 R3dpefe(pe)γ 2 eFLe 2 meωcr 1− (ψ) 2β2 e δ Ω−ppe e S ωωcr , ∂fi ∂t+∇r·(ficβi)+∂p∂ i·(FLifi)=0. χe∼ τr (χe) χe

(75)

εγ= R3dpγ ωfγ pγ Fγ Fγ= R3 dpγcωfγΩ γ 2 e F F =γ2 eA(α,t)1− 2(ψ)β2 e ve+O(a0ωLτL) A(α,t)=τrωLG(α,t)a20mec2ωL, α=Ex/Ey, G(α,t)= +α2 2 +α2 g(t) S(x)dx=1 ∂ ∂tεγ+∇r.Fγ=Wγ

Wγ=A(α,t)[I1−I2]

   I1= Rγe2fedpe I2= R 2(ψ)(γ2 e−1)fedpe ψ≡(E,ve)

(76)

γe fe=θKne 2(1/θ) −γ e−1 θ θ= Te mec2 K2(1/θ)≃2θ2 θ≫ Wγ Wγ≃6neA(α,t)θ2 ℄ Te= 1+a20−1 mec2 a0≫ 1) a0mec 2 Wγ a0 Iγ Wγ l Iγ= lrad Wγdx=lradWγ l ne

(77)

     w(t,r)=mec2 (γe−1)fe(t,r,pe)dpe : u(t,r)=1 2 ǫ0E2+µ10 B 2 : Wγ : w ∂w ∂t=mec2 R3 (γe−1)∂f∂tedpe ∂w ∂t=−∇r. R3 mec2(γe−1)vefedpe−∇r. R3 mec2(γe−1)δvefedpe − R3 mec2(γe−1)∇pe.(fe(F +FLe))dpe R3 (γe−1)∇pe.(fe(F +FLe))dpe=

(78)

[fe(γe−1)]R3− R3 ∇pe(γe).(FLe+F )fedpe ∇peγe= ve/mec2 ∂w ∂t=−mec2∇r. R3 (γe−1)vefedpe−mec2∇r. R3 (γe−1)δvefedpe + R3 ve.FLefedpe+ R3 ve.F fedpe ∂u ∂t=−∇r. −j∗e.E ≡ 1 µ0(E×B) j∗e=−e R fe(ve+δve)dpe ∂E ∂t+∇r.σ= −δje.E (1) −A(α,t)   R3 γ2 e−1 1− (ψ) 2β2 e fedpe   (2) −mec2∇r. R3 (γe−1)γeδvefedpe (3) +τrωpe2 c2ne .je (4)        E=w+u σ=mec2 (γe−1)vefedpe+ je=−eR3vefedpe δje=−eR3δvefedpe

(79)

σ Wγ εγ ∼γ2 e t t ,1e− t ,1e− =(γ e−1)mec2 γ2 e(δve.FLe)∼ 1 2πγeωLτra20TL

(80)

Wγ nemec 2 r t ∼ Wγ nemec2 −1 = mec2 6A(α,t)θ2 A(α,t)=τrωLG(α,t)a20mec2ωL t ≃ m ec2 6A(α,t)θ2= 1 12πτrωL2G(α,t)a20θ2TL TL pe/(mec)∼ γe θ∼ a0 G(α,t) a0 t ≃ 1 12πτrωLG(α,t)a40TL fe

(81)

1021 1022 1023 1024 Ilaser (W/cm2) 10-6 10-4 10-2 100 102 tcooli ng /TL I ∇p e.F ℄ S=− Ω felnfedΩ fe d dt=∂t∂+c(βe+δβe).∂r∂+(FLe+F ).∂p∂ e d dtlnfe=−∇pe.F −∇r.cβe dS dt= Ω [∇pe.F +∇r.δβe]fedΩ

(82)

∇pe.F =− p2 γem2ec2τrsin 2(ϕ)ω2 B 3−γ22 e ≤0 ∇r.δβe=−eτmr e ∂2 ∂r2(ve.A) ϕ≡(ve;B),ωB=eBm e ∇r.A ∇r.δβe A 0 A E B ∇r.δβe= eτmr e ∂2 ∂r2A0+ ∂ 2 ∂r2(ve.A)+ eτ r mec∇r. E. veve c2 +O(a0ωLτr) δne ∂2 ∂r2A0= −eδne ǫ0 ∇r.δβe=−τrωpe2δnne e+eτ r me ∂2 ∂r2(ve.A)+eτmerc∇r E.veve c2 +O(a0ωLτr) ∇r.δβe ∇pe.F γ2e ∇r.δβe

(83)

(84)

I≥Icr >Icr ℄ ℄ ≃

(85)

A+e−→ A+2e+e+ Z+γ→ Z+e−+e+ ℄ η χ µ Nγ ℄

(86)

γL e+nγL→ e′+γ ωL ≃ λL ω′ L ℄ ℄ ωL γemec 2 εγ εγ=4γ2ωL ε′ γ=4γ∗2ωL γ∗=γ 2/(1+a2 0)

(87)

m∗≃me 1+a 2 0 ℄ I 2.2×1017 2 <γe>≃105 a0<1 ℄ ℄ dσ dΩ=r 2 e 2 ω ′ ω 2 ω ω′+ ω′ ω− 2θ ω′= ω 1+ ω mec2(1− θ) ω ω ′ re=4πǫ0em2ec2 Ω σ≈σT 1−2x+26x 2 5 +... , x≪ 1 σ≈ 83σT1x ln(2x)+12 , x≫ 1 x=mω ec2,σT:

(88)

10-4 10-3 10-2 10-1 100 101 102 103 104 105 106 x= hν/mec2 10-6 10-5 10-4 10-3 10-2 10-1 100 101 σ/ σ T x= ω/mec 2

χ

e

∼ 1

χe χe∼1 k

(89)

dpµ dτ=−ecFµνvν+ImQEDec2 kµ (k.p)mec−pµ IQED=Icl/(1+1.04χe)4/3 Icl=mτr eF 2 Le χe τr ℄ τr→ τrIQEDI cl =τrq(χe) q(χe)=(1+1.04χ1 e)4/3 0 1 2 3 4 5 χe 0 0,2 0,4 0,6 0,8 1 q( χ e ) (χe) χe (χe) χe∼ 

(90)

τr (χe) χe τr ℄ χ 2 e χe∼1 dIQED dωdΩ=Icl 35/2 8πr   ∞ rχe K5/3(r′)dr′+χ2errχeK2/3(rχe)  , IQED=Iclq(χe),r= ωω cr rχe=r/(1−χer) × 22 2 ωc0≃ λL µ

(91)

me→ me 1+a20 ωcr∝m−1e ω≫ ωc0 rχe = 1−χrer χe∼ rχ e≥r= ω ωcr ω≤102ω c0 τr q(χe) τr

(92)

(93)
(94)

(95)

fe(r,pe,t) λD≡(Teǫ0/(nee2))1/2 ≡ n −1/3 e neλD neλ3D≫ 1 1010 neλ3Dω−1pe ∂fα ∂t+ ∂∂r.(feUα)+ ∂∂pα.(feFα)=0 α α→ e α→ Fe FLe F −e(E+ve×B)−ecδβe×B−γe2(δβe.FLe)βe Ue=ve+δve Fi FLi Ze(E+vi×B) Ui=vi ρ= α qα fαdp j= α qα fαvαdp.

(96)

 ℄ ℄ ∆x<3λDe. dpα dt =Fα dx dt=U ℄ pn+1/2 α =pnα+q2αEn∆t

(97)

pn+1/2 α =pn+1/2α +qαvnα×Bn∆t,vn+1/2α =p n+1/2 α mαγα pn+1 α =pn+1/2α +q2αEn∆t ℄ ℄ ℄

(98)

(99)

∆t pn+1 e = ˜pen+1−δpne δpn e=m1 ecγ˜e n+1δβn+1 e ·Fn+1Le )˜pen+1∆t+ ˜δβen+1×Bn+1∆t ˜ pn+1 e δpn e ∇pe.F ≤0, F = −ecδβ e×B−γe2(δβe.FLe)βe xn+1/2 e −xn−1/2e =(βne+δβne) ℄

(100)

℄ ωpe∆t<2 ∆x ω<c/∆x λL

(101)

λmax 2πc/ωmin ≃n−1/3e 2πc ωmin ≪ n −1/3 e nc nc 1.1×1021 −3λ2 [µm] ωmin≫ 2.75×10−3 nne c 1/3 λ−2/3L,[µm] ne nc λL µm 10−2 a0≫ 1 γe≫ 1 ωmin ωs= 2π/∆t ωre= pe×Fp2Le e ∼ a0 γeωL γe ωre∆t γe

(102)

∆t ∆t≤TL a0 ωcr,j nj ∆˜Prad,j j j j=ne0(∆x) α Nmpm ne0 ∆x N α ω2 p, = je 2 jmeǫ0× N (∆x)α= j N (∆x)α =ne e2 meǫ0=ω 2 p, j d2P rad dΩdω≡ j j∆˜Prad,j

(103)

∆˜Prad,j n dΩ dω  2/γe δ Ω− pe pe kL θ φ θ= px (p2 x+p2y+p2z)1/2    φ= py p2 y+p2z py≥ φ=2π− py p2 y+p2z py<0 θ φ θ φ ω ω θ φ 0≤θ≤π 0≤φ≤2π ω θφ

(104)

θ φ θ φ [∆E] ∆E= |E −E | E ∆E I ×10 23 2 a y=az=200 ne nc Max[∆E] ω <1/∆t

(105)

[∆E] l=λL l= λL l λL ne nc ne nc 10−4 [∆E] a0 λL µ ne nc l 100λL lλL ∼ ℄ ℄ ℄ l= λL

(106)

ne nc Temec 2 10−2 8×1022 2 TL t=0 t=100TL ℄ mec mec px,i≤ mic mic t=100TL

(107)

-100 -75 -50 -25 0 25 50 75 100 x/λL -20 0 20 40 60 eE x/ m e cω L t=100TL Ex t=100TL ≤ Ex γe 1−βe,

(108)

χe

(109)
(110)

(111)

℄ ℄ ℄ ℄ ℄ ℄ ℄ 10 22 2 ℄ ℄ 

(112)

εk(t)= t 0 dt′I k(t′) ηk=εk/εL, γ εγ εe εi ζk=dηk/dt/TL, ζγ ζe ζi TL nc=ωL2meǫ0/e2 ω22 pe/γe +k2c2, ωpe= mneeeǫ20 γe N N 1−ne nc nc= meǫ0ω 2 L/e2

(113)

ne>nc γe ≫ 1 γe <γe>≃(1+a 2 0)1/2 ℄ nc nc(1+a 2 0)1/2 ℄ ℄ a0≪ 1 l=1µ ℄ ℄ cβp

(114)

℄ ℄ ℄ 2ωL ℄ βp ω ′ L

(115)

2I′ c I I′ I βp I′=I(1−βp) (1+βp) 2I′/c x ℄ 2n′ ivpmaγpvp=2ρc2γp2βp2, ρ=(mi+Zme)noi noi βp ℄ ℄ I ρc3 1−βp 1+βp=γ 2 pβp2 B =(I/ρc3)1/2 ℄ βp= B1+B ℄ ay∝a0/√ne I=8×1022 2 l=100λL ne0 nc λL

(116)

t=100TL TL ℄ a0∼nne c l λL

(117)

℄ ℄ I l d dt(βLSγLS)=2I(t−XLS /c) ρlc2 R(ω′)1−β1+βLSLS, γLS (1−βLS2)−1/2 dXLS/dt=VLS I ρ=(mini+mene) l R(ω ′)

(118)

ω′ ω (1−β LS)/(1+βLS) βLS=(1+K) 2−1 (1+K)2+1, K=ρ2Flc2=2π Z Ammep a2 0τ ξ, Idt=a2 0τ τ ξ πne nc l λL ¯ ξ=πnne c l λL× 1a0= ξa0 ξ ∼ ¯ ξ≥1 η ℄ η=2βLS/(1+βLS), β=VLS/c VLS (β→ 1) η ω N ω N ω ′ ωr ωr 1−βLS 1+βLSω 2 βLS 1+βLSN ω N ω η ne0=100nc l=0.5λL

(119)

TL ne=100nc l= λL ×1022 2 ×1022 2 a 0=136 ξ≃ a0 ¯ ξ > Ex 10 22 2 3.3×1023 2 ne nc l=100λL λL

(120)

TL λL λL mi/me 0 10 20 30 40

t

/T

L 0 10 20 30 40

t

/T

L 1 10 100 1000 10000 1e+05 1e+06 1e+07 1e+08 1e+09 1e+10 Ra di at ed e ne rg y [ J/ c m²]

with self-force without self-force

a) b) λL 10 21 2 1022 2 ×1022 2 ×1023 2 10 22 2 ∼ 2 5×108 2 3.3×1023 2

(121)

× 1022 2 ×1023 2 t=50TL 8× 1022 2 3.3×1023 2 χe≤ δve

(122)

℄ TL I 1.1×1023 2 ne0=10nc ne0/nc≪ a0 l= λL l= λL (px,py) t=0 τr(γe2/me)FLe 2 ω2 Lτrγe2a20mec2 px,e γ 2 e py pe,x≫ pe,y γ 2 e γ2 e[FLe−(FLe.βe)βe] γ 2 eFLe 2 e,y≫ e,x≫ mec γ 2 e(1−βe2)eELe 2 eELe 2 ℄

(123)

-200 0 200 400 600 γβx -300 -200 -100 0 100 200 300 γβy -400 -200 0 200 400 600 800 -300 -200 -100 0 100 200 300 γβy Electrons a) c) Circulaire Lineaire -0,2 -0,1 0 0,1 0,2 0,3 0,4 γβx -0,05 0 0,05 γβy -0,4 -0,2 0 0,2 0,4 0,6 -0,06 -0,04 -0,02 0 0,02 0,04 0,06 γβy Ions b) d) Circulaire Lineaire (px,py) l=1λL ne nc t=40TL I ×10 23 2 t≃ TL t≃ TL Ex Ex∼ene0l/ǫ0≪ vxBz∼a0Ec=EL, Ec=mecωL/e

(124)

py,i=vx,iBz∝eAy(x−ct)/mi x,i x,i Ex ωL (px,py) l=100λL ne nc t=100TL I ×10 23 2

(125)

 l TL TL ℄ Ex FLe pe,x> 0 pe,x<0 py 2ωL ∼

(126)

≤ 0 Ex Ay pi,y∝Ay

(127)

TL l λL ne=10nc pi,x>0.5 ic

(128)

λL l= λL ne 100nc a0 a0,y a0,z ℄ 

(129)

ne,RR ne,sans RR∼ εe−,sans RR εe−,RR ∼ 1 1− 1 t ωL Ey 2TL r∼ 1 2TL

(130)

βLS ω ′ L ω′ L=ωL 1−β1+βLS LS λ ′ L

(131)

82 83 84 85 86 87 88 89 90 x/λL 0 1 2 3 4 5 6 7 8 9 10 82 83 84 85 86 87 88 89 90 x/λL 0 1 2 3 4 5 6 7 8 9 10 with RR without RR a) b) Ex/Ec ni/ni0×50 ne/ne0×50 γ2 e γe(1−βecos(θ)) θ R ξ a0

(132)

t= TL ℄ R≃ ξ2/(1+ξ2) a0≤(1+ξ2)1/2 ξ2/a2 0 a0≥(1+ξ2)1/2 ∆max

∆max≡ pi,rad.−p pi,norad. i,norad. , pi,rad pi,norad ∆max

(133)

82 83 84 85 x/λL 0 0,05 0,1 0,15 0,2 n i /n 0 -60-40-20 0 20 40 60 80 x/λL -2 0 2 4 6 8 γβ i, x TL l= 1/8λL × 22 2

(134)

1022 1023 1024

I

(W

/cm

2

)

0 50 100 150 200 250 300 350

ma x

(

%)

l/λL= 0.3 = 0.5 = 1 ∆max ne nc ∆max 1022 2 1023 2

(135)

µ (lene)2 l λL ∼ ξ a0 ℄ a0 ∼

(136)

-50 0 50 100 x/λL -2 0 2 4 6 8 -50 0 50 100 x/λL -2 0 2 4 6 8

with radiationlosses without radiationlosses

a) b) -100 -50 0 50 100 x/λL -5 0 5 10 15 -50 0 50 100 x/λL -5 0 5 10 15

with radiationlosses without radiationlosses

c) d) l= λL ne nc I ×10 22 2 I ×10 23 2

(137)

t= TL 10nc λL t= TL l= λL ne nc

(138)

l=100λL ne0 nc 0 20 40 60 80 100

t

/T

L 100 101 102

η

e

(

%)

-8 -6 -4 -2 0 2 4 6

log[

ε

γ

/m

e

c

2

]

10-3 10-2 10-1 100 101 102

ζ

γ

∗m

e

c

2

(

%)

0 20 40 60 80 100

t

/T

L 100 101 102 103

ζ

γ

(

%)

-30-20-10 0 10 20 30

x

L 10-5 10-4 10-3 10-2 10-1 100

ζ

γ

*l

m

(

%)

(a) (b) (c) (d) t=40TL

(139)

χe

(140)

Ey t=80TL

(141)

t=20TL βpc vb≈12a0c menc/mini ℄ t=40TL ω≫ ωcr t=50TL 10 4 102 pe,x 10 4m ec 102mec pe,x TL ∆max ∆max ∆max

(142)

l=100λL × 22 2 ne nc

(143)

I=Ir+Iγ+Ie Ir Iγ Ie Iγ Wγ εγ Iγ Wγlrad nel α≡Ex/Ey Iγ I

(144)

0 20 40 60 80 100 t/TL 0 10 20 30 40 50 60 70 η e , η γ ( %) 0 20 40 60 80 100 t/TL 0 10 20 30 40 50 60 70 a) b) ηγ ηe l=100λL ne0=10nc It=I−Iγ It c+ Ir c 1−βp 1+βp=2γ 2 pβp2ρc2 R(ω′) Ir=R(ω′)It (R(ω ′) =1) It ρc3 1−βp 1+βp=γ 2 pβp2 βp= Γ1+Γ

(145)

Γ= Iρc3 1/2 1−IIγ 1/2≃   a20nc ne 1+mmei   1/2 1−12πa2 0nne c l λL(ωLτr) 1/2 Iγ I=a 2 0mec3nc l 1022 1023

I

laser

(W

/cm

2

)

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 ne/nc= 10 = 50 = 100 1022 1023

I

laser

(W

/cm

2

)

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

β

p ne/nc= 10 = 50 = 100 a) b) βp 1− Iγ I l l

(146)

γeme∼a0me l ne nc Γ I ρc3 ℄ R=1−β1+βp p= 1 1+2Γ (1−R)=1+2Γ2Γ , ηi ηi=1−R ℄ ǫi=mic2(γi−1)=2mic2 Γ 2 1+2Γ ηi (1−R)

(147)

1022 1023

I

laser

(W

/cm

2

)

0 20 40 60 80 ne/nc= 10 = 50 = 100 1022 1023

I

laser

(W

/cm

2

)

0 20 40 60 80

η

i

(

%)

ne/nc= 10 = 50 = 100 a) b) ηi 10 23 2 Iγ lrad λL N x

(148)

-25 -20 -15 -10 -5 0 5 10 x/λL -1 -0,5 0 0,5 1 ne/nc Ey/Ec*a0-1 x TL TL TL ℄ ℄

A(x,t)=a(t)Re yei(ωt−kx)

(149)

1.4×1022 5.5×1022 2 λ L µ 2.5×10 9 2 t=0 -14 -13 -12 -11 -10

x

L -100 -80 -60 -40 120 130 140 150 160 170 180

θ (°)

10-4 10-3 10-2 10-1 100 101 ζ γ /st r ( %) 120 130 140 150 160 170 180

θ (°)

-4,6-4,4-4,2 -4 -3,8

x

L -100 -80 -60 p x /( m e c) t= 5 TL t= 15 T L t= 5 TL t= 15 TL (1) b) a) c) d) γ0 a0 θ  2/γe

(150)

-8 -6 -4 -2 0

x

L -200 -100 0 100 200 300 0 30 60 90 120 150 180

θ (°)

10-4 10-3 10-2 10-1 100 101 ζ γ /st r ( %) 0 30 60 90 120 150 180

θ (°)

-4 -3,8-3,6-3,4-3,2 -3

x

L -100 -50 0 p x /( m e c) t= 5 TL t= 15 T L t= 5 TL t= 15 TL (2) a) b) c) d) γ0 a0 θ a0 >γe t=15TL θ θ t=25TL ≃ 150

(151)

0 100 200 300 400 500 εe-/mec2 t= 5 TL t= 25 TL t= 45 TL 0 100 200 300 400 500 εe-/mec2 101 102 103 104 105 A. U (a) (b) a0 γe ∼  ≃ TL ≃39TL ∆ǫγ≃ 0.5 τs p ≡ pxN1e N1epx Ne

(152)

250 300 350 400 εe-/mec2 101 102 103 104 105 ( A. U) 20 25 30 35 40 θ (°) 10-3 10-2 10-1 100 ζ γ /st r ( %) -2 -1 0 1 2 log[εγ/mec2] 10-3 10-2 10-1 100 ζγ *( ε γ / m e c 2 ) ( %) a) b) c) a0 γ0 τs a0>γe τs a0 a0>γe γe a0 τs τs ηe ηγ ×109 2

(153)

0 2 4 6 8 10

(Temps de montee)/TL

120 140 160 180 200 a0 0 10 20 30 40 τ s /T L 0 2 4 6 8 10 (FWMH)/TL 0 2 4 6 8 10 12 14 16 (Plateau )/TL 0 10 20 30 40 τ s /T L a) b) c) b) τs a0 γ0

(154)

0 10 20 30 t/TL 0 5 10 15 20 0 10 20 30 40 50 60 70 t/TL 0 5 10 15 20 η γ , η e ( %)

Avecla reaction du rayonnement Sansla reaction du rayonnement

17.5% 5.3% 3.6% 0.68% 3.7% 3.6% a) b) ηe ηγ 1022 2

(155)

l1λL ne0 100nc  a0 ne/nc TL l=100λL ne0 10nc ℄ ξ¯

(156)

 ¯ ξ ℄ τs

(157)
(158)

t t t t a0 ne Ex

(159)

 ℄ ℄ Ilaser≤1022 2 22 2 ℄

aL(x,t)=a0(t)Re(y−iz)eiωL(t−x/c)

l= λL TL 10 −3 n c a0 TL nc a0 a0 2

(160)

ηγ≃  ≃ TL TL ℄ 0 20 40 60 80 100

t

/T

L 10-2 10-1 100 101 102

η

γ

(

%)

1 10 100

t

/T

L 10-5 10-4 10-3 10-2 10-1 100 101 102

ζ

γ ( %) (a) (b)

(161)

Ti π/ωpi 2π mi Zmeω −1 pe ωpe nee 2emeǫ0 ne nc a0=200 ωpi ωpe/γe γe≫ 2πne ne l λLEc Ec Ti≤t t t t ≃ TL t ≃ TL tmax≃ TL Ti t t + + + 2+ e ∼ Ex/Ec≃a0

(162)

0 2 4 6 8 10

x

L 0 50 100 150 200 E x /E c 0 10 20 30 40

x

L -20 0 20 40 60 E x /E c 0 5 10 15 20

x

L 0 50 100 E x /E c a) b) c) Ex t=t Ec mecωL/e pe,x

(163)

100 200 a 300 400 0 100 150 200 250 300 Ma x[ Ex /Ec ] protons deuterons ionsimmobiles

Profil gaussien

Ex Ec a0 t= t

(164)

0 30 60 90 120 150 180 θ (°) 10-3 10-2 10-1 100 dζ /d θ ( %) a) t=t t= t l= λL

(165)

l= λL t ≃35TL t ≃22TL t=t 100 150 200 250 300

e

-1)

103 104 105 106

N

e -

/c

m

100 200 300 400 500

e

-1)

103 104 105 a) b) t=t ne=10nc l= λL t=t γemec 2≃ε e εe Te t=t ωL

(166)

0 5 10 15 20 -300 -200 -100 0 100 200 300

γ

e

β

x,e 0 5 10 15 20 -200 -100 0 100 200 300 400 a) b) (x(t),px(t)) ∈[t −20TL;t +20TL] ne=10nc l= λL [Ey] [Ex] t=t 2ωL

(167)

∆t [t −δt;t +δt] δt≪ t δpe,x δpe,x pe,x t t t=t t=t  ℄ rc ωre ωcr λL

(168)

300 600 900 1200

e

-1)

103 104 105 106 100 200 300 400 500 600

e

-1)

103 104 105 106

N

e -

/c

m

a) b) t=t ne=10nc l= λL 0 10 20 30 40

x

L -200 0 200 400 600 0 10 20 30 40

x

L -200 0 200 400 600

γ

e

β

x,e c) d) (x(t),px(t)) ∈[t −20TL;t +20TL] ne=10nc l= λL [Ey] [Ex] t=t

(169)

t

l t t TL l=100λL t Ex  t l=1λL ηi t≃t t Ex ne nc l λL ≪ a0 Ex

(170)

T 0 10 20 30 40 50 60 t/TL 0 10 20 30 40 50 60 ζγ ( %) a) *(1/2)

Impulsionlaser

0 5 10 15 20 25 30 35 40 45 50 55 t/TL 0 0,5 1 1,5 2 2,5 3 ζγ ( %) b) *(1/40)

Impulsionlaser

0 10 20 30 40 50

t

/T

L 5 10 15 20 25

E

x

/E

y

(

%)

0 10 20 30 40 50

t

/T

L 0 10 20 30 40 50 60 70

E

x

/E

y

(

%)

c) d) l= λL l= λL Ex t

(171)

t t

t

t ne nc 1 10 100 l/λL 15 20 25 30 35 1 10 100 l/λL 15 20 25 30 35 t max /T L a) b) t t t ξ¯ λL λL tmax

(172)

T Ex ζγ t=t Ex ζγ l=1λL l=100λL l ζ l l

(173)

t

t

t a0 ay az t t 0 5 10 15 20 25 30 (FWHM)/TL 0 20 40 60 80 t max /T L t t

(174)

T TL t Ti t t  t TF WHM a0 t t ≥TF WHM a0 t Ti ωpe ne/ncπ/TL Ti= nc Zne mi γeme TL t ≃ t t ≃ 35TL t t a0 t TF WHM    mi<∞ FWHM≥3TL t ∼83FWHM −3TL mi→ ∞ FWHM≥3TL t ∼53FWHM ≤3TL t ≃5TL∀mi

(175)

t

t εγ t Iγ t ∂Iγ ∂t=0 g(t) ∂g ∂t+2α∂α∂t=0 α=Ex/Ey t fe α≪ 1 t g(t) α≃ g(t) g(t)∝ (t−t2 ) σ≃FWHM/2.3548 t =t t t t t tmax ωLl c∼ω 2 L ω2pea0 ωLtmax∼ ωLl c∼20010∼

(176)

t TL a0 a0 ne Ex ξ¯ Ex ξ¯ l=100λL l=1λL 20λL H+ λL

(177)

0 20 40 60 80 100 η γ ( %) 1 10 100 l/λL 1 10 100 η e -, η i ( %) 1 10 100 l/λL 0 20 40 60 80 100 η γ ( %) 1 10 100 η e -, η i ( %) a) b) c) d) ηγ ηe ηi l ne nc ℄  εL ηe ωL

a

0

n

e ηγ ηe ηi a0 ne ηtot

(178)

ηγ ηe ηi a0≥ χe 0 100 200 300 400 500 600 a0 40 45 50 55 60 65 70 η i ( %) 0 20 40 60 80 100 η γ ( %) 0 5 10 15 20 25 30 η e - ( %) 0 100 200 300 400 500 600 a0 40 50 60 70 80 90 100 η tot. ( %) a) b) c) d) ηγ ηe ηi ηtot a0 ne nc TL a0≥ a0 χe

(179)

10-3 10-2 10-1 100 101 102 ne/nc 10-3 10-2 10-1 100 101 102 η tot. ( %) 10-4 10-2 100 102 η e - ( %) 10-4 10-2 100 102 η γ ( %) 10-3 10-2 10-1 100 101 102 ne/nc 10-5 10-4 10-3 10-2 10-1 100 101 102 η i ( %) a) b) c) d) ηγ ηe ηi ηtot ne a0 a0≥ a0  a0 a0≥ ℄

(180)

℄ ne/nc a0 nc ℄ ℄ ne/nc≃ 3 ne/nc≃ a0 ne/nc 

(181)

a0mec 2 a0 a0Ec >250 l= λL l= λL ωcr a0Ec FLe∼√2a0mecωL

(182)

EX -3 -2 -1 0 1 2 3 10-4 10-3 10-2

ζ

γ

*

m

e

c

2 -3 -2 -1 0 1 2 3

log[

ε

γ

/m

e

c

2

]

10-4 10-3 10-2 10-1 -3 -2 -1 0 1 2 3 10-4 10-3 10-2 -3 -2 -1 0 1 2 3

log[

ε

γ

/m

e

c

2

]

10-4 10-3 10-2 10-1

ζ

γ

*

m

e

c

2 a) b) c) d)

circulaire lineaire

circulaire lineaire

l= 1λL l= 1λL l= 100λL l= 100λL t=t ωcr ∼ 32m ecγ 3 e pep×a2 0 e ωL∼10 7ω L pe,x ∆θ pz,e∼ py,e pe, ≤√2pz θ

(183)

θ t=t l= λL l= λL (θ) = px,e √ p2 e,y+p2e,z ∆θ  ωcr>107ωL

(184)

EX Ex ∼ λL 10 ≤ ωcr≤100 θ≥  ∼ θ ≤ ωcr≤ ≤ ωcr≤

(185)

θ t=t l= λL l= λL Ex <γe>∼ EEx c lrad λL ∼ 10a0

(186)

EX Ex pe,x≫pe,y pe,x Ex l Ex θ θ≃

(187)

x ηi ℄ 1λL 100λL 1.1×10 23 2 TL χe χe χe l∼1λL χe χe

(188)

EX 20 40 60 80 100120140 10-5 10-4 10-3 10-2 10-1 100 101

N

e

(

%)

20 40 60 80 100 120 140

t

/T

L 10-5 10-4 10-3 10-2 10-1 100 20 30 40 50 60 10-5 10-4 10-3 10-2 10-1 100 101 20 40 60 80 100

t

/T

L 10-5 10-4 10-3 10-2 10-1 100

N

e

(

%)

a) b) c) d) χe> 0.2 χe > 0.1 χe > 0.2 χe> 0.1 χe > 0.1 χe > 0.2 χe > 0.1 χe > 0.2 χe> 0.1 χe > 0.2 ℄ l=1λL l=100λL l∼100λL χe χe χe ∼10 23 2 ℄ ℄ χe

(189)

0 10 20 30 40 50 60 70 80

t

/T

L 10 20 30 40 50 60 70 80 90 100

η

γ

(

%)

~80%

~50%

~30%

ηγ a0=200 ne0=10nc TL TL

(190)

ηγ mi mi

(191)

Z/mi

(192)

χe∼1

(193)

A µ,k) δfi χe

(194)

22 2 ∼

(195)

ne0=10nc ξ≪ 1¯ ξ∼1¯ ¯ ξ≫ 1

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to