• Aucun résultat trouvé

Acoustic and mechanical properties of frozen sand

N/A
N/A
Protected

Academic year: 2021

Partager "Acoustic and mechanical properties of frozen sand"

Copied!
12
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Ground Freezing: Proceedings of the 4th Internaitonal Symposium on Ground

Freezing, 1, pp. 227-234, 1985

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=ff24f26c-106b-4e3b-b757-b435204caac3

https://publications-cnrc.canada.ca/fra/voir/objet/?id=ff24f26c-106b-4e3b-b757-b435204caac3

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Acoustic and mechanical properties of frozen sand

(2)

N21a

no.

1338

National Research

Conseil national

C .

2

Council Canada

de recherches Canada

BLBG

Division of

Division des

Building Research

recherches en bitirnent

Acoustic and Mechanical

Properties

of

Frozen Sand

by T.H.W. Baker and

P.J. Kurfurst

ANALYZED

Reprinted from

Proceedings of the Fourth International Symposium on

Ground Freezing

Sapporo, Japan. August 5 -

7, 1985

Volume 1, p. 227

-

234

(DBR Paper No. 1338)

Price $2.50

NRCC 25200

(3)

I1 existe une d6pendance entre d'une part la vitesse de propagation des ondes longitudinales 3 -10 et -3,2OC et la resistance 3 la compression sans Btreinte laterale, et, d'autre part, la densit6 seche d16chantillons de sable satur6 d'eau douce et gel6 dans la gamme de densit6s 1 550

-

1

780

kg/m3. La vitesse de propagation des ondes transversales est indgpendante de la densit6 sPche aux deux temp6ratures mentionn6es. La propagation des ondes sonores et la r6sistance

B la compression sans 6treinte lat6rale ne varient pas avec la densit6 sSche lorsqu'on ajoute du sel 3 l'eau interstitielle avant le gel. L'accroissement de la salinit6 reduit grandement la vitesse de propagation des ondes sonores et la resistance. Cette r6duction est particulierement sensible lorsque la salinit6 se situe entre 0 et

5

ppt. On a compare les constantes 6lastiques ultrasoniques B la densit6 seche et

B

la salinit6.

I1

faudrait effectuer des essais de mesure de la densit6 sPche et de la salinit6 lors des 6tudes techniques portant sur la cong6lation du sol et sur la construction dans les sols gel&, et utiliser des mesures acoustiques pour d6terminer les constantes 6lastiques des sols gel& employees dans la mod6lisation num6rique.

(4)

Fourth International Symposium on Ground Freezing /Sapporo /5-7 August 1985

Acoustic and mechanical properties of frozen sand

T.H.W.BAKER

National Research Council Canada, Ottawa

P.J.KURFURST

Geological Survey o f Canada, Ottawa

ABSTRACT: Compressional wave velocities at -10.0 and -3.2OC and the unconfined

compressive strength show a dependency on the dry density of frozen freshwater sand

specimens in the density range 1550 to 1780 kg/m3. Shear wave velocities are

independent of dry density at both temperature levels. Acoustic wave velocities and

unconfined compressive strength are independent of dry density when salt is added to the

pore water prior to freezing. Increasing the salinity greatly reduces acoustic wave

velocities and strength. These reductions are most pronounced when the salinity is

between 0 and

5

ppt. Ultrasonic elastic constants were compared with dry density and

salinity. Dry density and salinity tests should be included in engineering site

investigations related to artificial ground freezing and frozen ground construction and

acoustic measurements should be used to determine the elastic constants of frozen soils

used in numerical modelling.

'

1 INTRODUCTION

I

Acoustic wave propagation and mechanical

strength tests are important laboratory

techniques for engineering investigations

of soils and rocks. This paper compares

results of such tests on frozen sand and

describes the effects of specimen dry

density and salinity on the measurement

of unconfined compressive strength. shear

and compressional wave velocities and the

calculation of Young's modulus, Poisson's

ratio, shear modulus and bulk modulus.

These properties are used in finite

element analyses and other numerical

modelling techniques employed in the

design of artificially frozen soil

structures and geological engineering

investigations in frozen ground.

2 TESTING PROCEDURES

AND EQUIPMENT

Sample preparation followed the methods

described by Baker and Konrad (1985).

Three sets of samples were prepared at

various dry densities ranging from 1550

to 1780 kg/m3 and were saturated with

de-aired, distilled water. These samples

are referred to in this paper as

freshwater samples. Two more sets of

samples were prepared, one at a density

of 1550 kg/m3 (low density samples) and

the other at a density of 1780 kg/m3

(high density samples).

These samples

were saturated with sea salt solutions

ranging from 0.5 to 40 ppt. All samples

were frozen unidirectionally in a cold

room at -lO.O°C and then were prepared by

machining and end facing on a bandsaw and

lathe. Some specimens heaved during the

freezing process and were discarded. The

final specimens were cylinders approx.

76

mm

in diameter and 150

mm

in height.

All machined frozen specimens were

stored at -lO.O°C, but were transferred

to -3.2OC for about 24 hours for acoustic

velocity testing. The specimens were

then returned to -lO.O°C prior to the

mechanical tests. Temperature

measurements indicated that frozen

specimens required about 12 hours to

adjust to these temperature changes.

Specimens with pore water salinities

greater than 10 ppt crumbled when warmed

to -3.2OC and replacement specimens were

made at 20 and 30 ppt for the mechanical

strength testing.

2.1

Acoustic Tests

The acoustic wave propagation

measurements were made on one set of

(5)

f r e s h w a t e r specimens and on a l l of t h e s a l i n e w a t e r specimens. These measure- ments were made a t -10.0 and -3.2"C u s i n g a n OYO 5217-A, Sonic-viewer. D e t a i l s of t h e measuring t e c h n i q u e and equipment have been d e s c r i b e d e l s e w h e r e by King, (1970) and K u r f u r s t and King (1972).

The c o m p r e s s i o n a l (V ) and s h e a r wave P (V ) v e l o c i t i e s were c a l c u l a t e d a s f of lows : where V = p u l s e p r o p a g a t i o n v e l o c i t y ( m / s ) , L = p u l s e t r a v e l d i s t a n c e (m), T = e f f e c t i v e p u l s e - t r a v e l t i m e ( 6 ) . U l t r a s o n i c e l a s t i c c o n s t a n t s (E, p , G, K) were c a l c u l a t e d u s i n g f o r m u l a s recommended by t h e American S o c i e t y f o r T e s t i n g and M a t e r i a l s , S t a n d a r d D2845-83 (ASTM, 1984):

where E = Young's modulus of e l a s t i c i t y ( P a ) ,

p = d e n s i t y (kg/m3);

where = P o i s s o n ' s r a t i o ;

where G = s h e a r modulus ( o r modulus of r i g i d i t y ) ( P a ) ; where K = b u l k modulus ( P a ) . 2.2 Mechanical S t r e n g t h T e s t s Unconfined c o m p r e s s i o n t e s t s were performed o n one s e t of f r e s h w a t e r specimens and o n a l l s a l i n e w a t e r specimens a t -lO.O°C, u s i n g a s c r e w - d r i v e n t e s t i n g machine ( I n s t r o n Model 1927, 250 kN l o a d c a p a c i t y frame). T e s t i n g p r o c e d u r e s c l o s e l y f o l l o w e d t h e g u i d e l i n e s proposed by t h e I n t e r n a t i o n a l Working Group on T e s t i n g Methods f o r F r o z e n S o i l s (Baker e t a 1 1985). The t e s t s were performed a t a nominal s t r a i n r a t e of 1.67 x s-l (1% min-I). The d e t a i l s of equipment u s e d a r e d e s c r i b e d i n Baker e t a 1 (1981). A second s e t of f r e s h w a t e r t e s t specimens was t e s t e d u s i n g a c l o s e d - l o o p , s e r v o - h y d r a u l i c t e s t i n g machine (MTS Model 810.15, 1.0 MN l o a d c a p a c i t y frame and a 250 IcN c a p a c i t y a c t u a t o r ) . The s t r a i n r a t e was c o n t r o l l e d d u r i n g t h e t e s t a t 1.67 x 10-4 s-1 ( 1 % min-1) u s i n g a c o n t r o l gauge mounted on t h e t e s t specimens. The t h i r d s e t of f r e s h w a t e r t e s t specimens was t e s t e d i n t h e c l o s e d - l o o p , s e r v o - h y d r a u l i c t e s t i n g machine t o d e t e r m i n e t h e e l a s t i c modulus d u r i n g r a p i d u n l o a d i n g . The specimens were l o a d e d i n compression, a t a c o n s t a n t s t r a i n r a t e of 1.67 x s - I , up t o a s t r e s s of 4 MPa and t h e n r a p i d l y (0.3 t o 0.4 s ) unloaded. The rebound of e a c h specimen was r e c o r d e d and t h e i n i t i a l r a p i d (0.15 s ) d i s p l a c e m e n t was u s e d t o c a l c u l a t e t h e u n l o a d i n g modulus (EU). When t h e d i s p l a c e m e n t s t o p p e d , t h e specimen was a g a i n s u b j e c t e d t o l o a d s of 5 and 6 MPa and unloaded a t e a c h s t r e s s l e v e l . I n t h i s way, t h r e e d e t e r m i n a t i o n s of t h e e l a s t i c u n l o a d i n g modulus were made on e a c h specimen. 3 TEST RESULTS 3.1 A c o u s t i c T e s t s The r e s u l t s of t h e a c o u s t i c wave p r o p a g a t i o n t e s t s on t h e f r e s h w a t e r specimens a r e shown i n F i g u r e s 1 t o 3. An i n c r e a s e i n t e m p e r a t u r e from -10.0 t o -3.2"C r e s u l t e d i n a s m a l l i n c r e a s e i n c o m p r e s s i o n a l wave v e l o c i t y ; however t h e changes i n t h e s h e a r wave v e l o c i t y were w i t h i n t h e e r r o r of t h e t e s t method. The change i n c o m p r e s s i o n a l v e l o c i t y may b e due t o t h e v e r y s m a l l changes i n u n f r o z e n w a t e r c o n t e n t between t h e s e two t e m p e r a t u r e s o r t o o t h e r c h a r a c t e r i s t i c s of t h e i c e m a t r i x .

When t h e d r y d e n s i t y was i n c r e a s e d from 1550 t o 1780 kg/m3, t h e a c o u s t i c wave v e l o c i t i e s and e l a s t i c c o n s t a n t s

i n c r e a s e d w i t h i n c r e a s i n g d r y d e n s i t y o f sand. The s h e a r wave v e l o c i t y i s

r e l a t i v e l y i n d e p e n d e n t of d r y d e n s i t y o v e r t h e d e n s i t y and t e m p e r a t u r e r a n g e s measured. The c o m p r e s s i o n a l wave

v e l o c i t y i s more dependent on d r y d e n s i t y a t -lO.O°C t h a n a t -3.2"C. An anomaly i n t h e a c o u s t i c d a t a e x i s t s a t a d e n s i t y of a b o u t 1630 kg/m3. T h i s was a t t r i b u t e d t o i c e l e n s e s i n t h e specimen.

(6)

FRESHWATER SAMPLES Bulk Modulus 24 t- 1- -3.2O C FRESHWATER SAMPLES -+ T = -3.2' C

-

T = -10.0.C E 7 3 1600 1800 DRY DENSITY, kg/m3 Fig. 1. E f e c t of changing d r y d e n s i t y on a c o u s t i c v e l o c i t i e s s f 16W 1 BOO DRY DENSITY, kg/m3 Fig. 3. E f f e c t of changing d r y d e n s i t y on s h e a r and bulk moduli

The r e s u l t s of t h e a c o u s t i c wave m P p r o p a g a t i o n t e s t s on t h e s a l i n e w a t e r o specimens a r e p r e s e n t e d i n F i g u r e s 4 ln

2

30

.:!;":

t o 8. Specimens w i t h s a l i n i t i e s g r e a t e r t h a n 10 p p t a t -3.2OC crumbled under t h e

o minimum l o a d s r e q u i r e d t o s e c u r e t h e

cn

25 a c o u s t i c t r a n s d u c e r s . Some measurements

were made on specimens w i t h 20 ppt

e

s a l i n i t y a t -3.Z°C; t h e s e measurements have been p l o t t e d , b u t t h e i r v a l i d i t y i s q u e s t i o n a b l e . I n c r e a s i n g t h e t e m p e r a t u r e from -10.0

"9aa""

t o -3.Z°C r e s u l t e d i n a moderate d e c r e a s e

2

0L3-

+

i n compressional wave v e l o c i t i e s a t s a l i n i t i e s up t o 5.0 ppt and a v e r y l a r g e

=

0.2- d e c r e a s e a t h i g h e r s a l i n i t i e s . Shear ln

i FRESHWATER SAMPLES wave v e l o c i t i e s showed a v e r y l a r g e

8

-t T = -3.2' c d e c r e a s e between -10.0 and -3.2OC w i t h

ur

*

T = - 1 0 . O ° C

g

0.1

-

i n c r e a s i n g s a l i n i t y o v e r t h e e n t i r e r a n g e s t u d i e d . The t e m p e r a t u r e e f f e c t on b o t h v e l o c i t i e s was more pronounced a t t h e

0

-

h i g h e r s a l i n i t i e s , corresponding t o t h e

1600 1800 l a r g e r amounts of u n f r o z e n w a t e r p r e s e n t DRY DENSITY, kg/m3 i n t h e s o i l .

Changes i n t h e unfrozen w a t e r c o n t e n t Fig. 2. E f f e c t of changing d r y d e n s i t y o c c u r r i n g i n s a l i n e s a n d s when t h e on P o i s s o n ' s r a t i o and Young's modulus t e m p e r a t u r e changed from -10.0 t o -3.2OC

(7)

SALINE WATER SAMPLES

t T= -3.2'C. low denmy T: -3.2- C. hlgh demlty +T= -10.0' C . low demlty

4 T. -lO.oO C , high d.n*ny

law4 a , , , , A

1.0 3.0 5.0

*

20.0 40.0

SALINITY, p p t

SALINE WATER SAMPLES

4 T = -3.2' C. low density 4 T = -3.P C, hlgh denslty A T =-10.0' C. low denslty ----bT= -10.0' C, high density 20.0 10.0 SALINITY, p p t

Fig.

4.

E f f e c t of changing s a l i n i t y on Fig. 6. E f f e c t of changing s a l i n i t y on compressional wave v e l o c i t y Young's modulus

SALINE WA'mER SAMPLES

4 T = -3.2' C. low densny 4 T = -3.Z9 C, hlgh denmy - T I

-

-10.0' C . low denslty T = -10.0' C . hlgh denslty F i g . 5. E f f e c t of changing s a l i n i t y on shear wave v e l o c i t y

SALINE WATER SAMPLES + T = -3.Z0 C, low denslty + T = -3.P C, hlgh dsnrlty ---C T = -10.0' C, low denslty + T s -1O.P C, hlgh density SALINITY, p p t Fig. 7 . E f f e c t of changing s a l i n i t y on Poisson's r a t i o

(8)

40

i

SALINE WATER SAMPLES

Shear Moduhls B u K y o d u l l .

1- -3.1. C. low d-My --c- T- -3.2- C, low denmy

T = -3.2' C. h!+h denam,

-

T = -3.2. C. hlph d a l l y

-

1. -lO.Oo C. low denblly t T 3 -lO.OD C, low denstty

\

-bT = -IO.Oo C, hlgh d-

"-

T = -fO.OD C. high d-y

1 1.0 3.0 5.0

*

aoa 40.0 SALINITY, ppt measurements. There is a n e x p o n e n t i a l r e l a t i o n s h i p between t h e r a t i o of u n f r o z e n w a t e r c o n t e n t and s a l i n i t y t h a t i s n o t r e f l e c t e d i n t h e r a t i o of a c o u s t i c v e l o c i t y measurements below 5 p p t , b u t d o e s a p p e a r t o be s i m i l a r t o changes o c c u r r i n g between 5 and 10 ppt. The e f f e c t of i n c r e a s i n g s a l i n i t y on t h e a c o u s t i c v e l o c i t i e s and e l a s t i c c o n s t a n t s i s shown i n F i g u r e s 4 t o 8. Compressional and s h e a r v e l o c i t i e s and Young's s h e a r and b u l k moduli a l l e x h i b i t d r a m a t i c d e c r e a s e s a t s a l i n i t i e s up t o 5 p p t and, f o r t h e most p a r t , l e v e l o f f a t h i g h e r s a l i n i t i e s . P o i s s o n ' s r a t i o was a p p r o x i m a t e l y c o n s t a n t f o r a l l s a l i n i t y l e v e l s . Changes of l e s s t h a n 10% a r e p r o b a b l y n o t s i g n i f i c a n t .

The p h y s i c a l mechanisms which a f f e c t t h e s e measurements a r e n o t f u l l y under- s t o o d . However, i t a p p e a r s t h a t t h e bond s t r e n g t h between t h e i c e m a t r i x and t h e sand p a r t i c l e s becomes g r e a t l y reduced a t s a l i n i t i e s g r e a t e r t h a n 5 p p t .

Fig. 8; E f f e c t of changing s a l i n i t y on

s h e a r and b u l k moduli 3.2 Mechanical S t r e n g t h

were c a l c u l a t e d ; t h e c a l c u l a t i o n s were based on t h e f r e e z i n g p o i n t d e p r e s s i o n , due t o s a l t i n t h e p o r e w a t e r , and t h e s p e c i f i c s u r f a c e a r e a of t h e sand

,

p a r t i c l e s . R e s u l t s of t h e s e c a l c u l a t i o n s , which must be c o n s i d e r e d approximate because o f t h e n a t u r e of t h e c o n d i t i o n , a r e p r e s e n t e d i n T a b l e 1. The r a t i o of t h e u n f r o z e n w a t e r c o n t e n t s between -10.0 and -3.2"C i s compared w i t h t h e r a t i o of a c o u s t i c wave v e l o c i t y T a b l e 1. E f f e c t of changes i n t h e r a t i o of u n f r o z e n c o n t e n t (WU) a t -10.0 and -3.2OC on t h e a c o u s t i c wave v e l o c i t i e s P o r e Water R a t i o of v a l u e s S a l i n i t y a t -10.0:-3.2OC 0.5 1: 400 1:1.14 1:1.32 2.0 1: 600 1:1.05 1:1.39 5 .O 1: 700 1:1.07 1:1.36 10.0 1: 1,000 1:1.34 1:1.84 20.0 1: 6,000

-

-

30.0 1:50,000

-

-

40.0 Not f r o z e n

-

-

a t -3.Z°C R e s u l t s of t h e unconfined compression t e s t s a r e p r e s e n t e d i n F i g u r e s 9 and 10. A t a s t r a i n r a t e of 1.67 x loW4 s-l and a t e m p e r a t u r e of -lO.O°C, t h e unconfined compressive s t r e n g t h of f r e s h w a t e r s a n d specimens i n c r e a s e s o n l y s l i g h t l y w i t h i n c r e a s e i n d r y d e n s i t y up t o -1630 kg/m3. A t h i g h e r d e n s i t i e s , t h e i n c r e a s e i n unconfined compressive s t r e n g t h i s s i g n i f i c a n t l y g r e a t e r . T h i s t r a n s i t i o n i s more d r a m a t i c i n t h e s t r a i n d a t a , a s t h e s t r a i n i s about c o n s t a n t a t low d e n s i t i e s b u t i n c r e a s e s s h a r p l y a t a d e n s i t y of -1650 kg/m3. T h i s t r a n s i t i o n r e p r e s e n t s a change i n t h e mode of f a i l u r e from a lower y i e l d t y p e , u s u a l l y a s s o c i a t e d w i t h f r a c t u r e s i n t h e i c e m a t r i x , t o a n upper y i e l d t y p e of f a i l u r e a s s o c i a t e d w i t h t h e f r i c t i o n a l r e s i s t a n c e of t h e s o i l p a r t i c l e s t r u c t u r e ( S a y l e s and Carbee 1980).

Three e l a s t i c moduli were d e t e r m i n e d u s i n g t h e r e s u l t s of t h e mechanical l o a d i n g and u n l o a d i n g t e s t s : 1. t h e s e c a n t modulus (E ) d e t e r m i n e d from t h e i n i t L a 1 s l o p e of t k e s t r e s s - s t r a i n c u r v e ( J e s s b e r g e r and E b e l 1981); 2. t h e d e f o r m a t i o n modulus (E50) d e t e r m i n e d from t h e t a n g e n t t o t h e s t r e s s - s t r a i n c u r v e a t 50% of t h e lower y i e l d s t r e s s ( J a p a n Gas A s s o c i a t i o n 1979); and 3. t h e u n l o a d i n g modulus (EU) d e t e r m i n e d from t h e i n i t i a l s l o p e of t h e s t r e s s - s t r a i n c u r v e when t h e specimen h a s

(9)

20 I I 0

0 0

1 5 -

* .

.

.

0 0

-

l . m l

10

-

-

NOMINAL STRAIN RATE. 1.67 l o 4 ,-I (1% ,in-')

5 - TEMPERANRE. -lODC 7

STRAIN RATE

I

t

m 0 INCRM-G TEST

0 CONSTANT W R I N G TEST SOLID SYMBOL INDICATES LOWER

YIELD FAILURE OPEN SYMBOL INDICATES UPPER

YIELD FAILURE 500 1600 1700 1800 DRY DENSITY, kglm3 F i g . 9. E f f e c t of changing d r y d e n s i t y on u n c o n f i n e d c o m p r e s s i v e s t r e n g t h and f a i l u r e s t r a i n , , , ( ( ( , ( ( . ( , , , , , , , , , , , ,

FROZEN OTTAWA FINE SAND

TEMPERATURE -LOmC S T R A I N R A T E 1 6 7 x 1.' F i g . 10. E f f e c t of changing s a l i n i t y and d r y d e n s i t y on u n c o n f i n e d compressive s t r e n g t h been i m m e d i a t e l y unloaded a f t e r a s m a l l l o a d i s a p p l i e d ( S i n h a 1982).

The moduli from t h e m e c h a n i c a l t e s t s on t h e f r o z e n f r e s h w a t e r specimens a r e p r e s e n t e d i n T a b l e 2. The v a l u e s of t h e u n l o a d i n g modulus r e p r e s e n t t h e a v e r a g e of t h r e e v a l u e s o b t a i n e d f o r e a c h specimen. Although t h e r e i s n o t a c o n s i s t e n t t r e n d w i t h i n c r e a s i n g d e n s i t y , t h e most d e n s e specimen had t h e h i g h e s t modulus. The v a l u e s of Ei and ES0 a r e comparable t o o t h e r p u b l i s h e d d a t a f o r sandy s o i l s a t - 1 0 ° C (Parameswaran 1980; T a b l e 2. E l a s t i c moduli from m e c h a n i c a l and a c o u s t i c t e s t s Dry D e n s i t y kg /m3 1580 1600 1630 1660 1690 1780 Mechanical T e s t s E i

GPa E50 GPa a;:

14 14 28 18 9 2

7

5 6 30 3 6 13 33 19 1 G 26 30 30 45 A c o u s t i c T e s t s E GPa

Japan Gas A s s o c i a t i o n 1979). The low v a l u e s measured a t a d e n s i t y of 1630 kg/m3 may b e r e l a t e d t o t h e p r e s e n c e of i c e l e n s e s i n t h e specimen. The u n l o a d i n g modulus E was t h e h i g h e s t of t h e moduli. S i n c e Y t was d e t e r m i n e d i n 0.15 s , i t i s c o n s i d e r e d t o be t h e most r e p r e s e n t a t i v e of t h e e l a s t i c b e h a v i o u r of t h e specimens. The change i n

u n l o a d i n g moduli was n o t c o n s i s t e n t w i t h i n c r e a s i n g d e n s i t y , b u t was w i t h i n t h e same r a n g e of v a l u e s a s d e t e r m i n e d from t h e a c o u s t i c t e s t s ( F i g u r e 2). The e f f e c t of s a l i n i t y on t h e u n c o n f i n e d compressive s t r e n g t h a t -lO.O°C i s shown i n F i g u r e 10. A s m a l l i n c r e a s e of s a l i n i t y from 0 t o 0.5 p p t g r e a t l y r e d u c e s t h e c o m p r e s s i v e s t r e n g t h . The r e d u c t i o n of s t r e n g t h w i t h i n c r e a s e d s a l i n i t y i s most s i g n i f i c a n t up t o 5 p p t , w i t h more g r a d u a l d e c r e a s e s o c c u r r i n g w i t h h i g h e r s a l i n i t i e s . Changes i n d r y d e n s i t y of t h e specimens had v e r y l i t t l e e f f e c t on t h e i r s t r e n g t h . The mode of f a i l u r e was c o n s i s t e n t l y a l o w e r y i e l d t y p e of f a i l u r e a t a n a x i a l s t r a i n of l e s s t h a n lX, i n d i c a t i n g t h a t t h e i c e m a t r i x was r e s p o n s i b l e f o r t h e o b s e r v e d b e h a v i o u r . S a l t i n t h e specimens i n c r e a s e d t h e u n f r o z e n w a t e r c o n t e n t and weakened t h e c o n t r i b u t i o n of t h e i c e m a t r i x t o t h e c o m p r e s s i v e s t r e n g t h . The f r i c t i o n a l component of s t r e n g t h d i d not a f f e c t t h e b e h a v i o u r of any of t h e f r o z e n s a l i n e specimens a t a s a l i n i t y of 0.5 p p t . 4 CONCLUSIONS The r e s u l t s of t h e a c o u s t i c t e s t s of f r o z e n f r e s h w a t e r specimens show t h a t t h e c o m p r e s s i o n a l wave v e l o c i t y and t h e e l a s t i c c o n s t a n t s i n c r e a s e d i r e c t l y w i t h i n c r e a s i n g d e n s i t y a t b o t h -10.0 and -3.2"C. However, t h e s h e a r wave v e l o c i t y

(10)

i s r e l a t i v e l y i n d e p e n d e n t of d r y d e n s i t y o v e r t h e d e n s i t y and t e m p e r a t u r e r a n g e s measured. The r e s u l t s of t h e a c o u s t i c t e s t s on f r o z e n s a l i n e specimens show t h a t t h e a c o u s t i c measurements a r e i n d e p e n d e n t o f d r y d e n s i t y . However, b o t h t h e a c o u s t i c wave v e l o c i t i e s and e l a s t i c c o n s t a n t s d e c r e a s e d i r e c t l y w i t h i n c r e a s e d t e m p e r a t u r e , e s p e c i a l l y a t s a l i n i t i e s between 0.5 and 5 ppt. These changes a r e a s s o c i a t e d w i t h t h e i n f l u e n c e of t h e i c e m a t r i x and t h e bond s t r e n g t h between t h e i c e and s a n d s t r u c t u r e s . The r e s u l t s of t h e mechanical s t r e n g t h t e s t s i n d i c a t e t h a t t h e u n c o n f i n e d compressive s t r e n g t h of f r o z e n f r e s h w a t e r specimens i n c r e a s e s w i t h i n c r e a s e d d r y d e n s i t y , w i t h t h e r a t e of i n c r e a s e g r e a t e r a t t h e h i g h e r d e n s i t y r a n g e ; t h e s t r a i n d a t a show a s i m i l a r t r a n s i t i o n . T h i s t r a n s i t i o n i n d i c a t e s a change i n f a i l u r e mode from a lower y i e l d t y p e of f a i l u r e , a s s o c i a t e d w i t h f r a c t u r e s i n t h e i c e m a t r i x , t o a n upper y i e l d t y p e of f a i l u r e a s s o c i a t e d w i t h t h e f r i c t i o n a l r e s i s t a n c e of s o i l p a r t i c l e s t r u c t u r e .

The l o a d i n g and u n l o a d i n g moduli d e t e r m i n e d i n t h i s s t u d y a r e s i m i l a r i n v a l u e t o t h o s e documented i n t h e l i t e r a t u r e . The u n l o a d i n g modulus h a s t h e h i g h e s t v a l u e and a g r e e s w e l l w i t h

,.

t h e Young's modulus d e t e r m i n e d from t h e

' a c o u s t i c t e s t s . b The u n c o n f i n e d c o m p r e s s i v e s t r e n g t h at -lO.O°C d e c r e a s e s d i r e c t l y w i t h i n c r e a s e d p o r e w a t e r s a l i n i t y . A l a r g e r e d u c t i o n i n s t r e n g t h o c c u r s from a s a l i n i t y of 0 t o 5 p p t , and d e c r e a s e s more g r a d u a l l y o v e r t h e r a n g e from 5 t o 30 ppt. The u n c o n f i n e d c o m p r e s s i v e s t r e n g t h of s a l i n e f r o z e n s a n d s i s i n d e p e n d e n t of t h e d r y d e n s i t y . Measurement of a c o u s t i c wave v e l o c i t y i s a n i n e x p e n s i v e , n o n d e s t r u c t i v e method f o r o b t a i n i n g e l a s t i c c o n s t a n t s ,

e s p e c i a l l y t h e Young's modulus. These v a l u e s a r e o f t e n u s e d i n t i n e dependent c o n s t i t u t i v e e q u a t i o n s f o r n u m e r i c a l m o d e l l i n g . 5 RECOMMENDATIONS D e n s i t y , s a l i n i t y and a c o u s t i c measurements s h o u l d be performed on a l l s o i l samples o b t a i n e d from e n g i n e e r i n g s i t e i n v e s t i g a t i o n s r e l a t e d t o t h e u s e of a r t i f i c i a l l y f r o z e n ground a s a l o a d b e a r i n g s t r u c t u r e . S i m i l a r measurements s h o u l d be made on samples o b t a i n e d d u r i n g i n v e s t i g a t i o n s f o r f o u n d a t i o n s o r o t h e r l o a d e n g i n e e r i n g s t r u c t u r e s t o be s u p p o r t e d by n a t u r a l l y f r o z e n s o i l s . A c o u s t i c wave v e l o c i t y measurements a r e e a s i e r t o p e r f o r m t h a n m e c h a n i c a l t e s t s f o r t h e d e t e r m i n a t i o n of r e a l i s t i c v a l u e s of t h e e l a s t i c moduli of f r o z e n s o i l s . A d d i t i o n a l t e s t s s h o u l d b e performed t o v e r i f y i f t h i s i s a l s o t h e c a s e f o r f i n e - g r a i n e d s o i l s a t v a r i o u s s a l i n i t i e s . ACKNOWLEDGEMENTS

The a u t h o r s wish t o acknowledge t h e a s s i s t a n c e of J.G. B i s s o n , J.-F. Morel and A. Krol i n p e r f o r m i n g t h e l a b o r a t o r y t e s t s . T h i s p a p e r i s a j o i n t c o n t r i b u t i o n o f t h e D i v i s i o n of B u i l d i n g R e s e a r c h , N a t i o n a l R e s e a r c h C o u n c i l of Canada, and of t h e T e r r a i n S c i e n c e s D i v i s i o n , G e o l o g i c a l Survey of Canada and i s

p u b l i s h e d w i t h t h e a p p r o v a l of t h e D i r e c t o r s of b o t h D i v i s i o n s . REFERENCES American S o c i e t y f o r T e s t i n g and M a t e r i a l s , 1984, S t a n d a r d t e s t method f o r l a b o r a t o r y d e t e r m i n a t i o n of p u l s e v e l o c i t i e s and u l t r a s o n i c e l a s t i c c o n s t a n t s of rock. i n Annual book of s t a n d a r d s , V. 0 4 . 0 8 , x o . D2845-83, P h i l a d e l p h i a . Baker, T.H.W. e t a l . , 1985, G u i d e l i n e s f o r c l a s s i f i c a t i o n and l a b o r a t o r y t e s t i n g of a r t i f i c i a l l y f r o z e n ground: Report of t h e I n t e r n a t i o n a l Working Group on T e s t i n g Methods f o r F r o z e n S o i l . & P r o c e e d i n g s of t h e T h i r d I n t e r n a t i o n a l Symposium on Ground F r e e z i n g , v. 2 , Hanover, N.H. Baker, T.H.W., J o n e s , S.J. and

Parameswaran, V.R., 1981, Confined and u n c o n f i n e d c o m p r e s s i o n t e s t s on f r o z e n s a n d s . & P r o c e e d i n g s of t h e F o u r t h Canadian P e r m a f r o s t Conference (The Roger J.E. Brown memorial volume): Ottawa, N a t i o n a l R e s e a r c h C o u n c i l o f Canada.

Baker, T.H.W. and Konrad, J.-M., 1985, E f f e c t of sample p r e s e r v a t i o n o n t h e s t r e n g t h of f r o z e n sand.

&

P r o c e e d i n g s of t h e F o u r t h I n t e r n a t i o n a l Symposium on Ground F r e e z i n g , Sapporo: I n s t i t u t e of Low Temperature S c i e n c e , Hokkaido U n i v e r s i t y . J a p a n Gas A s s o c i a t i o n , 1979, Recommended p r a c t i c e f o r l i q u i f i e d n a t u r a l g a s i n g r o u n d s t o r a g e . J a p a n Gas A s s o c i a t i o n Committee on L i q u i f i e d N a t u r a l Gas S t o r a g e , Tokyo. J e s s b e r g e r , H.L. and E b e l , W., 1981, Proposed method f o r r e f e r e n c e t e s t s on

(11)

f r o z e n s o i l s : E n g i n e e r i n g Geology,

v. 1 8 , p. 31-34.

King, M.S., 1970, S t a t i c and dynamic moduli of r o c k s u n d e r p r e s s u r e . i n Somerton, W.H., ed., Rock ~ e c h a n i z , Theory and P r a c t i c e : New York, N.Y.,

American I n s t i t u t e of Mechanical E n g i n e e r i n g . K u r f u r s t , P.J. and King, M.S., 1972, S t a t i c and dynamic e l a s t i c p r o p e r t i e s of two s a n d s t o n e s and p e r m a f r o s t t e m p e r a t u r e s . & T r a n s a c t i o n s American S o c i e t y of Mechanical E n g i n e e r i n g , v. 253, New York, N.Y.

Parameswaran, V.R., 1980, Deformation b e h a v i o u r and s t r e n g t h of f r o z e n s a n d : Canadian G e o t e c h n i c a l J o u r n a l , v. 17, p. 74-88. S a y l e s , F.H. and Carbee, D.L., 1980, S t r e n g t h of f r o z e n s i l t a s a f u n c t i o n of i c e c o n t e n t and d r y u n i t w e i g h t . i n P r o c e e d i n g s of t h e Second ~ n t e r n a t i o n x Symposium on Ground F r e e z i n g ,

Trondheim: The Norwegian I n s t i t u t e o f Technology, Trondheim. Sinha. N.K., 1982, Delayed e l a s t i c s t r a i n c r i t e r i o n f o r f i r s t c r a c k s i n i c e . P r o c e e d i n g s of t h e Symposium on Deformation and F a i l u r e of G r a n u l a r M a t e r i a l s , D e l f t : I n t e r n a t i o n a l Union of T h e o r e t i c a l and Applied Mechanics, D e l f t .

(12)

T h i s p a p e r , w h i l e b e i n g d i s t r i b u t e d i n r e p r i n t form by t h e D i v i s i o n of B u i l d i n g R e s e a r c h , remains t h e c o p y r i g h t of ' t h e o r i g i n a l p u b l i s h e r . I t s h o u l d n o t be r e p r o d u c e d i n whole o r i n p a r t w i t h o u t t h e p e r m i s s i o n of t h e p u b l i s h e r . A l i s t of a l l p u b l i c a t i o n s a v a i l a b l e from t h e D i v i s i o n may be o b t a i n e d by w r i t i n g t o t h e P u b l i c a t i o n s S e c t i o n , D i v i s i o n of B u i l d i n g R e s e a r c h . N a t i o n a l R e s e a r c h C o u n c i l of C a n a d a . O t t a w a . O n t a r i o . KIA 0R6. Ce document e s t d i s t r i b u 6 s o u s forme d e t i r 6 - 3 - p a r t p a r l a D i v i s i o n d e s r e c h e r c h e s e n b a t i m e n t . Les d r o i t s d e r e p r o d u c t i o n s o n t t o u t e f o i s l a p r o p r i 6 t 6 d e 1 1 6 d i t e u r o r i g i n a l . Ce d o c u m e n t n e p e u t C t r e r e p r o d u i t en t o t a l i t 6 ou e n p a r t i e s a n s l e c o n s e n t e m e n t d e 1 1 6 d i t e u r . Une l i s t e d e s p u b l i c a t i o n s d e l a D i v i s i o n p e u t S t r e o b t e n u e en 6 c r i v a n t .3 l a S e c t i o n d e s p u b l i c a t i o n s , D i v i s i o n d e s r e c h e r c h e s e n b a t i m e n t , C o n s e i l n a t i o n a l d e r e c h e r c h e s Canada. Ottawa, O n t a r i o . KIA OR6.

Figure

Fig.  4.  E f f e c t   of  changing  s a l i n i t y   on  Fig.  6.  E f f e c t   of  changing  s a l i n i t y   on
Fig.  8;  E f f e c t   of  changing  s a l i n i t y   on

Références

Documents relatifs

2-4.Alors que ces revêtements posés sur un plancher à solives réduisent les niveaux des bruits d’impact pour les fréquences aiguës, ils n’entraînent pas de hausse de l’IIC,

We've designed a modular and extensible visualization system that currently allows users to view two-levels of data in multiple different ways. Users can draw

Key words: Nonlinear systems, sampled-data, continuous-discrete time observers, high gain observer, updated sampling-time..

In general, pinching provides a path of quasiconformal deformations of a hyperbolic Riemann surface, whose Beltrami differential is supported in a neighborhood of a finite disjoint

It is also shown that the proposed solution enables to have a lower complexity compared to state of the art time domain equalizers for CPM over time-varying channels at the price of

We propose here an original surface-based method based on a model representing the relationship between cortical activity and fMRI images, and a resolution through an inverse

plays like strategy τ as long as there is no deviation i.e. In case a deviation occurs i.e.. Construction of an optimal strategy. We can now proceed with the second and last step in

The idea of using the maximal regularity in uniqueness problems goes back to [15], where the second author gave a short proof of celebrated Furioli, Lemari´ e and Terraneo’s