• Aucun résultat trouvé

Symmetric and asymmetric Diophantine approximation of continued fractions

N/A
N/A
Protected

Academic year: 2022

Partager "Symmetric and asymmetric Diophantine approximation of continued fractions"

Copied!
10
0
0

Texte intégral

(1)

B ULLETIN DE LA S. M. F.

J INGCHENG T ONG

Symmetric and asymmetric Diophantine approximation of continued fractions

Bulletin de la S. M. F., tome 117, no1 (1989), p. 59-67

<http://www.numdam.org/item?id=BSMF_1989__117_1_59_0>

© Bulletin de la S. M. F., 1989, tous droits réservés.

L’accès aux archives de la revue « Bulletin de la S. M. F. » (http:

//smf.emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/

conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

117, 1989, p. 59-67.

SYMMETRIC AND ASYMMETRIC DIOPHANTINE APPROXIMATION OF CONTINUED FRACTIONS

BY

JINGCHENG TONG (*)

RESUME. — Soit $ un nombre irrationnel avec Pexpansion de la fraction continue simple $ = [ao ; a i , . . . , a ^ , . . . ] et soit p i / q i son ^eme convergent. Dans cet article, on donne explicitement deux suites de nombres reels (on), (f3n) et on demontre les resultats suivants :

(i) Entre trois convergents consecutifs p i / q i de $ (i = n - 2, n- 1, n), un a,u moins satisfait |$ -pi/qi\ < ^-/(dnqiqi+i) et un au moins ne satisfait pas cette inegalite;

(ii) Soit r > 0. Entre quatre convergents consecutifs p i / q i de $ (i = n — 2,n — 1, n, n + 1), un au moins satisfait -l/(/3n^^+i) < |$ - Pi/Qi\ < r/((3nqiqi+i) et un au.

moins ne satisfait pas ces inegalites.

ABSTRACT. — Let $ be an irrational number with simple continued fraction expansion ^ = [ao ; a i , . . . , a ^ , . . . ] , and p i / q i be its i-th convergent. In this paper, we give explicitly two sequences of real numbers (Qn), (/3n), and prove the following results :

(i) Among any three consecutive convergents p i / Q i of ^ (i = n - 2, n - 1, n), at least one satisfies |^ - p i / q i < l/(o:n^^+i), and at least one does not satisfy this inequality;

(ii) For any r > 0, among any four consecutive convergents p i / q i of ^ (i = n - 2, n-1, n, n + 1 ) , at least one satisfies -l/(/3n9i9z+i) < |C - Pi/qi < ^/(^nqiqi+i), and at least one does not satisfy this inequality.

1. Introduction

Let ^ be an irrational number with simple continued fraction expansion

^ = [ao a i , . . . , a ^ . . . ] , and p z / Q i be its it h- convergent. The following inequality has been extensively investigated for a century :

< 1 ' <-t<<r

(*) Texte recu Ie 30 aout 1987, revise Ie 2 fevrier 1988.

Jingcheng TONG, Institute of Applied Mathematics, Academia Sinica, BEIJING, China, and Department of Mathematical Sciences, University of North Florida, Jacksonville, FL 32216, U.S.A.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE 0037-9484/1989/59/$ 5.00 (c) Societe mathematique de France

(3)

60 J . T O N G

We state the main results about inequality (1).

(i) By the works ofHunwiTZ [5], BOREL [2], FUJIWARA [4], MULLER [7]

(or [1]) and the present author [12], the following theorem on symmetric approximation is obtained :

Among any three consecutive convergents pz/qj of ^ (i = n — 1, n, Ti+1), at least one satisfies \^ —pz/qi\ < l/(\/a^ ~1~ 4^), and at least one satisfies ^ - pi + q,\ > l/(y^+4^2).

(ii) By the works of SEGRE [10], ROBINSON [9], LEVEQUE [6], Szusz [11] and the present author [15], the following theorem on asymmetric approximation is obtained :

Let r be a positive number and Cn be denned as follows : / . _ f fln+i if n is odd,

I Zi ] Cn — \ . r .

[ ttn+2 i1 ^ ts even.

Then among any four consecutive convergents p z / q i of ^ (i == n — 1, n, n -\-1, T z + 2 ) , at least one satisfies the following inequality :

(3) -7=-7<^<//>2 j A^-^i^i n-qz v/4+4T^^——

and at least one does not satisfy inequalities (3).

The study of the following inequality can be traced back to DIRICH-

LET [3] :

w <-'-<—

Qi I Qiqi-^i

But surprisingly, although inequality (1) is obtained from (4), there are no corresponding results on (4) in literature. The purpose of this paper is to do some investigations on (4). We will use the method established by the present author in [12-15].

2. Preliminaries

Let ^ = [ao, a i , . . . , dn,...] with convergent pn/qn- It is known [8] that

on £

pn

-

(-1)

"

( ) s qn~~M^n

where Mn = [0; o.n+2, a»i+3i • • •] + [o-n+i; f l n , . . . , ai]; thus

(6} £ pn - (-^

w s - TT ~~ r r, r, . '9n Cn<ln<ln+l

TOME 117 — 1989 — N° 1

(4)

where Cn = (M^)/g^-i. Let Dn = [0^+1 ; an,..., ai][a^+2 ; 0^+3,...].

Since q^i = a^+i^+gn-i, and qn+i/Qn = [^n+i ; On,..., aj. It is easily seen that

(7) Cn = 1 + ———

-^n

We need some simple lemmas.

LEMMA 1. — Let f(x) = (a + x-^Krx-1 - a) with a > 0, r > 0.

TAen /(a;) %5 increasing for 0 < x < r/a.

Proof.

,.,. . ax'2^ +r) / (^ = -;——^——^ > 0.

(rx~1 - a)2

LEMMA 2. — Le^ ^(a;) ==• (a + bx)/(x - a) with a > 0, b > 0. TTien

^(a;) %5 decreasing for x > a.

Proof.

,, , a ( 6 + l ) .

^'-(.^a)2^'

LEMMA 3. — Let h(x) == \/x + 4 — -^/rc. T/^en /i(a*) %5 decreasing for x >0.

Proo/.

/i'(^) = 1 - -1 < 0.

2v^T4 2y^

3. Main theorems

Let P = [an+i; 0^+2, • • •], Q = [an ; a^-i,..., ai]. It is easily seen that

an+P-1

^n-2 = —7\—————

. Q -dn

(8)

(9) Z^_l = PQ,

Qn+1 4- Q~1

(10) D, = _1 • "

P - ^n+l

Now we prove the main theorems.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE

(5)

62 J . T O N G

THEOREM 1. — Let r be a positive real number and n > 3 be a positive integer. The following statements are true.

(I) IfDn-i < r , then

/ n r» ^ V^ndn+l + I/VT m3iX(Dn-2,Dn) >

v/r- ^/a^a^i

/andn+1 + 1/Vr (11) J/Az-i =r, then

max(Dn-2,Dn) > ,- .____

V^ — v^an+i

PW/. — (I) Since Dn-i < r, from (9) we have (11) Q < r / P ^

(12) Q~1 > P / r .

From (8) and (11) we have

(13) A ^0"4- ^1

rP-1 - an

By LEMMA 1, Dn-2 is an increasing function for P < r/cin- From (10) and (12) we have

(14) ^ > a-^pl1-.

r — a^+i

By LEMMA 2, Dn is a decreasing function for P > 0^4.1.

Since Dn > 0, from (10) we have P > an+i. Since Dn-2 > 0, from (8) we have Q > a^, hence P = Dn-i/Q < r/an- We discuss two possible cases on P.

(i) r / d n > P > \/a^+ir/an. From (13) we have

^/a^an+i + 1/v^r

Dn-2>

\/r - ^/anOn+i

(ii) a^+i < P < ^/a^+ir/a^. From (14) we have

^/Q^q^+i-hl/\/r

n '> ————/=———————y — — — — '

VT — ^aTzO-n+l TOME 117 — 1989 — ?1

(6)

Thus THEOREM 1 (I) is established.

(II) To prove THEOREM 1 (II), we first prove that P ^ \/an+ir/an.

Suppose P = v^+ir/an. Since Dn-i = r, we have Q = ^n-i/P = V^r/an+i. It is easily seen that Q = [an; O n - i , . . . , a i ] is a ratio- nal number, while P = [a^+2 ; f t n + 3 ^ - - ] is an irrational number. Let Q = k / h , where A;, /i are two co-prime positive integers. Then we have y/any/an+i = A;//i, with r = k2 dn^ / (h2 an). Therefore P =

^/an+ir/an = (kdn+i) /\han), and P is a rational number! This con- tradiction shows P 7^ ^/a'7^+l'ft/an-

Similar to the proof of THEOREM 1 (I), we have an+P-1 Dn-2 = rP-^-an

q^+i + P / r

^n — T->

P - an+i

Since P / ^/an+ir/an, case (i) in THEOREM 1 (I) becomes r/On > P >

^/a^+ir/On, the required result is correct.

By similar arguments, we can reverse the directions of the inequalities in THEOREM 1 to obtain a conjugate theorem.

THEOREM 2. — Let r be a positive real number and n > 3 be a positive integer. The following statements are true.

(I) If Dn-i > r , then

. / - ^ , ^ ^/OnQn+l + VY^

mm{Dn-2,Dn) < —/=——.

VT- - ^/OnOn+l

(II) IfDn-i =r, then

. .-. „ . , \/QnQn+l + 1/V^

min(Dn_2,^n) < —-/=-——————•

v^

4. Symmetric approximation

Now we apply THEOREM 1 and 2 to investigate symmetric approxima- tion to the irrational number $.

THEOREM 3. — Let an = 1 4- ^(v/anfln+i + 4 - v^n^+i)2' r/len

among any three consecutive convergents pz/qi of ^ (i = n —2, n — 1, n), at least one satisfies

(15) ^ < — —1— — ,

v / n . r\i n •n • , -, di I ^n<Mi+l

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE

(7)

64 J. TONG

and at least one satisfies

(16) ^ - ^ >

Qi ^n^+1

Prw/. - Letting r = K^^n+i + 4 + y^a^T)2, it is easily seen that Q^ = 1 + 1/r and

y/Onan+i + 1/y/r

V^- ^/OnOn+i

If A,-i < r, then Cn-i = 1 + l/^_i > 1 + l / r = a^. From (6) we know that (15) holds for i = n-1. By THEOREM 1 (I), max(A,_2 D ) > r hence min(C^2, C 7 J < 1 + l/r = a^ (16) is true for i = n - 2 or n 5

i If JDn-l/> ^ then cn-1 = 1 + l/Dn-1 < 1 + l/^ = ^n. From (6) we know that (16) holds for z = n- 1. By THEOREM 2 (II), min(Z^_2 D ) <

r, hence max(G,-2, C,) > 1 + l/r = a,, (15) is true for z = n - 2 or n IfDn-i = r, then by THEOREM 1 (II) and THEOREM 2 (II), we have max(2^_2,Az) > r and min(A,_2,Z^) < r. Thus min(^-i,^) <

1 + l/r == ^, max(C,-2, Cn) > 1 + l/r = a^ By (6) we know that (15) is true for i such that C, = max(C,-2,C,), (16) is true for z such that Ci=mm(Cn-2,Cn).

Because we always have a^+i > 1, by LEMMA 3 the following corollary is correct.

^OROLLARY 1. — Among any three consecutive convergents pi/q, of ^ (z = n - 2, n - 1, n), at least one satisfies the following inequality :

(17) 1 ^ - p!

Qi

>

^(5 - \/5)g^+i

If ^ is not equivalent to ^(v/5- 1) = [1 ; i,...], then there are infinitely many pairs a^a^+i such that a^On+i > 2. Therefore the followinff corollary is true.

COROLLARY 2. — Let ^ be an irrational number not equivalent to 2 ( V 5 - 1). Then there are infinitely many convergents satisfying the following inequality.

(18) ^

Qi

>

(3 - v^g^+i

TOME 117 — 1989 — ?1

(8)

5. Asymmetric approximation

Now we apply THEOREM 1 and 2 to investigate asymmetric approxi- mation to the irrational number ^.

Let T be a positive real number. If

\ 2 (\/QnQn+l+ 4T + \/QnQn+l)^

r=——————————^4r2

it is easily checked that

. \/T - y^nOn+l ^ 3_ /. 1 \

^/a^a^-Li +l/^ T V r/

1 + . — — — — - 7 - - - , x - r y/OnOn^ + 1/\A" T v r

THEOREM 4 . — Let_j_be a positive real number and Vn = 1 + i-(\/^n^n+i + 4r — ^/a^On+i)2. J/ n is an even positive integer, then among three consecutive convergents pi/qi of ^ (i = n — 2, n — 1, n), at least one satisfies the following inequalities :

(19) _ ^ _ _ < ^ _ P i < _ _ _ ,

VnQiQi+l <li rnQi<li+l

and at least one satisfies one of the following inequalities : (20) ^ - ^ < - — —1— — ,

<li VnqiQi+l

(21) ^ _ ^ > _ _ _ _ .

n- i^.n.n- , -.

qi ^nqiqi+i

Proof. — If Dn-i < r, then by (7) and THEOREM 1 (I) we have Cn-i > 1 + 1/r = Vn and min(C^-2,Cn) < T-KI + 1/r) == r-1^.

Hence by (6) the left hand side of (19) is true for i = n — 1, and (21) is true for i = n — 2 or n.

UDn-i > r, then by (7) and THEOREM 2 (I) we have Cn-i < 1+1/r = Vn and max(C^-2,Cn) > T^I + 1/r) = r""1^- Hence by (6) we know that (20) is true for i == n — 1, and the right hand side of (19) is true for 2\ = n — 2 or n.

If Dn-i = r, then by THEOREM 1 (II) and THEOREM 2 (II), we have min(C^-2,C^) < r^i/n and max(Cn-2,C^) > T~1^. Hence (21) is true for i such that Ci = min(Cn-2,Cn), the.right hand side of (19) is true for i such that Cz = max(C^_2,C^).

Let

, _ f 0'n if 7i is even,

n ~ \ ^+1 ^ n ls odd;

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE

(9)

66 such that

J. TONG

, f an+i if n is even,

"n+i = \ .p . , , 1^ Oyz+2 it n is odd,

and /3n = 1 + |[(\AWn+i + 4r - -/dnri^+i)2. Using THEOREM 4 if n is even, or replacing n - 1 by n in THEOREM 4 if n is odd, we have the following theorem.

THEOREM 5. — Let r be a positive real number. Among four consecu- tive convergentspi/q, off, (i = n-2, n-1, n, n-1), at least one satisfies the following inequalities :

(

22

) -^-

PnQiqi^i qi PnQiqi-^-i1

—<^-

pl

<7^——'

and at least one satisfies one of the following inequalities :

(23) ^ - ^ < - _ _ _ _ ,

Qi PnQiQi-^1

(24) ^^>____.

Qi PnQiqi-^-1

Since we always have d^+i > 1, the following corollary is immediate.

COROLLARY 3. — Let r be a positive real number. Among any four consecutive convergents p,/q, of ^ (i = n - 2, n - 1, n, n +1), at least one does not satisfy the following inequalities :

<^-^<

j(3+2T-^l+4r)g^+i q, ^(3 + 2r - v/^T47)^+7'

Acknowledgement. — The author thanks the referee sincerely for his very valuable suggestions to improve this paper.

TOME 117 —— 1989 —— N° 1

(10)

BIBLIOGRAPHIE

[I] BAGEMIHL (F.) and MCLAUGHLIN (J.R.). — Generalization of some classical theorems concerning triples of consecutive con'vergents to simple continued fractions, J. Reine Angew. Math., t. 221, 1966, p. 146-149.

[2] BOREL (E.). — Contribution a 1'analyse arithmetique du continu, J. Math. Pures Appl., t. 9, 1903, p. 329-375.

[3] LEJEUNE DIRICHLET (G.P.). — Werke Bd I, I I . — Berlin, Reimer 1889, 1897.

[4] FUJIWARA (M.). — Bemerkung zur Theorie der Approximation der irrationalen Zahlen durch rationale Zahlen, Tohoku Math. J., t. 14, 1918, p. 109-115.

[5] HURWITZ (A.). — Uber die angenaherte Darstellung der irrationalzahlen durch rationale Briiche, Math. Ann., t. 39, 1891, p. 279-284.

[6] LEVEQUE (W.J.). — On asymmetric approximations, Michigan Math. J., t. 2, 1953, P- 1-6.

[7] MULLER (M.). — Uber die Approximation reeller Zahlen durch die Naherungs- briiche ihres regelmassigen Kettenbruches, Arch. Math., t. 6, 1955, p. 253-258.

[8] PERRON (0.). — Die Lehre von den Kettenbriichen I, I I . — Leipzig, 3rd ed.

Teubner, 1954.

[9] ROBINSON (R.M.). — Unsymmetric approximation of irrational numbers, Bull.

Amer. Math. Soc., t. 53, 1947, p. 351-361.

[10] SEGRE (B.). — Lattice points in infinite domains and asymmetric Diophantine approximation, Duke Math. J., t. 12, 1945, p. 337-365.

[II] Szusz (P.). — On a theorem of Segre, Ada Arith., t. 23, 1973, p. 371-377.

[12] TONG (J.). — The conjugate property of the Borel theorem on Diophantine approximation, Math. Z., t. 184, 1983, p. 151-153.

[13] TONG (J.). — On two theorems of Kopetzky and Schnitzer on the approximation of continued fractions, J. Reine Angew. Math., t. 362, 1985, p. 1-3.

[14] TONG (J.). — A theorem on approximation of irrational numbers by simple continued fractions, Proc. Edinburgh Math. Soc., t. 31, 1988, p. 197-204.

[15] TONG (J.). — Segre's theorem on asymmetric Diophantine approximation, J.

Number Theory, t. 28, 1988, p. 116-118.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE

Références

Documents relatifs

Schütte hat in 54 ein erheblich weiter reichendes Bezeichnungssystem für Ordinalzahlen angegeben und es auf eine Konstruktive Art beschrieben ; Schütte hat dabei bemerkt, dass

Kürzlich habe ich eine Abschätzung nach oben für die Lage- rungsdichte eines Systems inkongruenter Kreise bewiesen i),.. die von L. Molnär vermutet worden war

UBER SIMULTANE APPROXIMATION ALGEBRAISCHER ZAHLEN DURCH RATIONALE 161 FOLG~,RUNG.. Einige der zum Beweis der Hauptresultate benStigten Ergeb- nisse sind vielleicht

Siegel [19] eingefiihrte Mass zu beniitzen.. Eine Verallgemeinerung in anderer Richtung findet sich in [17]. Die For- reel ist gfiltig, falls S beschr/Cnkt und

rationalen Funktionen in z, die einer Definitionsgleichung mit algebraischen Zahlkoeffizienten geniigen, woraus sich in bekannter Weise eine Beziehung mit ganzen

EINIGE BEMERKUNGEN UBER DIE DARSTELLUbIG GAblZER ZAHLEN DURCH BINARE KUBISCHE FORMEN MIT

reellen Halbachse über alle Grenzen wächst, so kônnen sich die beiden Lôsungen, wenn überhaupt, nur durch einen konstanten. Faktor

Darstellungen von S)* induziert werden, so heiBt solche Gruppe Sj* nach I. Schur eine hinreichend ergànzte Gruppe; eine hin-.. reichend ergànzte Gruppe, deren