• Aucun résultat trouvé

Organisation du cours

N/A
N/A
Protected

Academic year: 2022

Partager "Organisation du cours "

Copied!
46
0
0

Texte intégral

(1)

Licence Professionnelle Automatisme et Robotique Session 2016 - Amiens

Fabio MORBIDI

Laboratoire MIS

Équipe Perception et Robotique Université de Picardie Jules Verne E-mail: fabio.morbidi@u-picardie.fr

ME 4.2

(2)

Organisation du cours

Date matin/

après midi CM TD Contrôle Lieu

16 oct. 2015 matin X Promeo

30 oct. 2015 matin X X Promeo

28 jan. 2016 après midi X DS Dpt. EEA 11 fév. 2016 après midi TP1 Dpt. EEA 6 avr. 2016 matin & a.m. X TP2 Dpt. EEA Matin: 8h30-12h15, pause 10h15-10h30

Après midi: 13h15-17h00, pause 15h15-15h30

(3)

Chapitre 1: Cinématique du solide

Chapitre 2: Cinétique et dynamique des systèmes de solides

1. Définition d’un solide indéformable

2. Vitesse et accélération des points d’un solide 3. Torseur cinématique

1. Torseur cinétique

3. Torseur dynamique et Principe Fondamental de la Dynamique 2. Opérateur d’inertie

4. Études de cas: efforts sur les préhenseurs, couple moteur, liaison des robots au sol pour les cellules de soudage [TD]

Plan du cours

4. Types de liaisons et études de cas

θ

(4)

On appelle mouvement plan sur plan le mouvement d’un solide S attaché au repère R1 tel qu’un plan de S, (O1, x1, y1) par exemple, reste confondu avec un plan (O, x, y) du repère de référence R

Mouvement plan sur plan

Le torseur cinématique se réduit dans ces conditions à:

{V(S/R)} =

Ω(S/R) V (O1 S/R)

O1

avec

et la condition

pour que le point O1 reste dans le plan de base

V (O1 S/R) · z = 0 Ω(S/R) = ˙ψ z

(5)

Il existe un point I unique appelé Centre Instantané de Rotation (CIR) du mouvement de S par rapport à R tel que:

Mouvement plan sur plan

V (I S/R) = 0

O x

y

S

Repère R z

I

V(I S/R) = 0

A

B

V(A S/R)

V(B S/R)

R1

x1

y1

O1

(6)

Mouvement plan sur plan

Remarques

O x

y

Repère R z

•  Le point I existe s’il y a un vecteur vitesse de rotation non nul

•  La position du point I varie au cours du temps Ω(S/R)

S

I A

B

V(A S/R)

V(B S/R)

R1

x1

y1

O1

Centre Instantané de Rotation

(7)

Mouvement plan sur plan

Définition

1.  On appelle base b du mouvement de S par rapport à R la trajectoire de I dans le repère R

2. On appelle roulante r du mouvement de S par rapport à R la trajectoire de I dans le repère R1

O x

y

Repère R z

S

I A

B

V(A S/R)

V(B S/R)

R1

x1

y1

O1

Trajectoire de I

(8)

Mouvement plan sur plan

Determination du CIR

Il est aisé à partir de la définition de I de connaître sa position à un instant t si on connaît au moins la vitesse de deux points.

En effet, pour un point A on écrit:

Cette équation montre que le vecteur est perpendiculaire au vecteur vitesse connu

Le point I se situe sur cette perpendiculaire. Si on connaît une autre

vitesse pour un second point B l’intersection des droites donne la position à l’instant t du point I

V (A S/R) = V(I S/R) + Ω(S/R) −→

IA = 0 + ˙θ z −→

−→ IA IA

V (A S/R)

O x

y S

Repère R z

I A

B

V(A S/R)

−→IA

(9)

Mouvement plan sur plan

Propriétés de la base et de la roulante

O x

y

Repère R z

1.  La base et la roulante sont deux courbes tangentes

en I à chaque instant (en effet, nous avons )

2. Comme la vitesse relative est nulle par définition du CIR, que cette vitesse relative représente la vitesse de glissement de r

par rapport à b, on peut dire que les deux courbes roulent sans glisser l’une sur l’autre

V(I r/b)

S

I A

B

V(A S/R)

V(B S/R)

R1

x1

y1

O1

V (I/b) = V(I/r)

(10)

Propriétés générales des torseurs

Egalité : deux torseurs sont égaux si les éléments de réduction et en un même point sont égaux

Somme : la somme (en un même point) de deux torseurs est un torseur (l’ensembles des torseurs cinématiques est donc fermé p.r.à addition)

Deux torseurs particuliers

Glisseur: il correspond (en cinématique) à un mouvement de rotation autour d’un axe fixe. En effet, pour tout point A situé sur l’axe, on a:

V (A) = 0

Couple: il correspond à un mouvement de translation pour lequel on ne peut pas trouver de point à vitesse nulle

Théorème

Tout torseur se décompose de façon unique en la somme d’un glisseur et d’un couple

Ω V

(11)

Définition des actions mécaniques

•  Une action mécanique peut être exercée sur un solide S1 pour le maintenir au repos, le déplacer ou le déformer

Par exemple: le pied d’un footballeur qui frappe un ballon, le rotor qui entraîne l’axe d’une turbine ou encore les champs électriques et magnétiques qui dévient l’électron

•  Ces actions sont exercées par le solide S2 sur le solide S1

S

1

S

2

(12)

Définition de actions mécaniques

Définition:

Deux solides S1 et S2 sont en interaction si on peut trouver dans l’un une modification de position et d’orientation qui entraîne une modification dans l’autre

Définition:

On appelle force la grandeur vectorielle décrivant une interaction capable de produire un mouvement ou de créer une déformation.

On dit alors que S2 exerce une action mécanique sur S1 si relativement à un référentiel les mouvements (ou déformations) de S1 par rapport à ce référentiel sont différents selon que S2 soit présent ou absent

S

1

S

2

(13)

Définition des actions mécaniques

Les actions se classent en deux grandes catégories :

•  Actions à distance : elles sont liées à des champs d’accélération (pesanteur) ou électromagnétiques, par exemple

•  Actions de contact : de pression (par exemple, le pied qui frappe un ballon, le gaz qui maintient le ballon sous pression)

Les actions s’exercent soit sur :

•  Une surface : contact solide-solide, l’action d’un gaz sur un solide

•  Un volume : c’est le cas de la gravité

Nous sommes intéressés à des actions de contact sur surface

(14)

Liaisons

On va considerer les différentes liaisons existantes entre deux solides.

L’association de surfaces peut être (liste non exaustive):

1.  Ponctuelle (bille sur plan)

2.  Linéaire rectiligne (cylindre sur plan)

3.  Linéiqueire (bille dans cylindre de même rayon) 4.  Rotule (bille dans sphère de même rayon) 5.  Appui plan (plan sur plan)

6.  Pivot glissant (cylindre à base circulaire dans cylindre à base circulaire) 7.  Glissière (cylindre à base non circulaire dans cylindre à base non circulaire) 8.  Encastrement (aucun mouvement relatif)

ar. pris./rot.

ar. rot. 3D ar. pris.

ar. pris.

1

2

3 4

5

6

ar. pris. = articulation prismatique d’un robot ar. rot. = articulation

rotoïde d’un robot

Nombre de

contraintes (DDL) croissant (décroissant)

(15)

Liaisons

Degrés de liberté d’un liaison

•  On appelle degrés de liberté dans une liaison, les mouvements relatifs indépendants d'un solide par rapport à l'autre autorisés par cette liaison

•  En d'autres termes, c’est le nombre de paramètres scalaires utiles pour

paramétrer la position du solide par rapport au repère de référence et que l’on peut faire varier indépendamment les uns des autres

Liaison unilatérale

Certaines liaisons peuvent varier au cours du

temps, par exemple un livre posé sur une table.

Il peut être posé (contact avec la table) ou enlevé (il n’y a plus de contact). On parle alors de contact unilatéral.

Si techniquement il y a impossibilité d’enlever le livre de la table alors il y a contact bilatéral

(16)

1. Liaison ponctuelle

•  Cette liaison suppose dans la pratique des solides indéformables du type sphère en appui sur un plan, cylindres croisés ou toute surface de forme quelconque en appui sur une autre en un point

•  On suppose le contact permanent en O, donc la vitesse ne peut pas avoir de composante selon l’axe (O, z)

•  Soit une liaison ponctuelle d’axe z. Le moment en O des actions transmissibles entre S2 et S1 est nul. De plus si le contact s’effectue sans frottement alors les efforts transmissibles sont d’axe z

•  Le torseur cinématique de cette liaison (exprimé en O) est de la forme :

{V(S2/S1)} =

Ωx Ωy Ωz

Vx(O S2/S1) Vy(O S2/S1) 0

O

Composantes des vecteurs de vitesse (5 DDL)

(S2)

(17)

1. Liaison ponctuelle

Exemple: Roulement à une rangée de billes

Le contact entre chaque bille du roulement et une des cages est de type ponctuel

Contact ponctuel

(18)

2. Liaison linéaire rectiligne

•  Cette liaison est du type cylindre en appui sur un plan.

La ligne de contact entre les deux solides est une droite

•  Le torseur cinématique de cette liaison (en O) est de la forme :

{V(S2/S1)} =

Ωx 0 Ωz Vx Vy 0

O

Remarque: Pour fabriquer des roulements de petite dimension on utilise non pas des billes mais des aiguilles (cylindres).

Le contact aiguille avec la cage de roulement est de type linéaire rectiligne

(19)

4. Liaison rotule

•  Cette liaison est du type sphère dans une sphère creuse de même diamètre. La surface de contact entre les deux solides est la sphère

•  Le torseur cinématique de cette liaison (en O) est de la forme :

Exemple

{V(S2/S1)} =

Ωx Ωy Ωz

0 0 0

O

(S2)

(S1)

O

(S2)

(S1)

(S1)

(S2)

(20)

5. Liaison appui plan

•  Cette liaison est du type plan sur plan. La surface de contact entre les deux solides est un plan

•  Le torseur cinématique de cette liaison (en O) est de la forme :

Exemple: appui plan défini par une butée avec roulements

{V(S2/S1)} =

0 0 Ωz

Vx Vy 0

O

(S1)

(21)

6. Liaison pivot glissant

•  Cette liaison est du type cylindre à base circulaire dans un cylindre creux à base circulaire de même rayon. La surface de contact entre les deux solides est un cylindre

•  Le torseur cinématique (en O) de cette liaison est de la forme :

{V(S2/S1)} =

Ωx 0 0

Vx 0 0

O

(S1)

(S2)

x

y z

(22)

6. Liaison pivot glissant

•  Exemples

Injecteur d’un moteur à combustion interne

(S1) (S2)

Tiges de métal et parois d’un babyfoot

(23)

7. Liaison glissière

•  Cette liaison est du type cylindre à base non circulaire dans un

cylindre identique. La surface de contact entre les deux solides est la surface du cylindre

•  Le torseur cinématique (en O) de cette liaison est de la forme :

{V(S2/S1)} =

0 0 0 Vx 0 0

O

Exemple

(24)

Analyse des mécanismes

•  Nous allons maintenant nous intéresser à des systèmes de solides en liaison les uns avec les autres par des liaisons sans frottement (liaisons parfaites). Les solides sont indéformables

•  L’objectif est à la fois d’étudier la cinématique d’un mécanisme (relation entrée/sortie) et les actions mécaniques entre les solides du système

•  Chaque solide étant en contact avec un ou plusieurs autres, on retrouvera une des liaisons élémentaires pour chaque liaison entre deux solides. On pourra donc tracer un graphe, dit le graphe des liaisons

S1

S2

S3

Exemple de graphe des liaisons

Nœud du graphe: solide

Arête du graphe: type de liaison

L12

L13

(25)

Analyse des mécanismes

Selon les cas nous avons différentes situations : 1 - Liaison fermée

Le schéma ci-dessous représente un réducteur simple. Le solide 1 est en liaison pivot glissant avec le solide 0 de même que le solide 2 avec 0

On peut faire l’hypothèse d’un contact ponctuel entre 1 et 2 ce qui permet de tracer le graphe des liaisons

suivant:

0

lias. pivot

lias. pivot

(26)

Analyse des mécanismes

Le graphe des liaisons est : 2 - Liaison ouverte

Dans certains cas – les robots industriels par exemple – il y a des bras articulés qui se promènent dans l’espace

rotule rotule

Par exemple le robot en figure:

(27)

Analyse des mécanismes

Chaîne ouverte

•  Dans le cas d’une chaîne dite ouverte (comme dans un robot manipulateur) on a n + 1 solides en liaisons les uns par rapport aux autres, chaque solide i

étant en contact avec i − 1 et i + 1

•  On considère que le bâti est noté 0. Il y a donc n liaisons entre les solides

•  On suppose généralement que les efforts extérieurs sont appliqués au dernier solide de la chaîne (l’outil du manipulateur)

(28)

Analyse des mécanismes

•  Nous aurons donc 6 équations scalaires pour un nombre Nc d’inconnues cinématiques indépendantes (la somme des inconnues de chaque torseur cinématique). Nc s’appele le degré de mobilité de la chaîne

Chaîne ouverte

•  Par composition des mouvements, on peut écrire que :

{V(n/0)} =

n

i=1

{V(i/n i)}

(29)

Analyse des mécanismes

3 - Liaison “complexe”

Dans la majorité des cas on trouve une combinaison des assemblages précédents

Exemple de liaison complexe: train épicyloïdal (5 solides)

(30)

Analyse des mécanismes

Exemple: portique

Mur

Barre métallique Lias. rotule

Lias. rotule Lias. pivot

3 - Liaison “complexe”

Dans la majorité des cas on trouve une combinaison des assemblages précédents

(31)

Analyse des mécanismes

3 - Liaison “complexe”

Graphe des liaisons du portique

Nous savons que les liaisons sont de type rotule en A et B, donc:

{V(2/0)} =

Ωx Ωy Ωz

0 0 0

A

{V(2/0)} =

Ωx Ωy Ωz

0 0 0

B De la même façon nous avons:

(32)

Chapitre 1: Cinématique du solide

Chapitre 2: Cinétique et dynamique des systèmes de solides

1. Définition d’un solide indéformable

2. Vitesse et accélération des points d’un solide 3. Torseur cinématique

1. Torseur cinétique

3. Torseur dynamique et Principe Fondamental de la Dynamique 2. Opérateur d’inertie

4. Études de cas: efforts sur les préhenseurs, couple moteur, liaison des robots au sol pour les cellules de soudage [TD]

Plan du cours

4. Types de liaisons et études de cas

θ

(33)

Quantité de mouvement

Pour un point matériel M de masse élémentaire dm la quantité de mouvement associée au mouvement de ce point par rapport à un repère R est :

Pour un système matériel continu S on a à un instant t quelconque :

p(S/R) =

MS

V (M/R)dm p(M/R) = V (M/R)dm

Si le solide est homogène de masse volumique ρ (resp. surfacique ou linéique) on a:

p(S/R) =

MS

V (M/R)ρ dν

Remarque: La quantité de mouvement étant calculée à partir du vecteur vitesse, elle dépend du repère par rapport auquel on travaille

M

dm

Élément de matière infinitésimal autour du point M

R

(34)

Moment cinétique

Définition:

On appelle moment cinétique au point A la quantité :

Propriété:

On montre aisément la relation caractéristique d’un torseur :

Remarque: Le moment cinétique dépend lui aussi du repère par

rapport auquel on travaille. Le point A de calcul de ce moment est un point quelconque, pas nécessairement appartenant au solide S

σ(A, S/R) =

MS

−−→AM V (M/R)dm R M

A

dm

σ(B, S/R) = σ(A, S/R) + p(S/R) −−→

AB

Remarque: rappel la relation de Varignon …

V (B S/R) = V (A S/R) + Ω(S/R) −−→

AB

(35)

Torseur cinétique

On peut donc en conclure qu’il existe un torseur appelé torseur cinétique de S par rapport à R qui est noté :

Remarque:

Comme pour tous les torseurs son expression varie selon le point où il est calculé. En particulier on peut décider de le calculer au point G, le centre de masse du solide S

{C(A, S/R)} =

⎧⎨

p(S/R) =

MS V (M/R)dm σA(S/R) =

MS

−−→AM V (M/R)dm

⎫⎬

A

En utilisant le principe de conservation de la masse, on trouve:

{C(G, S/R)} =

MS V (G/R)

MS

−−→GM V (M/R)dm

G

où est la masse totale du solide S

(36)

Torseur cinétique

Exemple: calcul du torseur cinétique d’une barre

Considérer une barre d’épaisseur négligeable, de longueur l, homogène de masse m en liaison pivot d’axe z avec le bâti.

On utilise la lettre M pour indiquer un point générique de la barre.

Question: calculer le torseur cinétique au centre de gravité G de la barre

x

y

x1

y1

z x1

dx1

M

(37)

Torseur cinétique

Exemple: torseur cinétique d’une barre

Le vecteur position vaut

ce qui donne:

−−→OG = 1 2 x1

Pour calculer le moment cinétique, il faut prendre un petit élément de longueur dx1 situé à une distance x1 de G. L’élément de masse dm

vaut (m/l)dx1, donc:

x

y

x1

y1

z x1

dx1

−−→OG

M V (G/R) = l

2 α y˙ 1

MS

−−→GM V (M/R)dm =

l

0 (x1 l/2)x1 x1 α y˙ 1 dm

= m α z˙ l

(x1 l/2)x1 dx1 = m l2 12 α z˙

(38)

Donc le torseur cinétique au point G se résume à:

{C(G, S/R)} =

⎧⎪

⎪⎨

⎪⎪

m l

2 α y˙ 1 m l2

12 α z˙

⎫⎪

⎪⎬

⎪⎪

G

Torseur cinétique

x

y

x1

y1

z x1

dx1

M

Exemple: torseur cinétique d’une barre

(39)

Energie cinétique

Définition:

L’énergie cinétique T d’un système matériel S en mouvement par rapport à R est donnée par:

T(S/R) = 1 2

MS

V 2(M/R)dm

Exemple:

L’énergie cinétique d’une barre en rotation par rapport à O:

T(barre/R) = 1 2

M∈barre

V 2(M/R)dm = 1 2

l

0

m

l (uα x˙ 1)2du = m l2 6 α˙2 R

S

M

O

(40)

Moments d’inertie

Moment d’inertie d’un solide par rapport à un axe

Soit un système matériel S. Son moment d’inertie par rapport à une droite est donné par:

Dans cette expression le point H

correspond à la projection orthogonale de M sur la droite

Donc H M représente la distance entre le point M et la droite

Δ

Δ

S

u

IΔ =

MS HM2 dm

Δ

(41)

Moments d’inertie

Moment d’inertie d’un solide par rapport à un plan

Soit un système matériel S. Son moment d’inertie par rapport à un plan P est donné par:

Dans cette expression le point H correspond à la projection orthogonale de M sur le plan P.

Donc H M représente la distance entre le point M et le plan P.

Lorsque l’on effectue l’intégration, pour M donné le point H l’est aussi mais comme M varie lors de l’intégration, H varie aussi

IP =

MS HM2 dm

(42)

Chapitre 1: Cinématique du solide

Chapitre 2: Cinétique et dynamique des systèmes de solides

1. Définition d’un solide indéformable

2. Vitesse et accélération des points d’un solide 3. Torseur cinématique

1. Torseur cinétique

3. Torseur dynamique et Principe Fondamental de la Dynamique 2. Opérateur d’inertie

4. Études de cas: efforts sur les préhenseurs, couple moteur, liaison des robots au sol pour les cellules de soudage [TD]

Plan du cours

4. Types de liaisons et études de cas

θ

(43)

Torseur dynamique

On définit le torseur dynamique au point A d’un système matériel S en mouvement par rapport à un repère R par :

Rélation entre le torseur cinétique et dynamique

{D(A, S/R)} =

⎧⎨

MS Γ(M/R)dm δA(S/R) =

MS

−−→AM Γ(M/R)dm

⎫⎬

A

Les deux torseurs sont construits de la même manière avec dans l’un les vitesses et dans le second les accélérations. Il est logique de voir si il n’existe pas des relations de dérivation entre les deux. En effet, nous trouvons que (G = centre de masse du solide; MS = masse du solide):

MS

−−→AM Γ(M/R)dm = δA(S/R) = d

dt A(S/R)]R +m V (A/R)V (G/R)

Moment dynamique par rapport à A Quantité d'accélération

R S

M A

MS V (A/R) V (G/R)

(44)

Principe fondamental de la dynamique (PFD)

•  Le PFD est dû à Newton (“deuxième loi de Newton”).

Il énonce une relation entre les causes (les actions

mécaniques) et les effets (le mouvement caractérisé par l’accélération et non la vitesse)

•  Il existe des référentiels privilégiés dits galiléens dans lesquels le mouvement d’un point matériel isolé est rectiligne uniforme: ceci constitue le principe d’inertie

•  Galilée (G. Galilei): Tout corps persévère dans l’état de repos

ou de mouvement uniforme en ligne droite dans lequel il se trouve à moins que quelque force n’agisse sur lui et ne le contraigne à changer d’état

•  Pour le monde grec (Aristote) au contraire le mouvement devait s’arrêter dès que cessaient la cause qui lui avait donné naissance

•  Assumption: Nous nous intéressons à des systèmes n’échangeant pas de matière avec l’extérieur: ce sont des systèmes dits isolé (ou fermés)

Isaac Newton (1642-1727)

(Rg)

(45)

Principe fondamental de la dynamique (PFD)

Le moment dynamique par rapport à un point A donné d'un corps S dans un référentiel galiléen Rg est proportionnel à la somme des moments des forces qu'il subit exprimés au point A

Ceci s’écrit:

Énoncé général (PFD en rotation)

δA(S/Rg) =

n

i=1

MA(Fi) MA(Fi)

où est le moment de la force par rapport à Fi A

L'expression se simplifie si l'on considère le moment par rapport au

centre de masse G, ou bien par rapport à un point géométrique A fixe dans le référentiel galiléen

Remarque: On peut résumer le PFD en rotation et en translation avec deux torseurs. Le torseur dynamique et le "torseur d'action” (qui nous n’avons pas étudié dans ce cours) {D(A, S/Rg)}

(46)

Département EEA, UPJV : 33 rue Saint-Leu, 80039 Amiens (2o étage)

Accès au dépt. EEA Parking

Références

Documents relatifs

Pour la géométrie du contact, indiquer soit contact ponctuel, soit contact linéique rectiligne (ligne droite) ou linéique annulaire (suivant un cercle), soit

Dans cette série d’exercices, on cherchera à déterminer la section du solide par un plan quelconque (donc pas nécessairement parallèle à une face) défini par des points situés

Dans cette série d’exercices, on cherchera à déterminer la section du solide par un plan quelconque (donc pas nécessairement parallèle à une face) défini par des points situés

Vous pourrez également faire l’acquisition du kit de montage LX.5015, dans lequel vous trouverez tous les composants ainsi que le cir- cuit imprimé percé et sérigraphié. Lorsque

Dans les exemples jusqu’à présent cités, nous avons toujours dessiné les portes AND, OR, NAND, NOR, OR exclu- sif et NOR exclusif avec seulement deux entrées, mais comme vous pouvez

Après avoir gravé le circuit imprimé donné, à l’échelle 1, en figure 4, par votre méthode habituelle ou par la méthode décrite dans le numéro 26

DOUZE..

Associe chaque définition au mot qui convient. a-Phagocytose 2) Processus par lequel les microbes sont détruits par certaines catégories de cellules. b-Antigène 3) Capacité