• Aucun résultat trouvé

Observation of the doubly strange b baryon Omega_b-

N/A
N/A
Protected

Academic year: 2021

Partager "Observation of the doubly strange b baryon Omega_b-"

Copied!
7
0
0

Texte intégral

(1)

arXiv:0808.4142v2 [hep-ex] 8 Dec 2008

Observation of the doubly strange b baryon Ω

− b

V.M. Abazov36, B. Abbott75, M. Abolins65, B.S. Acharya29, M. Adams51, T. Adams49, E. Aguilo6, M. Ahsan59,

G.D. Alexeev36 , G. Alkhazov40 , A. Alton64,a, G. Alverson63 , G.A. Alves2 , M. Anastasoaie35 , L.S. Ancu35 , T. Andeen53, B. Andrieu17, M.S. Anzelc53, M. Aoki50, Y. Arnoud14, M. Arov60, M. Arthaud18, A. Askew49,

B. ˚Asman41

, A.C.S. Assis Jesus3

, O. Atramentov49 , C. Avila8 , F. Badaud13 , L. Bagby50 , B. Baldin50 , D.V. Bandurin59, P. Banerjee29, S. Banerjee29, E. Barberis63, A.-F. Barfuss15, P. Bargassa80, P. Baringer58,

J. Barreto2, J.F. Bartlett50, U. Bassler18, D. Bauer43, S. Beale6, A. Bean58, M. Begalli3, M. Begel73,

C. Belanger-Champagne41, L. Bellantoni50, A. Bellavance50, J.A. Benitez65, S.B. Beri27, G. Bernardi17,

R. Bernhard23, I. Bertram42, M. Besan¸con18, R. Beuselinck43, V.A. Bezzubov39, P.C. Bhat50, V. Bhatnagar27,

C. Biscarat20, G. Blazey52, F. Blekman43, S. Blessing49, K. Bloom67, A. Boehnlein50, D. Boline62, T.A. Bolton59,

E.E. Boos38, G. Borissov42, T. Bose77, A. Brandt78, R. Brock65, G. Brooijmans70, A. Bross50, D. Brown81,

X.B. Bu7 , N.J. Buchanan49 , D. Buchholz53 , M. Buehler81 , V. Buescher22 , V. Bunichev38 , S. Burdin42,b,

T.H. Burnett82, C.P. Buszello43, J.M. Butler62, P. Calfayan25, S. Calvet16, J. Cammin71, E. Carrera49,

W. Carvalho3 , B.C.K. Casey50 , H. Castilla-Valdez33 , S. Chakrabarti18 , D. Chakraborty52 , K.M. Chan55 , A. Chandra48, E. Cheu45, F. Chevallier14, D.K. Cho62, S. Choi32, B. Choudhary28, L. Christofek77,

T. Christoudias43, S. Cihangir50, D. Claes67, J. Clutter58, M. Cooke50, W.E. Cooper50, M. Corcoran80,

F. Couderc18 , M.-C. Cousinou15 , S. Cr´ep´e-Renaudin14 , V. Cuplov59 , D. Cutts77 , M. ´Cwiok30 , H. da Motta2 , A. Das45, G. Davies43, K. De78, S.J. de Jong35, E. De La Cruz-Burelo33, C. De Oliveira Martins3, K. DeVaughan67,

J.D. Degenhardt64 , F. D´eliot18 , M. Demarteau50 , R. Demina71 , D. Denisov50 , S.P. Denisov39 , S. Desai50 , H.T. Diehl50, M. Diesburg50, A. Dominguez67, H. Dong72, T. Dorland82, A. Dubey28, L.V. Dudko38, L. Duflot16,

S.R. Dugad29, D. Duggan49, A. Duperrin15, J. Dyer65, A. Dyshkant52, M. Eads67, D. Edmunds65, J. Ellison48,

V.D. Elvira50, Y. Enari77, S. Eno61, P. Ermolov38,‡, H. Evans54, A. Evdokimov73, V.N. Evdokimov39,

A.V. Ferapontov59, T. Ferbel71, F. Fiedler24, F. Filthaut35, W. Fisher50, H.E. Fisk50, M. Fortner52, H. Fox42,

S. Fu50, S. Fuess50, T. Gadfort70, C.F. Galea35, C. Garcia71, A. Garcia-Bellido71, V. Gavrilov37, P. Gay13,

W. Geist19, W. Geng15,65, C.E. Gerber51, Y. Gershtein49, D. Gillberg6, G. Ginther71, N. Gollub41, B. G´omez8,

A. Goussiou82 , P.D. Grannis72 , H. Greenlee50 , Z.D. Greenwood60 , E.M. Gregores4 , G. Grenier20 , Ph. Gris13 , J.-F. Grivaz16, A. Grohsjean25, S. Gr¨unendahl50, M.W. Gr¨unewald30, F. Guo72, J. Guo72, G. Gutierrez50,

P. Gutierrez75 , A. Haas70 , N.J. Hadley61 , P. Haefner25 , S. Hagopian49 , J. Haley68 , I. Hall65 , R.E. Hall47 , L. Han7, K. Harder44, A. Harel71, J.M. Hauptman57, J. Hays43, T. Hebbeker21, D. Hedin52, J.G. Hegeman34,

A.P. Heinson48, U. Heintz62, C. Hensel22,c, K. Herner72, G. Hesketh63, M.D. Hildreth55, R. Hirosky81, J.D. Hobbs72,

B. Hoeneisen12 , H. Hoeth26 , M. Hohlfeld22 , S. Hossain75 , P. Houben34 , Y. Hu72 , Z. Hubacek10 , V. Hynek9 , I. Iashvili69, R. Illingworth50, A.S. Ito50, S. Jabeen62, M. Jaffr´e16, S. Jain75, K. Jakobs23, C. Jarvis61, R. Jesik43,

K. Johns45 , C. Johnson70 , M. Johnson50 , D. Johnston67 , A. Jonckheere50 , P. Jonsson43 , A. Juste50 , E. Kajfasz15 , J.M. Kalk60, D. Karmanov38, P.A. Kasper50, I. Katsanos70, D. Kau49, V. Kaushik78, R. Kehoe79, S. Kermiche15,

N. Khalatyan50, A. Khanov76, A. Kharchilava69, Y.M. Kharzheev36, D. Khatidze70, T.J. Kim31, M.H. Kirby53,

M. Kirsch21, B. Klima50, J.M. Kohli27, E.V. Komissarov36,‡, J.-P. Konrath23, A.V. Kozelov39, J. Kraus65,

T. Kuhl24, A. Kumar69, A. Kupco11, T. Kurˇca20, V.A. Kuzmin38, J. Kvita9, F. Lacroix13, D. Lam55, S. Lammers70,

G. Landsberg77 , P. Lebrun20 , W.M. Lee50 , A. Leflat38 , J. Lellouch17 , J. Li78,‡, L. Li48 , Q.Z. Li50 , S.M. Lietti5 , J.K. Lim31, J.G.R. Lima52, D. Lincoln50, J. Linnemann65, V.V. Lipaev39, R. Lipton50, Y. Liu7, Z. Liu6,

A. Lobodenko40 , M. Lokajicek11 , P. Love42 , H.J. Lubatti82 , R. Luna3 , A.L. Lyon50 , A.K.A. Maciel2 , D. Mackin80 , R.J. Madaras46, P. M¨attig26, C. Magass21, A. Magerkurth64, P.K. Mal82, H.B. Malbouisson3, S. Malik67,

V.L. Malyshev36 , Y. Maravin59 , B. Martin14 , R. McCarthy72 , A. Melnitchouk66 , L. Mendoza8 , P.G. Mercadante5 , Y.P. Merekov36, M. Merkin38, K.W. Merritt50, A. Meyer21, J. Meyer22,c, J. Mitrevski70, R.K. Mommsen44,

N.K. Mondal29, R.W. Moore6, T. Moulik58, G.S. Muanza20, M. Mulhearn70, O. Mundal22, L. Mundim3,

E. Nagy15 , M. Naimuddin50 , M. Narain77 , N.A. Naumann35 , H.A. Neal64 , J.P. Negret8 , P. Neustroev40 , H. Nilsen23, H. Nogima3, S.F. Novaes5, T. Nunnemann25, V. O’Dell50, D.C. O’Neil6, G. Obrant40, C. Ochando16,

D. Onoprienko59 , J. Orduna33 , N. Oshima50 , N. Osman43 , J. Osta55 , R. Otec10 , G.J. Otero y Garz´on50 , M. Owen44 , P. Padley80, M. Pangilinan77, N. Parashar56, S.-J. Park22,c, S.K. Park31, J. Parsons70, R. Partridge77, N. Parua54,

(2)

R. Piegaia1, J. Piper65, M.-A. Pleier22, P.L.M. Podesta-Lerma33,d, V.M. Podstavkov50, Y. Pogorelov55, M.-E. Pol2,

P. Polozov37, B.G. Pope65, A.V. Popov39, C. Potter6, W.L. Prado da Silva3, H.B. Prosper49, S. Protopopescu73,

J. Qian64 , A. Quadt22,c, B. Quinn66 , A. Rakitine42 , M.S. Rangel2 , K. Ranjan28 , P.N. Ratoff42 , P. Renkel79 , P. Rich44, J. Rieger54, M. Rijssenbeek72, I. Ripp-Baudot19, F. Rizatdinova76, S. Robinson43, R.F. Rodrigues3,

M. Rominsky75 , C. Royon18 , A. Rozhdestvenski36 , P. Rubinov50 , R. Ruchti55 , G. Safronov37 , G. Sajot14 , A. S´anchez-Hern´andez33, M.P. Sanders17, B. Sanghi50, G. Savage50, L. Sawyer60, T. Scanlon43, D. Schaile25,

R.D. Schamberger72, Y. Scheglov40, H. Schellman53, T. Schliephake26, S. Schlobohm82, C. Schwanenberger44,

A. Schwartzman68 , R. Schwienhorst65 , J. Sekaric49 , H. Severini75 , E. Shabalina51 , M. Shamim59 , V. Shary18 , A.A. Shchukin39, R.K. Shivpuri28, V. Siccardi19, V. Simak10, V. Sirotenko50, P. Skubic75, P. Slattery71,

D. Smirnov55 , G.R. Snow67 , J. Snow74 , S. Snyder73 , S. S¨oldner-Rembold44 , L. Sonnenschein17 , A. Sopczak42 , M. Sosebee78, K. Soustruznik9, B. Spurlock78, J. Stark14, J. Steele60, V. Stolin37, D.A. Stoyanova39,

J. Strandberg64 , S. Strandberg41 , M.A. Strang69 , E. Strauss72 , M. Strauss75 , R. Str¨ohmer25 , D. Strom53 , L. Stutte50, S. Sumowidagdo49, P. Svoisky55, A. Sznajder3, P. Tamburello45, A. Tanasijczuk1, W. Taylor6,

B. Tiller25, F. Tissandier13, M. Titov18, V.V. Tokmenin36, I. Torchiani23, D. Tsybychev72, B. Tuchming18,

C. Tully68, P.M. Tuts70, R. Unalan65, L. Uvarov40, S. Uvarov40, S. Uzunyan52, B. Vachon6, P.J. van den Berg34,

R. Van Kooten54, W.M. van Leeuwen34, N. Varelas51, E.W. Varnes45, I.A. Vasilyev39, P. Verdier20,

L.S. Vertogradov36 , Y. Vertogradova36 , M. Verzocchi50 , D. Vilanova18 , F. Villeneuve-Seguier43 , P. Vint43 , P. Vokac10, M. Voutilainen67,e, R. Wagner68, H.D. Wahl49, M.H.L.S. Wang50, J. Warchol55, G. Watts82,

M. Wayne55 , G. Weber24 , M. Weber50,f, L. Welty-Rieger54 , A. Wenger23,g, N. Wermes22 , M. Wetstein61 , A. White78, D. Wicke26, M. Williams42, G.W. Wilson58, S.J. Wimpenny48, M. Wobisch60, D.R. Wood63,

T.R. Wyatt44, Y. Xie77, S. Yacoob53, R. Yamada50, W.-C. Yang44, T. Yasuda50, Y.A. Yatsunenko36,

H. Yin7 , K. Yip73 , H.D. Yoo77 , S.W. Youn53 , J. Yu78 , C. Zeitnitz26 , S. Zelitch81 , T. Zhao82 , B. Zhou64 , J. Zhu72, M. Zielinski71, D. Zieminska54, A. Zieminski54,‡, L. Zivkovic70, V. Zutshi52, and E.G. Zverev38

(The DØ Collaboration)

1Universidad de Buenos Aires, Buenos Aires, Argentina

2

LAFEX, Centro Brasileiro de Pesquisas F´ısicas, Rio de Janeiro, Brazil

3

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

4Universidade Federal do ABC, Santo Andr´e, Brazil

5

Instituto de F´ısica Te´orica, Universidade Estadual Paulista, S˜ao Paulo, Brazil

6

University of Alberta, Edmonton, Alberta, Canada, Simon Fraser University, Burnaby, British Columbia, Canada, York University, Toronto, Ontario, Canada, and McGill University, Montreal, Quebec, Canada

7

University of Science and Technology of China, Hefei, People’s Republic of China

8Universidad de los Andes, Bogot´a, Colombia

9

Center for Particle Physics, Charles University, Prague, Czech Republic

10

Czech Technical University, Prague, Czech Republic

11Center for Particle Physics, Institute of Physics,

Academy of Sciences of the Czech Republic, Prague, Czech Republic

12

Universidad San Francisco de Quito, Quito, Ecuador

13LPC, Universit´e Blaise Pascal, CNRS/IN2P3, Clermont, France

14

LPSC, Universit´e Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France

15CPPM, Aix-Marseille Universit´e, CNRS/IN2P3, Marseille, France

16

LAL, Universit´e Paris-Sud, IN2P3/CNRS, Orsay, France

17

LPNHE, IN2P3/CNRS, Universit´es Paris VI and VII, Paris, France

18

CEA, Irfu, SPP, Saclay, France

19IPHC, Universit´e Louis Pasteur, CNRS/IN2P3, Strasbourg, France

20

IPNL, Universit´e Lyon 1, CNRS/IN2P3, Villeurbanne, France and Universit´e de Lyon, Lyon, France

21

III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany

22Physikalisches Institut, Universit¨at Bonn, Bonn, Germany

23

Physikalisches Institut, Universit¨at Freiburg, Freiburg, Germany

24

Institut f¨ur Physik, Universit¨at Mainz, Mainz, Germany

25Ludwig-Maximilians-Universit¨at M¨unchen, M¨unchen, Germany

26

Fachbereich Physik, University of Wuppertal, Wuppertal, Germany

27

Panjab University, Chandigarh, India

(3)

29

Tata Institute of Fundamental Research, Mumbai, India

30

University College Dublin, Dublin, Ireland

31Korea Detector Laboratory, Korea University, Seoul, Korea

32

SungKyunKwan University, Suwon, Korea

33

CINVESTAV, Mexico City, Mexico

34FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands

35

Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands

36

Joint Institute for Nuclear Research, Dubna, Russia

37Institute for Theoretical and Experimental Physics, Moscow, Russia

38Moscow State University, Moscow, Russia

39

Institute for High Energy Physics, Protvino, Russia

40

Petersburg Nuclear Physics Institute, St. Petersburg, Russia

41Lund University, Lund, Sweden, Royal Institute of Technology and Stockholm University,

Stockholm, Sweden, and Uppsala University, Uppsala, Sweden

42

Lancaster University, Lancaster, United Kingdom

43Imperial College, London, United Kingdom

44

University of Manchester, Manchester, United Kingdom

45

University of Arizona, Tucson, Arizona 85721, USA

46Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

47

California State University, Fresno, California 93740, USA

48

University of California, Riverside, California 92521, USA

49

Florida State University, Tallahassee, Florida 32306, USA

50

Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

51

University of Illinois at Chicago, Chicago, Illinois 60607, USA

52

Northern Illinois University, DeKalb, Illinois 60115, USA

53Northwestern University, Evanston, Illinois 60208, USA

54

Indiana University, Bloomington, Indiana 47405, USA

55

University of Notre Dame, Notre Dame, Indiana 46556, USA

56Purdue University Calumet, Hammond, Indiana 46323, USA

57

Iowa State University, Ames, Iowa 50011, USA

58

University of Kansas, Lawrence, Kansas 66045, USA

59Kansas State University, Manhattan, Kansas 66506, USA

60

Louisiana Tech University, Ruston, Louisiana 71272, USA

61

University of Maryland, College Park, Maryland 20742, USA

62Boston University, Boston, Massachusetts 02215, USA

63

Northeastern University, Boston, Massachusetts 02115, USA

64

University of Michigan, Ann Arbor, Michigan 48109, USA

65Michigan State University, East Lansing, Michigan 48824, USA

66University of Mississippi, University, Mississippi 38677, USA

67

University of Nebraska, Lincoln, Nebraska 68588, USA

68

Princeton University, Princeton, New Jersey 08544, USA

69State University of New York, Buffalo, New York 14260, USA

70

Columbia University, New York, New York 10027, USA

71

University of Rochester, Rochester, New York 14627, USA

72State University of New York, Stony Brook, New York 11794, USA

73

Brookhaven National Laboratory, Upton, New York 11973, USA

74

Langston University, Langston, Oklahoma 73050, USA

75University of Oklahoma, Norman, Oklahoma 73019, USA

76Oklahoma State University, Stillwater, Oklahoma 74078, USA

77

Brown University, Providence, Rhode Island 02912, USA

78

University of Texas, Arlington, Texas 76019, USA

79Southern Methodist University, Dallas, Texas 75275, USA

80

Rice University, Houston, Texas 77005, USA

81

University of Virginia, Charlottesville, Virginia 22901, USA and

82University of Washington, Seattle, Washington 98195, USA

(Dated: August 29, 2008)

We report the observation of the doubly strange b baryon Ω−

b in the decay channel Ω−b → J/ψ Ω−,

with J/ψ → µ+µand Ω→ ΛK→ (pπ)K, in p¯p collisions ats = 1.96 TeV. Using

approximately 1.3 fb−1of data collected with the D0 detector at the Fermilab Tevatron Collider, we

observe 17.8±4.9 (stat.)±0.8 (syst.) Ω−

b signal events at a mass of 6.165±0.010 (stat.)±0.013 (syst.)

GeV. The significance of the observed signal is 5.4σ, corresponding to a probability of 6.7 × 10−8of

(4)

PACS numbers: 14.20.-c, 14.20.Mr, 14.65.Fy

The Ω− baryon, composed of three strange quarks,

played an important historical role in our understanding of the basic structure of matter. Its discovery in 1964 [1] at a mass predicted from SU(3) symmetry breaking was a great success for the theory [2]. The Ω−b (bss) (charge conjugate states are assumed throughout this Letter) is a predicted heavy cousin of the Ω− with a b quark

re-placing one of the three strange quarks. While the Ω−

has JP = 3/2+, the ground state Ω

b is expected to have

JP = 1/2+

, a mass between 5.94 − 6.12 GeV and a life-time such that 0.55 < τ (Ω−

b )/τ (B

0) < 1.10 [3].

In this Letter, we report the first observation of the Ω− b

baryon, fully reconstructed from its decay Ω−

b → J/ψ Ω −,

with J/ψ → µ+µ, Ω→ ΛKand Λ → pπ. The

analysis is based on a data sample of 1.3 fb−1 collected

in p¯p collisions at √s = 1.96 TeV with the D0 detec-tor [4] at the Fermilab Tevatron Collider. The detecdetec-tor components most relevant to this analysis are the cen-tral tracking system and the muon spectrometer. The central tracking system consists of a silicon microstrip tracker (SMT) and a central fiber tracker (CFT) inside a 2 Tesla superconducting solenoid. The SMT is optimized for tracking and vertexing over the pseudorapidity region |η| < 3 while the CFT has coverage for |η| < 2. A liquid argon and uranium calorimeter provides coverage up to |η| < 4.2. The muon spectrometer covers |η| < 2.

The Ω−b → J/ψ Ω−

→ J/ψ ΛK−

→ J/ψ pπ−K

de-cay topology is similar to that of the Ξ−b → J/ψ Ξ−

→ J/ψ Λ π− → J/ψ pππdecay with Ωin place of Ξ

and K− in place of π. Consequently, the

reconstruc-tion of the J/ψ and Λ and their selecreconstruc-tion discussed below follow closely the analysis that led to the first direct ob-servation of the Ξ−

b baryon [5]. However, in this analysis

we use a multivariate selection for the Ω− owing to the

smaller signal to background ratio compared to that for the Ξ− in the Ξ

b analysis. We use the pythia Monte

Carlo (MC) program [6] to generate Ω−b and the evtgen program [7] to simulate Ω−b decays. The Ω−b mass and lifetime are set to be 6.052 GeV and 1.54 ps respectively. The generated events are subjected to a geant [8] based D0 detector simulation, and to the same reconstruction and selection programs as the data. We optimize the Ω−

selection using MC Ω−b events for the signal and a sam-ple of J/ψ(ΛK+

) data (referred to below as wrong-sign events) for the background, while keeping the J/ψ Ω−

data blinded. Once all selection criteria have been deter-mined, we apply them to the J/ψ Ω− data.

We begin the event selection by reconstructing J/ψ → µ+µcandidates from two oppositely charged muons

with transverse momentum (pT) greater than 1.5 GeV

that are compatible with being from a common vertex. Muons are identified by tracks reconstructed in the cen-tral tracking system that are matched with either track

segments in the muon spectrometer or calorimeter en-ergy deposits consistent with a minimum ionizing parti-cle. Events must have a well-reconstructed p¯p interac-tion point that we take to be the Ω−b production ver-tex and a J/ψ → µ+

µ− candidate in the mass window

2.75 < Mµµ< 3.40 GeV. Events with J/ψ candidates are

reprocessed with a version of the track reconstruction al-gorithm that increases the efficiency for tracks with low pT and high impact parameters.

We form Λ → pπ− candidates from two oppositely

charged particles, each with pT > 0.2 GeV, that are

con-sistent with having originated from a common vertex. The two tracks are required to have a total of no more than two hits in the tracking system before the recon-structed pπ− vertex. The impact parameter significance

(the impact parameter with respect to the p¯p interaction point divided by its uncertainty) must exceed four for at least one of the tracks and three for the other. The track with the higher pT is assumed to be the proton. MC

studies show that this assignment leads to the correct combination nearly 100% of the time. Furthermore, we require the Λ transverse decay length to be greater than four times its uncertainty and the proper decay length to exceed ten times its uncertainty, where the transverse decay length is the distance between the production and decay vertices in the transverse plane while the proper de-cay length is the transverse dede-cay length corrected by the Lorentz boost calculated from pT(Λ). Λ candidates must

have reconstructed masses between 1.108 and 1.126 GeV.

K) (GeV) Λ M( 1.6 1.65 1.7 1.75 1.8 Events/(0.005 GeV) 0 100 200 300 400 500 Right−sign Wrong−sign −1 D0, 1.3 fb (a) K) (GeV) Λ M( 1.6 1.65 1.7 1.75 1.8 Events/(0.005 GeV) 0 20 40 60 80 100 120 140 Right−sign Wrong−sign −1 D0, 1.3 fb (b)

FIG. 1: The invariant mass distribution of the ΛK pair before (a) and after (b) the BDT selection. Filled circles are from the

right-sign ΛK−events while the histogram is from the

wrong-sign ΛK+

events without any additional normalization.

We combine Λ candidates with negatively charged par-ticles (assumed to be kaons) to form Ω−

→ ΛK− decay

candidates. The Λ and the kaon are required to have a common vertex. The Ω− candidates must have

trans-verse decay length significances greater than four and the uncertainties of the proper decay lengths less than 0.5 cm. These two requirements reduce backgrounds from com-binatorics and mismeasured tracks. The Ξ− baryon has

(5)

a mass of 1.322 GeV [9] and decays into Λπ−. If the

kaon mass is assigned to the pion, this decay could be a major background for Ω−

→ ΛK−. To eliminate this

background, we remove candidates with Λπ− mass less

than 1.34 GeV. Figure 1(a) shows the mass distribution of the reconstructed Ω− → ΛKcandidates after these

selections. The distribution of wrong-sign ΛK+events is

also shown. An excess of events above the background around the expected Ω− mass of 1.672 GeV [9] is visible

in the distribution of the right-sign ΛK− events.

To further enhance the Ω− signal over the

combina-torial background, kinematic variables associated with daughter particle momenta, vertices, and track qualities are combined using Boosted Decision Trees (BDT) [10, 11]. The ΛK−mass distribution after the BDT selection

is shown in Fig. 1(b). The BDT selection retains 87% of the Ω− signal while rejecting 89% of the background.

The enhanced Ω− mass peak is evident in the

distribu-tion. A ΛK− pair is considered to be a Ωcandidate if

its mass is in the range of 1.662 − 1.682 GeV.

To select Ω−b → J/ψ Ω− candidates, we develop

selec-tion criteria using the MC Ω−b events as the signal and the data wrong-sign events as the background. The back-ground events are formed by combining J/ψ candidates with ΛK+

pairs with mass between 1.662 and 1.682 GeV. We form Ω−b → J/ψ Ω− decay candidates from J/ψ and

Ω− pairs that are consistent with being from a common

vertex. We require the uncertainty of the Ω−

b proper

de-cay length to be less than 0.03 cm and impose a minimum pT cut of 6 GeV on the Ω−b candidates. Finally, J/ψ and

Ω− daughters from the Ω

b decays are expected to be

boosted in the direction of the Ω−

b; therefore, we require

the opening angle in the transverse plane between the J/ψ and the Ω− to be less than π/2.

We then apply the above selections to the right-sign events in the data to search for the Ω−

b baryon in the

mass window between 5.6 and 7.0 GeV. This range is chosen since 5.624 GeV is the mass of the lightest b baryon, the Λb, and the upper limit of 7.0 GeV is nearly

1 GeV higher than the predicted Ω−b mass [3]. We calcu-late the Ω−b candidate mass using the formula M (Ω−b) = M (J/ψ Ω−

)−M(µ+µ

)−M(ΛK−)+ ˆM (J/ψ)+ ˆM (Ω).

Here M (J/ψ Ω−), M (µ+µ), and M (ΛK) are the

re-constructed masses while ˆM (J/ψ) and ˆM (Ω−) are taken

from Ref. [9]. This calculation improves the mass resolu-tion of the MC Ω−b events from 0.080 GeV to 0.034 GeV. In the mass search window, we observe 79 candidates in the data with the mass distribution shown in Fig. 2(a). An excess of events near 6.2 GeV is apparent. No such structure, however, is seen in the corresponding mass dis-tribution (Fig. 2(b)) of the 30 wrong-sign events.

Assuming the excess is due to the Ω−

b production, we fit

Ω−

b candidate masses with the hypothesis of a Gaussian

signal plus a flat background using an unbinned likeli-hood method. We fix the Gaussian width to 0.034 GeV, the width of the MC Ω−

b signal. The fit gives an Ω −

b mass

of 6.165±0.010 (stat.) GeV and a yield of 17.8±4.9 (stat.) signal events. To assess the significance of the excess, we first determine the likelihood Ls+b of the signal plus

background fit above and then repeat the fit with only the background contribution to find a new likelihood Lb.

The logarithmic likelihood ratiop2 ln(Ls+b/Lb) yields a

statistical significance of 5.4σ, equivalent to a probability of 6.7 × 10−8 that the background could fluctuate with

a significance equal to or greater than what is observed. Fitted yields for positively and negatively charged can-didates are 6.2 ± 3.1 (stat.) Ω+

b and 12.0 ± 3.9 (stat.) Ω − b, respectively. ) (GeV) b M( 5.8 6 6.2 6.4 6.6 6.8 7 Events/(0.04 GeV) 0 2 4 6 8 10 12 14 D0 −1 1.3 fb Data Fit (a) Events/(0.04 GeV) Mass (GeV) 2 4 6 8 D0 −1 1.3 fb (b) wrong−sign 5.8 6 6.2 6.4 6.6 6.8 7 2 4 6 8 (c)− sidebands 5.8 6 6.2 6.4 6.6 6.8 7 2 4 6 8(d) Λ sidebands

FIG. 2: (a) The M (Ω−

b) distribution of the Ω−b candidates

after all selection criteria. The dotted curve is an unbinned likelihood fit to the model of a constant background plus a Gaussian signal. The mass distributions for the wrong-sign

background (b), the Ω−sideband events (c), and the Λ

side-band events (d).

Various checks have been performed to ensure that the observed resonance is genuine. (1) We apply the event selection to data events in the sidebands of the reconstructed Ω− and Λ resonances separately.

The J/ψ (pπ−) Kmass distributions of these sideband

events are shown in Figs. 2(c) and 2(d). No significant excess is present in either distribution. (2) We inves-tigate the possibility of a false signal due to residual b hadron backgrounds by applying the final Ω−

b selection to MC B− → J/ψ K∗− → J/ψ K0 Sπ −, Ξ− b → J/ψ Ξ −,

and Λb → J/ψ Λ samples with equivalent integrated

lu-minosities significantly greater than that of the analyzed data. No indication of any resonance is observed in the reconstructed J/ψ Ω− mass distribution. (3) We check

the mass distributions of the Ω−b decay products. For Ω−b candidates within a ±3σ mass window around the observed peak, we relax the mass requirements on the Ω− and Λ candidates and perform a fit to each mass

dis-tribution. The numbers of the Ω−and Λ candidates from

the fits are consistent with the observed number of Ω− b

signal events. (4) We replace the BDT selection with in-dividual cuts on the most important variables according to the BDT optimization and confirm the existence of a

(6)

peak with a comparable event yield but a higher back-ground at a mass consistent with that observed using the BDT. (5) We test the robustness of the peak by varying selections such as the Ξ− veto, Λ and Ωmass windows,

Λ transverse decay requirements, BDT selection, and the requirement on pT(Ω−b). All the above studies confirm

the existence of the resonance.

Potential sources of systematic uncertainties on the measured Ω−

b mass include event selection, signal and

background models, and momentum scale. Varying the selection criteria and applying a set of cuts on individ-ual kinematic variables lead to a maximum change of 0.012 GeV in the fitted mass. Using a linear function as the background model results in negligible change in the mass. Varying the Gaussian width in the signal model between 0.028 and 0.040 GeV changes the fitted mass by at most 0.003 GeV. When a tighter selection is ap-plied to enhance signal over background, we can float the width of the signal model in the fit. This leads to a mass shift of 0.002 GeV and a fitted signal width of 0.033 ± 0.010 GeV, consistent with the MC expecta-tion. To study the effect of the track momentum scale uncertainty on the measured Ω−

b mass, we reconstruct

the higher statistics Λb → J/ψ Λ decays and measure

the Λb mass for different minimum pT requirements on

the Λb daughter particles. We compare these

measure-ments to the world average value of the Λb mass [9] and

take the maximum deviation of 0.004 GeV as a system-atic uncertainty. Adding in quadrature, we get a total systematic uncertainty of 0.013 GeV to obtain a mea-sured Ω−bmass: 6.165 ± 0.010 (stat.) ± 0.013 (syst.) GeV. Similarly, we estimate the systematic uncertainty on the Ω−b yield by varying the signal and background mod-els in the fit. The observed maximum change of 0.8 is assigned as the systematic uncertainty on the yield: 17.8 ± 4.9 (stat.) ± 0.8 (syst.). In all these studies, the signal significance remains above 5σ.

Proper decay length (cm)

−0.1 0 0.1 0.2 0.3 0.4 Events/(0.05 cm) 1 10 2 10 D0 −1

1.3 fb DataMC signal + data bkgd

FIG. 3: The distribution of the proper decay length of the

Ω−

b candidates in the ±3σ mass window around the observed

peak along with the expected distribution from the MC Ω−

b

signal with a lifetime 1.54 ps plus the data background events.

Figure 3 shows the distribution of the proper decay length of the Ω−

b candidates observed in the ±3σ mass

window around the fitted Ω−

b mass. The distribution of

the MC Ω−

b signal plus the data background events is also

shown. The background distribution is modeled using events in the Ω−b sidebands of 5.8−6.0 and 6.4−6.6 GeV. Despite the low statistics, the data distribution contains significantly more positive than negative decay lengths as expected and consistent with a weakly decaying b hadron.

We calculate the Ω−

b production rate relative to that

of the Ξ−

b [5]. The selection efficiency ratio ǫ(Ω −

b →

J/ψ Ω−)/ǫ(Ξ

b → J/ψ Ξ

) is found to be 1.5 ± 0.2 (stat.)

assuming inclusive Ω− and Ξdecays. The higher

effi-ciency for the Ω−

b is due primarily to a harder pT

spec-trum of the kaon from the Ω− decay than that of the

pion from the Ξ− decay and a shorter lifetime of the Ω

compared to the Ξ−. By using the reported Ξ

b events [5]

and the observed Ω−b yield here, we estimate

R = f (b → Ω − b) f (b → Ξ−b) ·Br(Ω − b → J/ψ Ω −) Br(Ξ−b → J/ψ Ξ−)

to be R = 0.80±0.32 (stat.)+0.14−0.22(syst.). Here f (b → Ω − b)

and f (b → Ξ−

b) are the fractions of b quarks that

hadronize to form Ω− b and Ξ

b, respectively. The

sys-tematic uncertainty includes contributions from the sig-nal yields as well as the efficiency ratio. Using Γ(Ω−

b →

J/ψ Ω−)/Γ(Ξ

b → J/ψ Ξ

) = 9.8 [12], the central

val-ues of τ (Ξ−

b) = 1.42 +0.28

−0.24 ps [9], the R value above,

and τ (Ω−b) in the range of 0.83 − 1.67 ps [3], we obtain f (b → Ω−b)/f (b → Ξ

b) ≈ 0.07 − 0.14.

In summary, by analyzing 1.3 fb−1of data collected by

the D0 experiment in p¯p collisions at √s = 1.96 TeV at the Fermilab Tevatron Collider, we have made the first observation of the doubly strange b baryon Ω−

b in the fully

reconstructed decay mode Ω−

b → J/ψ Ω

with J/ψ →

µ+µ, Ω→ ΛKand Λ → pπ. We measure the Ω− b

mass to be 6.165 ± 0.010 (stat.) ± 0.013 (syst.) GeV. The significance of the observed signal is greater than 5σ.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Ger-many).

[a] Visitor from Augustana College, Sioux Falls, SD, USA. [b] Visitor from The University of Liverpool, Liverpool, UK. [c] Visitor from II. Physikalisches Institut,

(7)

[d] Visitor from ECFM, Universidad Autonoma de Sinaloa, Culiac´an, Mexico.

[e] Visitor from Helsinki Institute of Physics, Helsinki, Fin-land.

[f] Visitor from Universit¨at Bern, Bern, Switzerland.

[g] Visitor from Universit¨at Z¨urich, Z¨urich, Switzerland. [‡] Deceased.

[1] V.E. Barnes et al., Phys. Rev. Lett. 12, 204 (1964). [2] M. Gell-Mann and Y. Ne’eman, The Eightfold Way,

(W.A. Benjamin, New York, 1964).

[3] X. Liu et al., Phys. Rev. D 77, 014031 (2008); M. Kar-liner et al., arXiv:0804.1575 (2008); E.E. Jenkins, Phys. Rev. D 77, 034012 (2008); R. Roncaglia, D.B. Lichten-berg, and E. Predazzi, Phys. Rev. D 52, 1722 (1995); N. Mathur, R. Lewis, and R.M. Woloshyn, Phys. Rev. D 66, 014502 (2002); D. Ebert, R.N. Faustov, and V.O. Galkin, Phys. Rev. D 72, 034026 (2005); T. Ito, M. Matsuda, and

Y. Matsui, Prog. Theor. Phys. 99, 271 (1998).

[4] V.M. Abazov et al. (D0 Collaboration), Nucl. Instrum. Methods Phys. Res. A 565, 463 (2006).

[5] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett.

99, 052001 (2007).

[6] T. Sj¨ostrand et al., Comput. Phys. Commun. 135, 238

(2001).

[7] D.J. Lange, Nucl. Instrum. Methods Phys. Res. A 462, 152 (2001).

[8] R. Brun and F. Carminati, CERN Program Library Writeup W5013, 1993 (unpublished).

[9] C. Amsler et al., Physics Letters B 667, 1 (2008). [10] L. Breiman et al., Classification and Regression Trees,

(Wadsworth, Stamford, 1984).

[11] A. H¨ocker et al., arXiv:physics/0703039 [physics.data-an]

(2007).

Figure

FIG. 1: The invariant mass distribution of the ΛK pair before (a) and after (b) the BDT selection
FIG. 3: The distribution of the proper decay length of the Ω − b candidates in the ± 3σ mass window around the observed peak along with the expected distribution from the MC Ω − b

Références

Documents relatifs

Vegetation and climate change during the Medieval Climate Anomaly and the Little Ice Age on the southern Cape coast of South Africa: pollen evidence from Bo Langvlei.1. Vegetation

The emphasised test and theoretical results show clearly the enhancement in terms of strength, ductility and flexural stiffness of the strengthened composite beams compared

Durstewitz and Escobar (2006) identified three factors that condition or contribute to success regardless of  the  type  of  market  being  targeted  by 

Dans la première partie, les résultats de la prospection au niveau de 12 exploitations agricoles, durant la campagne agricole 2017/2018, dans la wilaya de Bouira a permis

This work analyzes the conflict between disability groups promoting fully-integrated, physically accessible housing and the community development corporations

Guided by the dramatic pattern transformation of periodic elastomeric structures due to instability, the purpose of this work is to exploit this unique ability to design

Assume that the covariance function ρ of a stationary Gaussian process X tends to 0 at infinity; we will prove that the tail of the distribution of the associated chord-length L

87 Washington Real Estate Investment Trust E WRE 87 Transcontinental Realty Investors, Inc TCI. 88 Weingarten Realty Investors WRI 88 United Dominion Realty