• Aucun résultat trouvé

Results from the search for dark matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope

N/A
N/A
Protected

Academic year: 2021

Partager "Results from the search for dark matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: in2p3-01433541

http://hal.in2p3.fr/in2p3-01433541

Submitted on 2 Dec 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International

License

Results from the search for dark matter in the Milky

Way with 9 years of data of the ANTARES neutrino

telescope

A. Albert, M. André, M. Anghinolfi, G. Anton, M. Ardid, J. -J. Aubert, T.

Avgitas, B. Baret, J. Barrios-Martí, S. Basa, et al.

To cite this version:

A. Albert, M. André, M. Anghinolfi, G. Anton, M. Ardid, et al.. Results from the search for dark

matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope. Physical Review B:

Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2017, 769,

pp.249-254. �10.1016/j.physletb.2017.03.063�. �in2p3-01433541�

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Results

from

the

search

for

dark

matter

in

the

Milky

Way

with

9

years

of

data

of

the

ANTARES

neutrino

telescope

A. Albert

a

,

M. André

b

,

M. Anghinolfi

c

,

G. Anton

d

,

M. Ardid

e

,

J.-J. Aubert

f

,

T. Avgitas

g

,

B. Baret

g

,

J. Barrios-Martí

h

,

S. Basa

i

,

V. Bertin

f

,

S. Biagi

j

,

R. Bormuth

k

,

l

,

S. Bourret

g

,

M.C. Bouwhuis

k

,

R. Bruijn

k

,

m

,

J. Brunner

f

,

J. Busto

f

,

A. Capone

n

,

o

,

L. Caramete

p

,

J. Carr

f

,

S. Celli

n

,

o

,

q

,

T. Chiarusi

r

,

M. Circella

s

,

J.A.B. Coelho

g

,

A. Coleiro

g

,

R. Coniglione

j

,

H. Costantini

f

,

P. Coyle

f

,

A. Creusot

g

,

A. Deschamps

t

,

G. De Bonis

n

,

o

,

C. Distefano

j

,

I. Di Palma

n

,

o

,

C. Donzaud

g

,

u

,

D. Dornic

f

,

D. Drouhin

a

,

T. Eberl

d

,

I. El Bojaddaini

v

,

D. Elsässer

w

,

A. Enzenhöfer

f

,

I. Felis

e

,

L.A. Fusco

r

,

x

,

S. Galatà

g

,

P. Gay

y

,

g

,

S. Geißelsöder

d

,

K. Geyer

d

,

V. Giordano

z

,

A. Gleixner

d

,

H. Glotin

aa

,

ab

,

ac

,

T. Grégoire

g

,

R. Gracia Ruiz

g

,

K. Graf

d

,

S. Hallmann

d

,

H. van Haren

ad

,

A.J. Heijboer

k

,

Y. Hello

t

,

J.J. Hernández-Rey

h

,

J. Hößl

d

,

J. Hofestädt

d

,

C. Hugon

c

,

ae

,

G. Illuminati

n

,

o

,

h

,

C.W. James

d

,

M. de Jong

k

,

l

,

M. Jongen

k

,

M. Kadler

w

,

O. Kalekin

d

,

U. Katz

d

,

D. Kießling

d

,

A. Kouchner

g

,

ac

,

M. Kreter

w

,

I. Kreykenbohm

af

,

V. Kulikovskiy

f

,

ag

,

C. Lachaud

g

,

R. Lahmann

d

,

D. Lefèvre

ah

,

ai

,

E. Leonora

z

,

aj

,

M. Lotze

h

,

S. Loucatos

ak

,

g

,

M. Marcelin

i

,

A. Margiotta

r

,

x

,

A. Marinelli

al

,

am

,

J.A. Martínez-Mora

e

,

A. Mathieu

f

,

R. Mele

an

,

aq

,

K. Melis

k

,

m

,

T. Michael

k

,

P. Migliozzi

an

,

A. Moussa

v

,

C. Mueller

w

,

E. Nezri

i

,

G.E. P˘av˘ala ¸s

p

,

C. Pellegrino

r

,

x

,

C. Perrina

n

,

o

,

P. Piattelli

j

,

V. Popa

p

,

T. Pradier

ao

,

L. Quinn

f

,

C. Racca

a

,

G. Riccobene

j

,

K. Roensch

d

,

A. Sánchez-Losa

s

,

M. Saldaña

e

,

I. Salvadori

f

,

D.F.E. Samtleben

k

,

l

,

M. Sanguineti

c

,

ae

,

P. Sapienza

j

,

J. Schnabel

d

,

F. Schüssler

ak

,

T. Seitz

d

,

C. Sieger

d

,

M. Spurio

r

,

x

,

Th. Stolarczyk

ak

,

M. Taiuti

c

,

ae

,

Y. Tayalati

ap

,

A. Trovato

j

,

M. Tselengidou

d

,

D. Turpin

f

,

C. Tönnis

h

,

,

B. Vallage

ak

,

g

,

C. Vallée

f

,

V. Van Elewyck

g

,

ac

,

D. Vivolo

an

,

aq

,

A. Vizzoca

n

,

o

,

S. Wagner

d

,

J. Wilms

af

,

J.D. Zornoza

h

,

J. Zúñiga

h

aGRPHE,UniversitédeHauteAlsace,InstitutuniversitairedetechnologiedeColmar,34rueduGrillenbreit,BP50568,68008Colmar,France bTechnicalUniversityofCatalonia,LaboratoryofAppliedBioacoustics,RamblaExposició,08800VilanovailaGeltrú,Barcelona,Spain cINFNSezionediGenova,ViaDodecaneso33,16146Genova,Italy

dFriedrich-Alexander-UniversitätErlangen-Nürnberg,ErlangenCentreforAstroparticlePhysics,Erwin-Rommel-Str.1,91058Erlangen,Germany eInstitutd’InvestigacióperalaGestióIntegradadelesZonesCostaneres(IGIC),UniversitatPolitècnicadeValència,C/Paranimf1,46730Gandia,Spain fAix-MarseilleUniversité,CNRS/IN2P3,CPPMUMR7346,13288Marseille,France

gAPC,UniversitéParisDiderot,CNRS/IN2P3,CEA/IRFU,ObservatoiredeParis,SorbonneParisCité,75205Paris,France

hIFICInstitutodeFísicaCorpuscular(CSICUniversitatdeValència),c/CatedráticoJoséBeltrán,2,E-46980Paterna,Valencia,Spain

iLAMLaboratoired’AstrophysiquedeMarseille,Pôledel’ÉtoileSitedeChâteau-Gombert,rueFrédéricJoliot-Curie38,13388MarseilleCedex13,France jINFNLaboratoriNazionalidelSud(LNS),ViaS.Sofia62,95123Catania,Italy

kNikhef,SciencePark,Amsterdam,TheNetherlands

lHuygens-KamerlinghOnnesLaboratorium,UniversiteitLeiden,TheNetherlands

mUniversiteitvanAmsterdam,InstituutvoorHoge-EnergieFysica,SciencePark105,1098XGAmsterdam,TheNetherlands nINFNSezionediRoma,P.leAldoMoro2,00185Roma,Italy

oDipartimentodiFisicadell’UniversitàLaSapienza,P.leAldoMoro2,00185Roma,Italy pInstituteforSpaceScience,RO-077125Bucharest,M˘agurele,Romania

qGranSassoScienceInstitute,VialeFrancescoCrispi7,00167L’Aquila,Italy rINFNSezionediBologna,VialeBerti-Pichat6/2,40127Bologna,Italy sINFNSezionediBari,ViaE.Orabona4,70126Bari,Italy

tGéoazur,UCA,CNRS,IRD,ObservatoiredelaCôted’Azur,SophiaAntipolis,France uUniv.Paris-Sud,91405OrsayCedex,France

vUniversityMohammedI,LaboratoryofPhysicsofMatterandRadiations,B.P. 717,Oujda6000,Morocco

wInstitutfürTheoretischePhysikundAstrophysik,UniversitätWürzburg,Emil-FischerStr.31,97074Würzburg,Germany xDipartimentodiFisicaeAstronomiadell’Università,VialeBertiPichat6/2,40127Bologna,Italy

yLaboratoiredePhysiqueCorpusculaire,ClermontUnivertsité,UniversitéBlaisePascal,CNRS/IN2P3,BP10448,F-63000Clermont-Ferrand,France

http://dx.doi.org/10.1016/j.physletb.2017.03.063

0370-2693/©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

250 A. Albert et al. / Physics Letters B 769 (2017) 249–254

zINFNSezionediCatania,VialeAndreaDoria6,95125Catania,Italy

aaLSIS,AixMarseilleUniversité,CNRS,ENSAM,LSISUMR7296,13397Marseille,France abUniversitédeToulon,CNRS,LSISUMR7296,83957LaGarde,France

acInstitutUniversitairedeFrance,75005Paris,France

adRoyalNetherlandsInstituteforSeaResearch(NIOZ),Landsdiep4,1797SZ’tHorntje(Texel),TheNetherlands aeDipartimentodiFisicadell’Università,ViaDodecaneso33,16146Genova,Italy

afDr.Remeis-SternwarteandECAP,UniversitätErlangen-Nürnberg,Sternwartstr.7,96049Bamberg,Germany agMoscowStateUniversity,SkobeltsynInstituteofNuclearPhysics,Leninskiegory,119991Moscow,Russia ahMediterraneanInstituteofOceanography(MIO),Aix-MarseilleUniversity,13288,MarseilleCedex9,France aiUniversitéduSudToulon-Var,CNRS-INSU/IRDUM110,83957,LaGardeCedex,France

ajDipartimentodiFisicaedAstronomiadell’Università,VialeAndreaDoria6,95125Catania,Italy

akDirectiondesSciencesdelaMatière,Institutderecherchesurlesloisfondamentalesdel’Univers,ServicedePhysiquedesParticules,CEASaclay,

91191 Gif-sur-YvetteCedex,France

alINFNSezionediPisa,LargoB.Pontecorvo3,56127Pisa,Italy

amDipartimentodiFisicadell’Università,LargoB.Pontecorvo3,56127Pisa,Italy anINFNSezionediNapoli,ViaCintia,80126Napoli,Italy

aoUniversitédeStrasbourg,CNRS,IPHCUMR7178,F-67000Strasbourg,France

apUniversityMohammedVinRabat,FacultyofSciences,4av.IbnBattouta,B.P.1014,R.P.10000Rabat,Morocco aqDipartimentodiFisicadell’UniversitàFedericoIIdiNapoli,ViaCintia,80126,Napoli,Italy

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received15December2016

Receivedinrevisedform7February2017 Accepted28March2017

Availableonline31March2017 Editor:S.Dodelson Keywords: Darkmatter WIMP Indirectdetection Neutrinotelescope GalacticCentre ANTARES

Using data recorded withthe ANTARES telescope from 2007to 2015, a new searchfor dark matter annihilation intheMilky Wayhasbeenperformed.Three halomodels andfiveannihilation channels, WIMP+WIMP→bb¯,W+W−,

τ

+

τ

,

μ

+

μ

−and

ν

ν

¯,withWIMPmassesrangingfrom50 GeVc2 to100

TeV c2,

were considered. No excess over the expected background was found, and limits on the thermally averagedannihilationcross-sectionwereset.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Awidevarietyofobservationssupplyevidencefortheexistence ofdarkmatter(DM)[1,2].Itsnature,however,isso-farunknown, andattempts to elucidate it have given rise to a lively and var-ied research programme in physics. A common hypothesis is to considerdarkmatter tobe madeofnew,unknown particles.The assumptionthattheseparticlesareathermalrelicoftheBigBang leads to the conclusion that they are weakly interactingmassive particles(WIMPs).

Differentapproachesareusedtosearchfortheseparticles: pro-duction at particle accelerators [3], direct detection of the recoil fromcollisions with nuclei[4]or indirectdetection by means of thesecondaryparticlesthattheyproducewhentheydecayor an-nihilate [5]. Mostof theparticles that havebeen putforward as WIMPs candidates annihilate in pairs and subsequently produce standardmodelparticles,includingneutrinos.Neutrinotelescopes mayplayaparamountrole inthesearchforWIMPsvia their an-nihilationproducts,becauseoftheirparticularlycleansignalsand lowexpectedbackgrounds.

In this paper the results from the search for dark matter in the Milky Way using data recorded with the ANTARES neutrino telescopefrom2007to2015, withatotal livetimeof2102days arepresented.Onlyneutrinosdetectedviamuonsproducedinside oraround thedetectorare considered.Here andinthe following “neutrino”means

ν

μ

+ ¯

ν

μ,unlessstatedotherwise.

InSection 2 itis presentedhow theneutrino fluxcan be de-rivedfromtheannihilationofDMparticles.The detectorandthe

*

Correspondingauthor.

E-mailaddress:ctoennis@ific.uv.es(C. Tönnis).

reconstruction methodare described inSection 3,while thenew analysismethodologyisexplainedinSection4.Theresultsare pre-sentedinSection5.

Comparedtoworkpreviously published [6],aconsiderably in-creaseddatasampleisusedandamaximumlikelihoodmethodor “unbinnedmethod”isapplied.Inaddition,morerecentparameters fortheDMhalointheMilkyWayareused.

2. Darkmatterphenomenology

In thistypeof indirectsearch twoimportantingredients have to be considered: the amount and spatial distribution of dark matter inthesource underconsideration,andtheenergyspectra of the standard model particles produced by WIMP annihilation. Thesetwofeaturesaretoalargeextentindependentofeachother. Theyarerelevantformodellingtheexpectedsignalandenterinto theanalysisatdifferentstages.

The signal spectra used forthe analysis presented herewere calculated using the code described in [7]. Spectra were ob-tainedforfiveannihilationchannelsand17WIMPmassesbetween 50 GeVc2 and100

TeV

c2 .Thesespectratake intoaccount theeffectof

neutrinooscillations.Inthefollowing,theresultsforeach annihi-lationchannelaregivenassuminga100%branchingratio.Thefive annihilationchannelsare:

WIMP

+

WIMP

bb

¯

,

W+W−

,

τ

+

τ

,

μ

+

μ

,

ν

μ

ν

¯

μ

.

(1) Ofthesechannels,thebb-channel

¯

producesthesoftestneutrino spectra,whilstthe

ν

μ

ν

¯

μ-channelproducesthehardestspectra. Al-though the

ν

μ

ν

¯

μ-channelissuppressedinmanymodels, suchas those with theWIMP being thelightest neutralino of

(4)

supersym-Table 1

TableofdarkmatterhaloparametersfortheMilkyWayastaken from[10]and

[11].ρlocalisthelocaldensityandrsisthescalingradius.

Parameter NFW Burkert McMillan

rs[kpc] 16.1+17−7.8.0 9.26+5 .6 −4.2 17.6±7.5 ρlocal[GeV/cm3] 0.471−0+0..048061 0.487+0 .075 −0.088 0.390±0.034

Fig. 1. TheintegratedJ-Factor, Jint,foracone-shapedregioncentredonthe

GalacticCentrewithanopeningangle.Forthehalomodelstheparametersfrom

Table 1areused.ThecalculationsaredoneusingthecodeCLUMPY[13].

metricmodels,itisincludedinthisstudyinordertobeasmodel independentaspossible.

Thesecond ingredient,i.e.theamountanddistributionofdark matter in the source, is described by the so-called J-Factor. The J-Factor, J

(ψ)

,istheintegral ofthedarkmatter densitysquared,

ρ

2

DM, over a line of sight at an angular separation

ψ

from the

centreofthesource.Therelativesignalstrengthatanangular sep-aration

ψ

tothesourceisdescribedbytheexpression J

(ψ)

d

(ψ)

. TheJ-Factorcanbeintegratedoveranobservationwindow



: Jint

()

=







ρ

DM2

·

dl

·

d

.

(2)

Jint relates the thermally averaged annihilation cross-section



σ

v



totheneutrinoflux νμ+¯νμ viathefollowingequation:

d

νμνμ dEνμ+ ¯νμ

=



σ

v



8

π

M2WIMP

·

dNνμνμ dEνμνμ

·

Jint

(),

(3)

whereNνμ+¯νμ isthe average numberof neutrinosin theenergy

bindEνμ+¯νμ per WIMP annihilation, v is theWIMP velocity and

MWIMPistheWIMPmass.

TheshapeoftheJ-Factorcruciallydependsonthehalomodel. Inthisanalysisthreemodelsareused:theNFW[8],theBurkert[9]

modelandthe “McMillan” [10] profile.The parameters for these models are taken from[11] and [10] and are shownin Table 1. The McMillan profileis a variantof the Zhaoprofile [12],which treats one of the shape parameters,

γ

, as a free parameter and thereforeisalsoreferred to asthe“

γ

free” model.The optimum valueof

γ

forthismodelis0

.

79

±

0

.

32.Theuncertaintiesonthe haloprofileparameters arenotusedinthisanalysis.InFig. 1the integratedJ-Factorsforthethreemodelsareshown.TheNFW pro-file givesa larger total amount of darkmatter that isalso more concentratedinthecoreofthesourcethanfortheBurkertprofile. Thisis dueto the fact that theNFW profileis a so-calledcuspy profileanddivergesatthecentreofthesource,incontrasttothe coredBurkertprofile.

3. Simulationandreconstruction

The ANTARES neutrino telescope [14] is installed at the bot-tomoftheMediterraneanSea,about40 kmfromToulonandabout 2475 mbelowtheseasurface.BeinglocatedintheNorthern hemi-sphere(42◦48N,6◦10E)allowstheANTARESdetectortodirectly observethe centreofthe MilkyWay,usingthe Earthasashield againstthebackgroundfromatmosphericmuons.

ANTARES consists of 12, 450-m long, detector lines that are anchoredtotheseabedandkeptverticalbybuoys.Eachline com-prises25storeyswiththree10-inch photomultipliers(PMTs)[15]

per storey. The PMTs are housed inside pressure-resistant glass spheres[16].

ThestoreysalsohousetheelectronicstocontrolthePMTs[17]

anda systemtomonitor thealignment ofthelines [18]. Forthe synchronisationofthe individual storeysasystemofoptical bea-cons[19],locatedatvariouspointsoftheapparatus,isused[20].

In this analysis two muon track reconstruction strategies are used:

Fit and QFit. In the QFit strategy [21] a

χ

2-like quality

parameter, Q,is minimised.Qiscalculatedfromthe squared dif-ferencebetweentheexpectedandmeasuredtimesofthedetected photons, takinginto account theeffect oflight absorption inthe water [21]. This strategy allows for the reconstruction of events withphotonhitsononlyoneline(single-lineevents).

Fit [22] maximises a likelihood ratio

in a multistep pro-cess.Thevalueof

ofthefinaliterationofthisprocessisusedas ameasureofthequalityofthereconstruction.Inaddition,the an-gularerrorestimate

β

isusedtodefineacutemployedtoreduce thebackground.

The main background foranalyses using muon tracks are at-mosphericmuons.TakingadvantageoftheabsorptionoftheEarth that actsasan efficient shieldagainst muons, mostof this back-ground can be rejected by accepting only upgoing-reconstructed muonsinthe analysis.Thanks to thedetector’slatitude,the cen-tre oftheMilkyWay isefficientlyobserved,sinceit isbelowthe horizonmostofthetime.Tofurtherreduce thebackgroundof at-mospheric muonswrongly reconstructed asupgoing, cutson the parameters thatquantifythequality ofthereconstruction(Q,

), andontheestimateoftheangularerror(

β

)areused,asspecified in the next section. Atmospheric neutrinos are an additional but muchsmallerpartofthebackground.However,unlikeatmospheric muons,thisbackgroundisirreducible,althoughtheinformationof theenergyandcorrelationswiththesourcecanhelp to discrimi-nateitfromthesignal.

Inorder toevaluate thesensitivity ofthesearch, MonteCarlo simulations, using a detailed detector response for each data run, have been performed [23]. Concerning the background, at-mospheric neutrinos [24] andmuons [25] withenergies ranging from 10 GeV

c2 to 100 TeV

c2 have beensimulated withthe standard

ANTARES simulation chain [16,26,27]. From this simulation the detector resolutionand acceptance are calculated forall five an-nihilation channelsandforWIMP massesrangingfrom50 GeVc2 to

100 TeVc2 .

Inthispaper,datatakenfrom2007to2015, corresponding to 2102daysoflivetime,wasused.Theagreementbetweenthedata andthesimulationhasbeentestedextensivelyforboth reconstruc-tionstrategies.

4. Methodology

The maximum likelihood method is used to lookfor a signal of dark matter annihilation. The likelihood, which is a function of the number of signal events assumed to be present in the selected event sample, ns, is based on two probability

(5)

252 A. Albert et al. / Physics Letters B 769 (2017) 249–254

thebackground events,respectively,asa function oftherelevant eventvariables. The likelihood isthen maximised by varying ns.

Thestatisticalsignificanceofthevalue obtainedisextractedfrom the distribution ofmaximum likelihoods produced by generating pseudo-experiments,i.e.samplesofeventswithknownamountsof backgroundandsignal.Thelikelihoodfunctionusedhastheform

L

(

ns

)

=

e−(ns+Nbg) Ntot



i=1



nsS

i

,

Nhit,i

, β

i

)

+

NbgB

i

,

Nhit,i

, β

i

)



,

(4) whereNbg istheexpectednumberofbackgroundevents,whichis

setequal to Ntot, thetotal numberof reconstructedevents. ns is

the variable that changes during the maximisation process. The twofunctionsSandBdepend on:

ψ

i,theangulardistanceofthe

i-thevent tothe centre ofthe MilkyWay; Nhit,i, thenumber of

hitsin the i-thevent;and

β

i, theangular errorestimate forthe

i-thevent. ThenumberofhitsNhit,i isaproxyforthemuon

en-ergy[28].

In order to take the source extension into account, in S the non-integratedJ-Factor,J

(ψ)

,isused,smearedoutwiththe point-spread function (PSF) assuming a 15% systematicuncertainty on the angular resolution, which is the dominant systematic error fromthedetectorinthisanalysis. Thiserrorisbasedon a2.5 ns uncertaintyinthetimingofdetectedphotonhitsinANTARES[29]. Bydoingthis, acombinationofthePSF andthe source morphol-ogyisobtainedthatisalsousedforgeneratingsignaleventsinthe pseudo-experiments.

Furtheruncertainties existduetothechoiceofthehalomodel andtheexpected neutrinosignal spectra.Theseuncertainties are studied by using different annihilation channels andhalo profile functionsintheanalysis(seeFigs. 5 and6).

Aslightlymodifiedlikelihoodfunctionisdefinedforsingle-line eventsreconstructedwiththeQFitstrategy:

L

(

ns

)

=

e−(ns+Nbg) Ntot



i=1



nsS

¯

i

, ¯

Nhit,i

,

Qi

)

+

NbgB

¯

i

, ¯

Nhit,i

,

Qi

)



,

(5) whereN

¯

hit,i isthenumberofhitsperstorey(insteadofthe

num-ber of hits per PMT) used for the reconstruction, and

θ

i is the

difference inzenithangle betweenthe i-theventandthe centre oftheMilkyWay.S and

¯

B are

¯

thecorrespondingprobability func-tionsdescribingthesignalandbackgrounddistributions.

The likelihood functions are then studied using pseudo– experiments, which are generated from the distribution of back-groundeventsfromtime-scrambleddataandthatofsignalevents from simulation. The signal events are generated by taking into account the angular resolution of the detector, the source mor-phology and the expected signal spectra. Ten thousand pseudo-experiments are simulated for each combinationof WIMP mass, annihilationchannelandreconstructionstrategy,andforeach con-sideredvalueofsignalevents,ns.Themaximumvalueconsidered

fornsis80fortheQFitstrategyand120(180)forthe

Fit

strat-egyusingtheNFW andMcMillan(Burkert)profile.Themaximum valueswere chosenbecauseofdifferencesintheamountof back-groundinthesecases.Foreachpseudo-experimentateststatistic (TS)iscalculated: TS

=

log10



L

(

nopt

)

L

(

0

)



,

(6)

wherenopt isthevalue ofns that maximisesthelikelihood

func-tion. Since for a fixed signal strength the amount of detected

events mayvary, theTS distributions were combinedusing Pois-sonian weights producing new TS distributions. Sensitivities and limits are calculated following the approach suggested by Ney-man [30]. The 90% C.L. sensitivity in terms of detected neutrino events,

μ

¯

90%,iscalculatedastheaveragenumberofinserted

sig-nal events,whichleads toTS valuesthat arein 90%of thecases above themedianoftheTSdistributionforpurebackground.The 90%C.L.limitintermsofdetectedneutrinoevents,

μ

90%,is

calcu-lated byusing the TSvalue of theunblinded data insteadof the median of the backgroundif this TSvalue is above the median; otherwisethelimitissettothesensitivity.

The eventselection criteria, in particularthe definition ofthe cutsonQand

andthe selectionofthereconstructionstrategy, have beenoptimised with theModel Rejection Factormethod to obtainanunbiasedcutselectionforoptimalsensitivities[31].The cut parametershavebeentunedindividuallyforeachannihilation channelandseveralWIMPmassesinthemassrangeunder consid-eration,maintainingalwaysablindapproach,i.e.withnoaccessto theactualdata.

ItwasfoundthatformostcombinationsofWIMPmassand an-nihilation channelstheoptimumcutsare Q

<

0

.

7 and

>

5

.

2, respectively. Once

μ

¯

90% (the 90% C.L. sensitivity on the average

numberofsignal eventsobtainedfromthelikelihoodfunction)is computed,thelimitsontheneutrinofluxforagivenmassMWIMP

andannihilationchannelarecalculatedas

νμνμ,90%

=

¯

μ

90%

(

MWIMP

,

ch

)



i

A

i

(

MWIMP

,

ch

)

×

Tieff

,

(7)

where the index i denotes the periods with different detector configurations, ch the annihilation channel used andTi

eff the

to-tal corresponding livetime. In fact, throughout the considered 9 years, the number of available detector lines has changed from 5 to 12.The time spanover whichthe numberofavailable lines remains unchangedis definedas a particular detector configura-tion period.The effectiveareaaveraged overtheneutrinoenergy,

¯

A

i

eff

(

MWIMP

,

ch

)

,isdefinedas:

A

i

=

ν,ν¯

MWIMP Ethν A i eff

(

Eν,ν¯

)

dNν,ν¯ dEν,ν¯





ch,MWIMP dEν,ν¯

MWIMP 0 dNνdEν





ch,M WIMP dEν

+

dNν¯ dEν¯





ch,MWIMP dEν¯

⎠ ,

(8) where Ethν is the energy threshold for neutrino detection in ANTARES (approximatively 10 GeV), MWIMP is the WIMP mass,

dNν,ν¯

/

dEν,ν is¯ the energyspectrum ofthe(anti-)neutrinosatthe detector’s location for annihilation channel ch (see Equation (1)) and WIMP mass MW I M P, and Aeff

(

Eν,ν¯

)

is the effective area of ANTARESasafunctionofthe(anti-)neutrinoenergy.

Duetotheirdifferentcross-sections,theeffectiveareasfor neu-trinos and anti-neutrinos are slightly different and therefore are considered separately. In addition, the fluxes of muon neutrinos andanti-neutrinosaredifferentandare convolutedwiththeir re-spectiveefficiencies.Theeffectiveareaforadetectorconfiguration periodisdefinedastheratiobetweentheneutrinoeventrateand the signalneutrinoflux fora certainneutrinoenergy. Itis calcu-latedfromsimulation.

5. Results

ThefinalresultsareobtainedbycomparingtheTSvalueofthe data,TSobs,totheTSdistributionspreviouslycalculatedunderthe

blindedprocedure.

In Fig. 2 a comparison between the unblinded data and the expected background is shown. No significant excess above the

(6)

Fig. 2. ThenumberofeventsasafunctionofthedistancetotheGalacticCentre (crosses)incomparisontothebackgroundestimate(redline)forthe Fit recon-struction.Forthisplotaqualitycutof >−5.2 isused.(Forinterpretationofthe referencestocolourinthisfigurelegend,thereaderisreferredtothewebversion ofthisarticle.)

Fig. 3. 90%C.L.upperlimitsontheneutrinofluxfromWIMPannihilationsinthe MilkyWayasafunctionoftheWIMPmassesforthedifferentchannelsconsidered. ForthisplottheNFWprofilewasused.

backgroundcanbeseen,whichisconsistentwiththefactthatall theTSobs valuesobtainedaresmallerthanthemediansofthe

cor-respondingbackgroundTSdistributions.Since allbackground-like resultsshouldequallyrejecttheconsidereddarkmattermodel, up-per limits have been set to the sensitivities calculated from the pseudo-experiments.

Theresultingupperlimitsintermsofneutrinofluxare shown inFig. 3.ForeachannihilationchannelandWIMPmassrange,the reconstructionstrategy,QFitor

Fit,whichgivesthebest sensitiv-ityisused in thefinal result.

Fit isused forMWIMP

260 GeVc2

forthe

τ

+

τ

− and

μ

+

μ

− channels; forMWIMP

750 GeVc2 forthe

bb channel;

¯

for MWIMP

150 GeVc2 for W+W− andfor MWIMP

100 GeVc2 for the

ν

μ

ν

¯

μ channel. For the remaining values, i.e.at

lowWIMPmasses,theQFitresultsareused.

Fromthelimitsontheneutrinoflux,limitson



σ

v



canbe de-rived.The90%C.L.upperlimiton



σ

v



forthe

τ

+

τ

−channelasa functionoftheWIMPmassisshowninFig. 4,comparedwith lim-itsobtained byother indirectsearches.Mostof thedirect search experiments are not directly sensitive to



σ

v



. The limits for all annihilationchannelsfortheNFWhaloprofileareshowninFig. 5.

Fig. 4. 90%C.L.limitsonthethermallyaveragedannihilationcross-section,σv,as afunctionoftheWIMPmassincomparisontothelimitsfromotherexperiments

[32–36].TheresultsfromIceCubeandANTARESwereobtainedwiththeNFW pro-file.

Fig. 5. 90%C.L.limitsonthethermallyaveragedannihilationcross-section,σv, asafunctionoftheWIMPmassforallannihilationchannelsusingtheNFWhalo profile.

TheIceCube resultspresentedin Fig. 4(using tracksonly[32]

andusingcascadesaswell[33])refertothesamechannelandthe same halo model, therefore the difference between the limits is duetothedetectorperformance,positionandintegratedlivetime. The centreoftheMilkyWayisabove thehorizonoftheIceCube detectorandconsequently the neutrinocandidates correspond to downgoing events. To select neutrino candidates in the analyses of IceCube a veto for tracks starting outside the central part of the detectorhasto be used, whichreduces the acceptance.This, in addition to the better angularresolution of ANTARES andthe largerintegratedlivetimeinthisanalysis,explainsthedifference betweenthelimits.

For the analysis by H.E.S.S. a different set of halo parameter valuesis used,leading toa moreextended source.The resultsof FERMIandMAGICarebasedondwarfspheroidalgalaxiesanduse the bb annihilation

¯

channel. Results fromdirect detection exper-iments are not shownsince these experiments are typically not sensitiveto



σ

v



.

This result allows to partly constrain models where the ex-traterrestrial neutrinos observed by IceCube are partly explained in terms of annihilating dark matter candidates [37]. For WIMP masses above 100 GeV

(7)

unitar-254 A. Albert et al. / Physics Letters B 769 (2017) 249–254

Fig. 6. 90%C.L.limitsonthethermallyaveragedannihilationcross-section,σv,as afunctionoftheWIMPmassforthethreeconsideredhalomodelsfortheτ+τ

channel.

ity [38] will become relevant, although there is an approach to overcometheselimitations[39].

Inorderto illustratethe largeeffect ofthechoice ofthehalo model and the profile parameters, a comparison between upper limitsderived using the NFW, the Burkert andthe McMillan re-sults is shown in Fig. 6 for the

τ

+

τ

− channel. As can be seen, dependingontheWIMPmass,differencesofmorethanoneorder ofmagnitudeareobservedbetweenthedifferenthalomodels.

6. Conclusions

The results from a new search for dark matter annihilation in the Milky Way using data from the ANTARES neutrino tele-scope from 2007 to 2015 show no excess above the expected background. Limits at 90% C.L. have been set for the NFW, the McMillan and the Burkert profile, five annihilation channels and WIMP massesranging from 50 GeVc2 to 100

TeV

c2 . These limitsare

themoststringentforacertainregionoftheparameterspace.

Acknowledgements

The authors acknowledge the financial support of the fund-ingagencies:CentreNationaldelaRechercheScientifique(CNRS), Commissariat à l’énergie atomique et aux énergies alternatives (CEA),CommissionEuropéenne(FEDERfundandMarieCurie Pro-gram), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labexprogram atSorbonne ParisCité (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Labex OCEVU (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), Région Île-de-France (DIM-ACAV), Région Alsace (contrat CPER), Région Provence-Alpes-Côte d’Azur, Département du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium für Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucle-are (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of

the Russian Federation for young scientists and leading scien-tific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Economía y Competitividad (MINECO): Plan Estatal de Investigación (refs. FPA2015-65150-C3-1-P, -2-P and -3-P, (MINECO/FEDER)), Severo Ochoa Centre of Excellence and MultiDark Consolider (MINECO), and Prometeo and Grisolía programs (Generalitat Valenciana), Spain; Ministryof Higher Education, Scientific Researchand Pro-fessional Training, Morocco. We also acknowledge the technical support ofIfremer, AIMandFoselevMarine fortheseaoperation andtheCC-IN2P3forthecomputingfacilities.

References

[1]M.Klasen,M.Pohl,G.Sigl,Prog.Part.Nucl.Phys.85(2015)1.

[2]G.Bertone,D.Hooper,J.Silk,Phys.Rep.405(2005)279.

[3] V.A.Mitsou,J.Phys.Conf.Ser.651(2015)012023, http://stacks.iop.org/1742-6596/651/i=1/a=012023.

[4] D.B.Cline,Phys.Scr.91(2016)033008,http://stacks.iop.org/1402-4896/91/i=3/ a=033008.

[5]J.Gaskins,Contemp.Phys.57(2016)496–525.

[6]S.Adrian-Martinez,etal.,ANTARESCollaboration,J.Cosmol.Astropart.Phys.10 (2015)068.

[7]M.Cirelli,etal.,J.Cosmol.Astropart.Phys.1103(2011)051.

[8]J.F.Navarro,C.S.Frenk,S.D.White,Astrophys.J.563(1996)462.

[9]A.Burkert,Astrophys.J.447(1996)L25.

[10]PaulJ.McMillan,Mon.Not.R.Astron.Soc.414(2015)2446.

[11]F.Nesti,P.Salucci,J.Cosmol.Astropart.Phys.07(2013)016.

[12]J.An,H.Zhao,Mon.Not.R.Astron.Soc.428(2013)2805.

[13]A.Charbonnier,C.Combet,D.Maurin,Comput.Phys.Commun.183(2012)656.

[14]M.Ageron,etal.,ANTARESCollaboration,Nucl.Instrum.MethodsPhys.Res., Sect.A656(2011)11.

[15]J.A.Aguilar,etal.,ANTARESCollaboration,Nucl.Instrum.MethodsPhys.Res., Sect.A555(2005)132.

[16]P.Amram,et al.,ANTARESCollaboration,Nucl.Instrum. MethodsPhys. Res., Sect.A484(2002)369.

[17]J.A.Aguilar,etal.,ANTARESCollaboration,Nucl.Instrum.MethodsPhys.Res., Sect.A570(2007)107.

[18]S.Adrián-Martínez,etal.,ANTARESCollaboration,J.Instrum.7(2012)T08002.

[19]J.A.Aguilar,etal.,ANTARESCollaboration,Nucl.Instrum.MethodsPhys.Res., Sect.A578(2007)498.

[20]J.A.Aguilar,etal.,ANTARESCollaboration,Astropart.Phys.34(2011)539.

[21]J.A.Aguilar,etal.,ANTARESCollaboration,Astropart.Phys.34(2011)652.

[22]S.Adrian-Martinez,etal.,ANTARESCollaboration,Astrophys.J.760(2012)53.

[23]A.Margiotta,Nucl.Instrum.MethodsA725(2012)98.

[24]J.Brunner,in:ProceedingsoftheVLVnTWorkshop,Amsterdam,The Nether-lands,2003,p. 109.

[25]G.Carminati,M.Bazzotti,A.Margiotta,M.Spurio,Comput.Phys.Commun.179 (2008)915.

[26]P.Amram,etal.,ANTARESCollaboration,Astropart.Phys.19(2003)253.

[27]J.A.Aguilar,etal.,ANTARESCollaboration,Astropart.Phys.23(2005)131.

[28]S. Adrián-Martínez, et al., ANTARES Collaboration, Astrophys. J. Lett. 786 (2014)1.

[29]S.Adrian-Martinez,etal.,ANTARESCollaboration,Astrophys.J.760(2012)53.

[30]J.Neyman,Philos.Trans.R.Soc.Lond.Ser.A236(1937)250.

[31]G.C.Hill,K.Rawlins,Astropart.Phys.19(2003)393.

[32]M.G.Aartsen,etal.,IceCubeCollaboration,Eur.Phys.J.C75(2015)492.

[33]M.G.Aartsen,etal.,IceCubeCollaboration,Eur.Phys.J.C76(2016)531.

[34]M. Ackermann, et al., Fermi-LAT Collaboration, Phys. Rev. Lett. 115(2015) 231301.

[35]R.Caputo,M.R.Buckley,P.Martin,E.Charles,A.M.Brooks,A.Drlica-Wagner, J.M.Gaskins,M.Wood,Phys.Rev.D93(2016)062004.

[36]H.Abdallah,etal.,HESSCollaboration,Phys.Rev.Lett.117(2016)111301.

[37]M.Chianese,G.Miele,S.Morisi,arXiv:1610.04612,2016.

[38]K.Griest,M.Kamionkowski,Phys.Rev.Lett.64(1990)615.

Figure

Fig. 2. The number of events as a function of the distance to the Galactic Centre (crosses) in comparison to the background estimate (red line) for the  Fit  recon-struction
Fig. 6. 90% C.L. limits on the thermally averaged annihilation cross-section,  σ v  , as a function of the WIMP mass for the three considered halo models for the τ + τ − channel.

Références

Documents relatifs

The resulting uncertainty in the measured cross sections is below ±3% for the photon plus one-jet meas- urements, except for p jet1 T (for which the uncertainty increases to ±9% for

Atmospheric neutrinos emitted from the interactions of primary cosmic rays with the atmosphere constitute an irreducible background for the detection of cosmic neutrinos, though

Figure 6.28: Comparison of the multi-lines, single-line and combined sensitivities to neutrino flux coming from dark matter annihilation inside the Sun as a function of WIMP mass

Beyond its astrophysics goals, the science reach of a neutrino telescope such as ANTARES also includes an extended particle physics program, ranging from the study of neutrino

Preliminary studies of this improved analysis looking for neutrino produced by annihilation of Dark Matter inside the Sun performed on the ANTARES data set collected between 2007

Limit on the LKP-to-proton cross section as a function of the mass of the LKP B (1) particle obtained from the search of neutrino events produced by Dark Matter annihilation

Figure 1 (right) presents the expected sensitivity of ANTARES with the data collected in 2007-2008 to the flux of neutrino-induced muons produced by annihilations of Dark Matter

1) Désignation et prix unitaire de tous les produits. 4) Nom des clients qui ont commandé au moins un produit de prix supérieur à 500 F. 5) Nom des clients qui n’ont pas