• Aucun résultat trouvé

en fr

N/A
N/A
Protected

Academic year: 2021

Partager "en fr "

Copied!
209
0
0

Texte intégral

(1)

HAL Id: tel-02171417

https://tel.archives-ouvertes.fr/tel-02171417

Submitted on 2 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Development of a 3D time reversal cavity for pulsed

cavitational ultrasound : application to non-invasive

cardiac therapy.

Justine Robin

To cite this version:

Justine Robin. Development of a 3D time reversal cavity for pulsed cavitational ultrasound : appli-cation to non-invasive cardiac therapy.. Acoustics [physics.class-ph]. Université Sorbonne Paris Cité, 2017. English. �NNT : 2017USPCC273�. �tel-02171417�

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

31 %

25 % 75

(20)
(21)
(22)
(23)
(24)
(25)
(26)

𝐻(𝜔) 𝐸(𝜔) 𝐹(𝜔) 𝐹(𝜔) = 𝐻(𝜔). 𝐸(𝜔) ⇔ 𝐸(𝜔) = 𝐻(𝜔)−1. 𝐹(𝜔) 𝐹 𝐸 𝐹 𝐻−1(𝜔) 𝐻(𝜔) 𝐹

(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)

916 𝑘𝐻𝑧

64 𝑚𝑚

8 µ𝑠 100 𝐻𝑧

(38)

𝑛 = 5

(39)

𝑛 = 7 0.5 𝑚𝐿/𝑘𝑔 15 𝑚𝐿/𝑘𝑔

(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)

(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)

4 𝐿/𝑚𝑖𝑛 21.1 ± 3.9 𝑚𝑚𝐻𝑔 39 ± 6.9 𝑚𝑚𝐻𝑔 9.6 ± 1.7 𝑚𝑚𝐻𝑔 55 ± 10 % 19.6 ± 3.5 𝑚𝑚𝐻𝑔 51 ± 9 % 3𝐿/𝑚𝑖𝑛 5𝐿/𝑚𝑖𝑛 9.0 ± 4.3 4.9 ± 2.9 𝑚𝑚𝐻𝑔/𝐿/𝑚𝑖𝑛

(59)
(60)

37.8 ± 4.6 𝑘𝑔

60 ± 13

(61)
(62)
(63)

Before Therapy After Therapy Variation* (%) p

Shear Wave Imaging

Elastography (kPa) 76.1 ± 23.7 35.6 ± 7.2 - 52 ± 7 <0.001

Echocardiography

Doppler Mitral Valve (figure 5A)

- Maximal Velocity (m/s) 2.41 ± 0.50 1.73 ± 0.21 - 28 ± 6 0.007

- Maximal Pressure Gradient

(mmHg) 24.0 ± 4.4 12.1 ± 1.4 - 49 ± 11 0.003

- Mean Velocity (m/s) 1.95 ± 0.36 1.38 ± 0.24 - 29 ± 6 0.001

- Mean Pressure Gradient (mmHg) 16.2 ± 3.2 8.2 ± 1.3 - 48 ± 7 <0.001

Mitral Valve Area (cm2)

- By pressure half time (PHT, fig 5B) 1.09 ± 0.09 1.57 ± 0.08 + 143 ± 18 <0.001

- By continuity equation 1.10 ± 0.15 1.58 ± 0.15 + 142 ± 15 <0.001

- By planimetry (fig 5C) 1.13 ± 0.13 1.54 ± 0.14 + 137 ± 14 <0.001

Pulmonary artery pressure (mmHg)

- Maximal (Tricuspid Valve) 64.7 ± 12.8 34.1 ± 10.2 - 47 ± 12 <0.001

Cardiac Output# (L/min) 2.98 ± 0.1 2.96 ± 0.14 - 1 ± 0.2 0.83

Pressure Sensors (Millar) (mmHg)

Mean Diastolic Left Atrium pressure (LAP) 36.8 ± 6.2 20.2 ± 5.1 - 44 ± 11 0.004

Mean Diastolic Left Ventricle pressure (LVP) 17.4 ± 2.7 11.4 ± 1.9 - 35 ± 10 0.014

Mean Diastolic Gradient LVP-LAP 17.4 ± 2.4 8.8 ± 1.2 - 50 ± 13 0.002

Cardiac Flow Captor (L/min)

(64)

105 ± 9 𝑘𝑃𝑎

46 ± 4 𝑘𝑃𝑎 55 ± 8 %

82 ± 10𝑘𝑃𝑎

(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)
(75)
(76)
(77)
(78)
(79)
(80)
(81)

– –

– –

(82)

  

(83)

λ λ – – – λ λ λ –

(84)

𝑓/𝐷 = 1

𝑓(𝑡) = 𝑓0+ (𝑓1−𝑓0).

(85)
(86)

3 µ𝑠 0.85 𝑀𝐻𝑧 – 3 𝑑𝐵

(87)
(88)

– 𝑛 = 3 – (3 𝜆 𝑥 3 𝜆) – – –

(89)

– – – – – – –

(90)
(91)

𝟏 √𝑺⁄

(92)

– –

– –

– –

(93)
(94)

– >

(95)
(96)
(97)

(98)

– – 𝐺 𝐺 =∫ |𝑠(𝑡)|.𝑑𝑡 𝑇 0 𝑀 ’ ’ ’

(99)

’ –

(100)

– –

(101)

“ ”

(102)

“ ”

(103)

“ ”

Diffusion through the MSM medium

≫ 𝑙𝑒 𝑙∗ < 𝑐𝑜𝑠 > 𝐴𝑐𝑜ℎ= 𝐴 ∙ 𝑒−𝛼∙𝑐∙𝑡∙ 𝑒 −𝐿 𝑙𝑒 𝑡~0,1 ∙2∙ 𝐿2 𝑙∗∙𝑐 𝜏 = 𝐿2 2∙𝑙∗∙𝑐

(104)

𝛼 = 1.5 𝑚−1

𝑇 ∝𝑙∗

𝐿

Reverberation of the empty cavity

(105)

– 0.1 rod/𝑚𝑚2 2 to 20. 10−2/𝑚𝑚3 𝒍𝒆 𝒍∗ < 𝒄𝒐𝒔 >

Description of the 2D – TRC

– λ λ

(106)

General Setup description

f D = μ 600 µ𝑠 [20 − 50] 𝑚𝑚 𝐿 > 3 ∙ 𝑙∗= 30 𝑚𝑚

Description of the 2D and 3D-TRC

– 20 𝜆 𝑥 0.5 𝜆

λ λ

λ –

(107)

Simulation process and gain evaluation

3 µ𝑠 – – 𝐺 𝐺 =∫ |𝑠(𝑡)|.𝑑𝑡 𝑇 0 𝑀

(108)

λ λ λ

(109)

𝐿 ≥ 3 ∙ 𝑙∗ 3 ∙ 𝑙∗= 30 𝑚𝑚

– –

(110)

2D – TRC optimisation.

(111)

𝑛 = 10−2 𝑡𝑜 3. 10−1 𝑚𝑚−2

3D – TRC optimisation

(112)

𝜏𝑐𝑎𝑣~10 µ𝑠 ≪ 𝜏𝑀𝑆𝑀 ~ 50 𝑡𝑜 200 µ𝑠

(113)

3. 𝑙∗

(114)

𝜏𝑐𝑎𝑣~10 µ𝑠 ≪ 𝜏𝑀𝑆𝑀 ~ 50 𝑡𝑜 200 µ𝑠 𝜏𝑐𝑎𝑣~100 µ𝑠 “ ” – “ ” “ ” “ ” 𝑓/𝐷 = 1 3 µ𝑠 = 0.85 𝑀𝐻𝑧 60% – 3 𝑑𝐵 𝑠(𝑡) – 𝑠𝑖𝑔𝑛(𝑠(𝑇 − 𝑡)) 𝐿 ∈ [0 5𝑐𝑚] 1 𝑃𝑎

(115)

“ ” λ λ “ ” 1 𝑐𝑚 “ ” –

(116)

“ ” –

(117)

200 𝑐𝑚3

“ ” –

“ ”

(118)
(119)
(120)
(121)

 λ   𝑓 − 𝑛𝑢𝑚𝑏𝑒𝑟 < 1  

(122)

60 𝑊

5. 𝜆 𝑥 5. 𝜆

𝑓 − 𝑛𝑢𝑚𝑏𝑒𝑟 < 1

 

(123)

(124)
(125)
(126)
(127)
(128)
(129)
(130)
(131)
(132)
(133)
(134)
(135)
(136)
(137)
(138)
(139)
(140)

𝑁 ∗ 𝑁

𝐾(𝜔) 𝜔

𝐾(𝜔) 𝐾(𝜔) =

(141)
(142)
(143)
(144)
(145)

𝐻 𝐻(𝜔) 𝐸(𝜔) 𝐹(𝜔), 𝐹(𝜔) = 𝐻(𝜔). 𝐸(𝜔) ⇔ 𝐸(𝜔) = 𝐻(𝜔)−1. 𝐹(𝜔) 𝐹 𝐸 𝐹 𝐻−1(𝜔) 𝐻(𝜔) 𝐹 𝐸 𝐻 𝐸 𝐻

(146)
(147)
(148)
(149)
(150)
(151)
(152)
(153)

𝐹

𝐸

(154)

𝜔 𝐻(𝜔)𝐻∗(𝜔) 𝐻 𝐻 = 𝑈𝛬𝑉† 𝑉 𝜔 𝑀(𝜔) 𝑀𝑐𝑡𝑟𝑙_𝑝𝑜𝑖𝑛𝑡𝑠(𝜔) = 𝐻(𝜔)𝑀(𝜔) 𝑀𝑐𝑡𝑟𝑙_𝑝𝑜𝑖𝑛𝑡𝑠(𝜔) = 𝑈1(𝜔)𝛬1(𝜔) 𝑉1†(𝜔) 𝑉1 𝑉𝑡𝑟𝑎𝑛𝑠(𝜔) = 𝐻∗(𝜔)𝑉1(𝜔)

(155)

𝐸(𝜔) 𝐸(𝜔) 𝐸𝑝𝑟𝑜𝑗(𝜔) = 𝐸 − ∑ ( 𝑉𝑡𝑟𝑎𝑛𝑠,𝑖 † (𝜔)𝐸(𝜔)) 𝑉 𝑡𝑟𝑎𝑛𝑠,𝑖(𝜔) 𝑝 𝑖=1 𝐸𝑝𝑟𝑜𝑗

(156)
(157)

𝐹(𝜔)

± ± 0.7 ± 0.4

± 0.16 ± 0.7 ± 0.04

(158)
(159)
(160)
(161)
(162)

± ± 0.7 ± 0.4

± 0.14 ± 0.8 ± 0.3

(163)
(164)
(165)
(166)
(167)
(168)
(169)
(170)
(171)
(172)

2700 𝑚. 𝑠−1 𝑐 ≈ 3000 𝑚. 𝑠−1

𝑐 ≈ 3000 𝑚. 𝑠−1 𝜌 ≈ 1000 kg. 𝑚−3

𝛼 ≈ 1.67 𝑐𝑚−1

(173)
(174)
(175)
(176)
(177)

𝜆

(178)

𝑑𝑥 = 𝑑𝑧 = 𝜆

(179)

𝜌 = 1000 𝑘𝑔 ∙ 𝑚−3 𝑐 = 1500 𝑚 ∙ 𝑠−1 𝐻 = 1000 ∙ µ𝑥−µ𝑤𝑎𝑡𝑒𝑟 µ𝑏𝑜𝑛𝑒−µ𝑤𝑎𝑡𝑒𝑟 𝜑 = 1 − 𝐻 1000

(180)
(181)
(182)
(183)

𝑠𝑖(𝑡) 𝑖

(184)

𝑠𝑖ℎ(𝑡) 𝜏𝑖 𝑎𝑖 = 𝑚𝑎𝑥𝑡{|𝑠𝑖(𝑡)|} 𝑚𝑎𝑥𝑡{|𝑠𝑖ℎ(𝑡)|} 1 𝑎𝑖 𝑎𝑖 𝑎𝑖

(185)
(186)
(187)
(188)
(189)
(190)
(191)
(192)
(193)
(194)
(195)

5.5 ± 2.5 𝑚𝑖𝑛

(196)

70 ± 12 𝑚𝑖𝑛

(197)
(198)
(199)

λ λ)

λ λ

(200)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to