• Aucun résultat trouvé

Study of Venus cloud layers by polarimetry using SPICAV/VEx

N/A
N/A
Protected

Academic year: 2021

Partager "Study of Venus cloud layers by polarimetry using SPICAV/VEx"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: insu-01144092

https://hal-insu.archives-ouvertes.fr/insu-01144092

Submitted on 15 Sep 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Study of Venus cloud layers by polarimetry using SPICAV/VEx

Loïc Rossi, Emmanuel Marcq, Franck Montmessin, Anna Fedorova, Daphne Stam, Jean-Loup Bertaux, Oleg Korablev

To cite this version:

Loïc Rossi, Emmanuel Marcq, Franck Montmessin, Anna Fedorova, Daphne Stam, et al.. Study of Venus cloud layers by polarimetry using SPICAV/VEx. EGU General Assembly 2015, Apr 2015, Vienna, Austria. pp.EGU2015-1656. �insu-01144092�

(2)

Study of Venus cloud layers by polarimetry using SPICAV/VEx

Loïc Rossi

1

Emmanuel Marcq

1

Franck Montmessin

2

Anna Fedorova

3 4

Daphne Stam

5

Jean-Loup Bertaux

2

Oleg Korablev

3 4

1

Université Versailles St-Quentin-en-Yvelines, LATMOS-IPSL, Guyancourt, France.

2

CNRS/INSU, LATMOS-IPSL, Guyancourt, France.

3

Space Research Institute (IKI), Moscow, Russia.

4

Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Russia.

5

Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands.

1. C

ONTEXT

I Since 1929, polarization has been used to characterize

Venus’ clouds and hazes refractive index, radius and particle size distribution;

I Most of our knowledge is based on measurements and

modeling made by Lyot[4], Hansen and Hovenier[1], Kawabata[2] and Sato[8] with ground and space

observation;

I Our goal here is to make new measurements using the

polarimetric data provided by the instrument

SPICAV-IR on Venus Express, in orbit since 2006.

Main cloud layer Hazes

Altitude 50 to 75 km 30 to 90 km

Composition H2SO4–H2O H2SO4–H2O

Radius r ∼ 1 µm r ∼ 0.25 µm

Table: Current knowledge of Venus clouds. Figure: Structure of Venus clouds

2. SPICAV-IR

600 800 1000 1200 1400 1600 1800 Wavelength (nm) 0 100 200 300 400 500 600 700 800 Ra dia nc e ( W · m − 2 sr − 1 µm − 1 ) 'DOTS' Spectral window

SPICAV-IR acquisition with DOTS on orbit 801-6 detector 0 detector 1

Figure: Example of SPICAV acquisition.

Channel Coverage

SW 0.65 µm—1.05 µm

LW 1.05 µm—1.7 µm

Table: SPICAV characteristics

SPICAV-IR is a spectrometer on-board the Venus Express spacecraft[3]. Based on an Acousto-Optical Tunable Filter (AOTF), it produces two beams linearily polarized in

perpendicular directions.

Measure of the degree of linear polarization:

P` = P⊥ − P//

P + P// =

d1 − d0

d1 + d0

Cross-calibration performed by knowing that for any

wavelength P` = 0 at 0◦ of phase angle. Acquisition is

made with spectral windows and sets of 3, 5 or 10 points for continuum measurement. We use the latter points to

measure polarization in up to 14 wavelengths[7].

3. SPICAV

OBSERVATIONS

I Observations performed in nadir, spot-tracking mode and with zig-zags for SO2 mapping;

I VEx has a north polar orbit: observations mostly located in northern hemisphere;

6 8 10 12 14 16 18 Local time 90 80 70 60 50 40 30 20 100 10 20 30 40 50 60 70 80 La tit ud e ( ◦ )

Degree of linear polarization map for λ=1.101µm

Orbits 0400-2733 4 2 0 2 4 6 8 10

Degree of linear polarization (%)

Figure: Left: Average maps from SPICAV polarization observations at 1101 nm for all orbits from 2007-05-26 to

2013-10-16. Right: Polarization nadir observations at λ = 1.274 µm for the same period as a function of phase angle

and latitude. The glory is visible at ∼ 15◦ of phase angle.

Polarization is quite uniform across the planet with the exception of the high latitudes:

I At low latitudes, the polarization is mostly negative;

I At higher latitudes it becomes positive, reaching values sometimes higher than +10%;

I A phenomenon known as glory is visible nearly every time SPICAV-IR observes at low

latitudes;

I The glory is also observed in photometry by the Venus Monitoring Camera (VMC) onboard

Venus Express[5, 6].

4. C

LOUD MODEL

I The cloud model has a layer of haze above a cloud layer,

each homogeneously mixed;

I Polarization retrieved with the doubling-adding method[9];

I Angular position and shape of the glory dependent on the

cloud parameters: the glory is a tool to characterize the

cloud layer;

I Thickening hazes increases the polarization degree near 90◦

of phase angle: possible measurement of τh at higher phase

angles.

reff νeff nr τ

Haze layer 0.25 0.25 n τh

Cloud layer rc νeff n 30

Table: Parameters of the cloud model

Figure: Illustration of the influence of the cloud parameters nr, reff, νeff, and τh on the model.

5. G

LORY ANALYSIS

Cloud parameters nr, reff, νeff retrieved from 10 selected glories using our model at six

wavelengths simultaneously (1.101, 1.16, 1.198, 1.274, 1.324 and 1.553 µm).

6 8 10 12 14 16 18 Local time 40 20 0 20 40 Latitude Refractive indices at 1.101 µm 1.392 1.398 1.404 1.410 1.416 1.422 1.428 1.434 1.440 500 1000 1500 2000 2500 3000 Orbit number 1.34 1.36 1.38 1.40 1.42 1.44 1.46 1.48 1.50 Re fra cti ve in de x @ 1 .1 01 µ m

Figure: Retrievals of refractive indices from glory observations as a function of (from left to right) latitude/local time and orbit number. Size of marker is inversely proportional to uncertainty.

6 8 10 12 14 16 18 Local time 40 20 0 20 40 Latitude

Particle effective radius (µm)

0.84 0.90 0.96 1.02 1.08 1.14 1.20 1.26 500 1000 1500 2000 2500 3000 Orbit number 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Effective radius (microns)

Figure: Retrievals of effective radii from glory observations as a function of (from left to right) latitude/local time and orbit number. Size of marker is inversely proportional to uncertainty.

I Refractive indices of nr ∼ 1.44 at λ = 1.1µm, compatible with concentrated H2SO4 solution;

I Particle effective radius varying in range 0.8 < reff < 1.3µm, ;

I Upper limit on variance of the size distribution: νeff < 0.15;

I Small haze column densities required Ch < m−2 at low latitudes.

I Too few usable glories to make any conclusion regarding latitudinal or local time trends. Possible

increase of nr and reff with time.

6. H

IGHER LATITUDES

At higher latitudes, thicker haze is required to match observed polarization.

I A fixed composition of the cloud layer is assumed in order to derive the haze column density. For

the cloud reff = 1.05µm, νeff = 0.07 and nr = 1.44 at 1.101 µm.

I The haze effective radius and variance are set to reff = 0.25 µm and νeff = 0.25.

I Fits performed at all latitudes in the northern hemisphere;

I The properties of the clouds change with latitude, with increasing haze column density with

increasing latitude. This is in agreement with OCPP measurements.

I A small decrease of Ch occurs between equator and 50◦ of latitude, followed by a sharp increase

towards the pole.

I Kawabata[2], observed an increase in the haze column density with increasing latitude (from

0.23 µm−2 at low latitudes to 3.1 µm−2 at high latitudes). Our values fall within this range.

0 10 20 30 40 50 60 70 80 90 Latitude 0 1 2 3 4 5 6 7 8 Co lum n de ns ity ( µ m − 2)

Binned average column density Error of the mean

6 8 10 12 14 16 18 Local time 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Co lum n de ns ity ( µ m − 2)

Binned average column density Error of the mean

0 500 1000 1500 2000 2500 3000 Orbit number 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Co lum n de ns ity ( µ m − 2 )

Binned average column density (3 months) Error of the mean

Figure: Binned averaged values of haze column density as a function of (from left to right) latitude, local time and orbit number.

7. C

ONCLUSION AND PERSPECTIVES

Conclusion

I SPICAV polarization data is fully exploitable with a large spatial and temporal coverage;

I Consistent with previous observations : same features and order of magnitude;

I The glory is observed every time at phase angles ∼ 15◦: spherical micrometric particles constitute

most of the clouds of Venus;

I Refractives indices retrieved are compatible with sulfuric acid solution;

I An increase of the haze column density is observed with increasing latitude.

Perspectives

I Investigate further the temporal and spatial variability, in particular for the haze column density;

I Possible information on vertical structure of the clouds from polarimetry in the CO2 absorption

band.

For further information on the instrument and/or method, please refer to Rossi et al. 2014 (in press) [7].

R

EFERENCES

[1] J. E. Hansen and L. D. Travis. Light scattering in planetary atmospheres. Space Sci. Rev., 16:527–610, Oct. 1974.

[2] K. Kawabata, D. Coffeen, J. Hansen, W. Lane, M. Sato, and L. Travis. Cloud and haze properties from Pioneer Venus polarimetry. J.

Geo-phys. Res., 85:8129–8140, dec 1980.

[3] O. Korablev, A. Fedorova, J.-L. Bertaux, A. Stepanov, A. Kiselev, Y. Kalinnikov, A. Titov, F. Montmessin, J. Dubois, E. Villard, V. Sarago, D. Belyaev, A. Reberac, and E. Neefs. SPICAV IR acousto-optic spectrometer experiment on Venus Express. Planet. Space Sci., 65:38–57, may 2012.

[4] B. Lyot. Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres. PhD thesis, Université de Paris, 1929.

[5] W. Markiewicz, E. Petrova, O. Shalygina, M. Almeida, D. Titov, S. Limaye, N. Ignatiev, T. Roatsch, and K. Matz. Glory on venus cloud tops and the unknown uv absorber. Icarus, 234:200–203, 2014.

[6] E. V. Petrova, O. S. Shalygina, and W. J. Markiewicz. The vmc/vex photometry at small phase angles: Glory and the physical properties of particles in the upper cloud layer of venus. Planetary and Space Science, (0):–, 2014.

[7] L. Rossi, E. Marcq, F. Montmessin, A. Fedorova, D. Stam, J.-L. Bertaux, and O. Korablev. Preliminary study of venus cloud layers with polarimetric data from spicav/vex. Planetary and Space Science, (0):–, 2014.

[8] M. Sato, L. Travis, and K. Kawabata. Photopolarimetry Analysis of the Venus Atmosphere in Polar Regions. Icarus, 124:569–585, dec 1996. [9] D. M. Stam, J. F. De Haan, J. W. Hovenier, and P. Stammes. Degree of linear polarization of light emerging from the cloudless atmosphere in

the oxygen A band. J. Geophys. Res., 104:16843–16858, 1999.

A

CKNOWLEDGMENTS

This PhD thesis is funded by the LabEx “Exploration Spatiale des Environnements Planétaires” (ESEP) N◦ 2011 LABX-030. We want to thank the State and the ANR for their support within the programme “Investissements d’Avenir” through the excellence initiative PSL*(ANR-10-IDEX-0001-02). Part of this work was also supported by the COST action MP1104 “Polarization as a tool to study the Solar System and Beyond”.

Loïc Rossi

LATMOS/UVSQ

Web: http://rossi.page.latmos.ipsl.fr

E-mail: loic.rossi@latmos.ipsl.fr

Références

Documents relatifs

Results: In experimental meningitis, EDP-420 produced a bactericidal activity comparable to the stan- dard regimen based on a combination of vancomycin with ceftriaxone against

At higher magnification, we observed that Spatial is not only expressed by mitotically active cells forming the outer EGL [11] but also by Purkinje cells (Figs. 2B1,B2,

In the present report we have sought to completely determine if SOX10 plays any kind of role in the pathogenesis of HSCR, by a screening of both point mutations and gene-dosage

de faible transparence Notre travail a consisté à mettre à profit notre bonne maîtrise du couplage par onde évanescente aux modes de galerie, et les

Nous avons déjà mentionné plusieurs fois que ces expériences ne définissent que le nombre quantique principal de l’état initial des atomes et nécessitent

Gonzalez, Polar organic chemical integrative sampler (POCIS) uptake rates for 17 polar pesticides and degradation products: laboratory calibration,

différents organismes autotrophes dans différents environnements (Serôdio et al. 2005b et références citées) et sont couramment employées pour l’étude

La mise à la terre du neutre n’a pas d’impact sur les matrices 4 x 4 d’impédance linéique des câbles et n’en a pas non plus sur le profil de tension phase-neutre. Par contre,