• Aucun résultat trouvé

ELASTIC pp POLARIZATION AT LARGE ANGLES

N/A
N/A
Protected

Academic year: 2021

Partager "ELASTIC pp POLARIZATION AT LARGE ANGLES"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00224533

https://hal.archives-ouvertes.fr/jpa-00224533

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ELASTIC pp POLARIZATION AT LARGE ANGLES

C. Bourrely, J. Soffer

To cite this version:

C. Bourrely, J. Soffer. ELASTIC pp POLARIZATION AT LARGE ANGLES. Journal de Physique

Colloques, 1985, 46 (C2), pp.C2-217-C2-220. �10.1051/jphyscol:1985222�. �jpa-00224533�

(2)

JOURNAL DE PHYSIQUE

Colloque C2, supplément au n°2, Tome 46, février 1985 page C2-217

ELASTIC pp POLARIZATION AT LARGE ANGLES

C. Bourrely and J . Soffer

Centre de Physique Théorique*, CNRS, Luminy, Case 907, 13288 Marseille Cedex 9, France

Résumé - Nous proposons un mécanisme simple pour engendrer une grande po- larisation élastique pp à haute énergie et aux grands angles de diffu- sion. Nos prédictions présentent un grand intérêt pour le programme expé- rimental en cours de réalisation au Brookhaven National Laboratory ainsi que pour les futures expériences de diffusion élastique aux grands angles.

Abstract - We propose a simple mechanism to generate a s i z e a b l e analyzing power in high energy pp e l a s t i c s c a t t e r i n g a t large a n g l e s . Our p r e d i c - t i o n s are of g r e a t i n t e r e s t for the experimental programme i n progress a t Brookhaven National Laboratory and for future experiments on e l a s t i c s c a t - t e r i n g a t l a r g e a n g l e s .

Spin dependence of two-body processes a t high e n e r g i e s i s known to probe hadronic i n t e r a c t i o n s at a r a t h e r refined l e v e l and allows us to ask d e t a i l e d q u e s t i o n s about hadron s t r u c t u r e , which cannot be answered from the knowledge of unpolarized cross s e c t i o n s only. Over the l a s t ten years or s o , a l a r g e s e l e c t i o n of spin measurements for t h i s c l a s s of r e a c t i o n s have been performed. They cover mainly the region of small momentum t r a n s f e r and the corresponding " s o f t " physics has been discussed i n a comprehensive review of p o l a r i z a t i o n phenomena in hadronic r e a c t i o n s / 1 / . C l e a r - ly t o t e s t our understanding of color quark dynamics a t very s h o r t d i s t a n c e s , one must i n v e s t i g a t e l a r g e momentum t r a n s f e r processes a t high e n e r g i e s . For i n c l u s i v e r e a c t i o n s , i n the framework of p e r t u r b a t i v e QCD, the b a s i c quark asymmetries r e s u l t - ing from the h e l i c i t y conserving n a t u r e of the theory imply l a r g e double spin asym- metries a t the hadron l e v e l , but these i n t e r e s t i n g p r e d i c t i o n s /2/ have not y e t been t e s t e d for lack of experimental d a t a . On the o t h e r hand, l a r g e angle pp e l a s - t i c s c a t t e r i n g i s one of the b e s t known r e a c t i o n s and i t i s worth r e c a l l i n g the e x i s - tence of a s t r i k i n g spin dependence which has been already discovered a t the maximum ZGS energy a t Argonne. The t r a n s v e r s i t y s p i n - s p i n c o r r e l a t i o n parameter ANN was found to climb up to the l a r g e value 0.59 ± 0 . 0 9 a t © = 90° for p

lab

=12.75GeV/c / 3 / . In terms of the five nucleon-nucleon h e l i c i t y amplitudes Y- > t h i s p h y s i c a l observable reads

^ ^ m = Re ^ , 4»* - 4> 3 tt + 2 ttsi 2 > < ] )

where

^ - i M + i l M ^ H M M W 2 + * ^ i 2 ) - < 2 )

If one t r i e s to use p e r t u r b a t i v e QCD to d e s c r i b e pp e l a s t i c s c a t t e r i n g i n t h i s energy range / 4 / , the h e l i c i t y conservation r u l e / 5 / implies t h a t the s i n g l e and dou- b l e f l i p amplitudes v a n i s h , i . e . < t

?

=<p, = 0 at l a r g e a n g l e s . In a d d i t i o n from symmetry arguments a t 90° we have <f>

3

= - < b , and from the quark i n t e r c h a n g e model

<fy

]

= 1^3 •

A s a

r e s u l t , one g e t s ANN (90°) = 1 / 4 / which i s d e f i n i t e l y i n d i s a - greement with the above experimental r e s u l t . Of course one can always assume the

L a b o r a t o i r e P r o p r e , Centre National de l a Recherche S c i e n t i f i q u e

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985222

(3)

C2-218 JOURNAL DE PHYSIQUE

e x i s t e n c e of a d d i t i o n a l c o n t r i b u t i o n s r e l a t e d t o non-perturbative e f f e c t s which w i l l d i e o u t a s t h e energy i n c r e a s e s . I n t h a t ca$e one expects from t h e f u t u r e d a t a a t the AGS-BNL, a d e c r e a s i n g %(go0) towards t h e value 113.

I n t h e t h e o r e t i c a l approach of t h e massive quark model (WM) and i t s e x t e n s i o n t o t h e Quark Geometrodynamics (QGD) 161, t h e physics o f l a r g e angle two-body r e a c t i o n s has been analyzed i n d e t a i l i n a s e r i e s of papers 17, 8 , 91. By u s i n g t h e s e t of N-N amplitudes given i n Table I of r e f . / a / , one f i n d s %N(90") w i t h a l a r g e r va- l u e which should go up t o 0.97 a t asymptotic e n e r g i e s i n c o n t r a s t with the p e r t u r - b a t i v e QCD value 113 . A new p o t e n t i a l physics w i l l emerge with t h e advent of t h e p o l a r i z e d proton beam a t t h e AGS-BNL and hopefully t h i s important q u e s t i o n w i l l b e answered soon. If we now t u r n t o t h e s i m p l e s t s p i n dependent observable, t h e analyz- ing power A whose e x p r e s s i o n i s

i t w i l l v a n i s h a t l a r g e a n g l e s i n ~ e r t u r b a t i v e QCD because 95

=

0 . I n t h e MQPS QGD approach we do n o t have t h i s c o n s t r a i n t b u t a l l t h e amplitudes a r e expected t o be r e a l l i k e i n p e r t u r b a t i v e QCD and t h i s i s why we a l s o a n t i c i p a t e A = 0 a t l a r g e angles. However, i f a t high momentum t r a n s f e r t , t h e r e i s a r e w a n t of t h e imagi- nary d i f f r a c t i v e non-flip amplitude which i s known t o dominate a t small t , t h e r e w i l l be i n t e r e s t i n g i n t e r f e r e n c e e f f e c t s w i t h t h e MQM-QGD s p i n dependent r e a l ampli- tudes, which might p e r s i s t up t o very l a r g e s c a t t e r i n g angles. This i s p r e c i s e l y the mechanism we w i l l invoke t o generate a s i z e a b l e analyzing power a t l a r g e angles.

Some y e a r s ago we have presented a s a t i s f a c t o r y phenomenological a n a l y s i s o f pp e l a s t i c s c a t t e r i n g from a new impact p i c t u r e f o r low and high energy / l o / . These p r e d i c t i o n s have been extended a t t h e CERN-SPS C o l l i d e r /11/ and were found i n good agreement w i t h t h e r e c e n t d a t a . We w i l l t h e n consider t h a t t h i s impact p i c t u r e am- p l i t u d e provides a n a c c u r a t e r e p r e s e n t a t i o n of " s o f t " s c a t t e r i n g up t o reaso a b l e values of t h e momentum t r a n s f e r . For l a r g e t values, t y p i c a l l y I t ( > 5 GeV 4 a t AGS e n e r g i e s , the impact p i c t u r e was found t o p r e d i c t a d i f f e r e n t i a l c r o s s s e c t i o n below t h e d a t a which becomes n e g l i g i b l e n e a r oc,m, = 90' . C l e a r l y s i n c e t h i s i s the l a r g e angle region, we a r e missing the e f f e c t o f t h e hard s c a t t e r i n g component of t h e amplitude. Therefore we have combined t h e impact p i c t u r e amplitude with t h e IQM-QGD hard s c a t t e r i n g amplitudes des r i b e d i n r e f s . 17, 91 and properly normalized

t o t h e d i f f e r e n t i a l c r o s s s e c t i o n a t &

=

90' . It r e s u l t s a good d e s c r i p t i o n c.m.

of d ~ l d t o u t t o l a r g e t values and f o r example a t plab = 28 GeV/c and t . m s = 4 5 0 we have d v f d t = 4x10-' mb/~ev' which i s c o n s i s t e n t with t h e expectations of r e f . / 121. Below 45' we cannot e x t r a p o l a t e s a f e l y t h e MQM-QGD amplitudes because t h e i r expressions (see r e f . 181) contain some approximations v a l i d only f o r l a r g e angle s c a t t e r i n g . I f we now c a l c u l a t e t h e analyzing power f o r above 45' from t h e

c.m.

r e s u l t i n g s e t of amplitudes we f i n d t h a t A i s v e r y l a r g e , s t a r t i n g around 50 % and decreasing slowly towards zero f o r 0 c.m. = 90' . Our p r e d i c t i o n s f o r pp a r e shown i n F i g . 1 where we have p l o t t e d A v e r s u s 6 f o r two d i f f e r e n t values o f

c.m.

plab = 28 and 50 GeV/c . We have a l s o c a l c u l a t e d a t two d i f f e r e n t e n e r g i e s which is shown i n Fig. 2. There i s a s l i g h t u n c e r t a i n t y on t h e s e r e s u l t s due t o t h e f a c t t h a t we do n o t know the e x a c t v a l u e o f d F / d t i n t h i s kinematic region. For plab = 24 GeV/c a t t h e l a r g e s t angle measured corresponding t o It(= 6.72 GeV 2 , we g e t d w l d t = I .1 x lom6 mb/GeV 2 t o be compared w i t h t h e experimental v a l u e 113'1 (8.49 * 0.51) mb/GeV . Clearly a t f i x e d 0 s i n c e t h e hard s c a t t e r i n g con-

c.m.

t r i b u t i o n drops down r a p i d l y when t h e energy i n c r e a s e s from 28 GeV/c t o 50 GeVlc ,

A i s expected t o i n c r e a s e as shown i n F i g . 1 . This e f f e c t i s r a t h e r l i m i t e d because

f o r higher e n e r g i e s t h e hard s c a t t e r i n g amplitude i s s o much suppressed t h a t t h e r e

i s no reason to invoke any i n t e r f e r e n c e mechanism i n a kinematic region p r e s e n t l y

a c c e s s i b l e t o experiments t o a n t i c i p a t e l a r g e values o f A .

(4)

Fig. I - P r e d i c t i o n s f o r t h e pp analyzing power versus

0 c.m.at two d i f f e r e n t energies.

80t / ' . . I Fig. 2 - Predlctrr

.#I

meter i n

Below plab = 50 GeV/c , the region ec.m?, 50' has n o t y e t been i n v e s t i g a t e d expe- r i m e n t a l l y , b u t t h e r e i s a s t r o n g i n d i c a t i o n of t h i s e f f e c t from a recent r e s u l t from BNL 1141 . At P l a b

=

28 GeV/c and : p = 6.56 ( ~ e v / c ) ~ they f i n d A

=

(51 *

17)% and t h i s i s perhaps t h e beginning of a new domain where l a r g e values of A re- s u l t from a maximum i n t e r f e r e n c e mechanism between s o f t and hard s c a t t e r i n g amplitu- des which a r e s t r o n g l y o u t of phase(x) . W have a l s o calculated e A f o r pn e l a s - t i c s c a t t e r i n g and the r e s u l t s a r e p r e s e n t e d i n Fig. 3. The pn G a l y z i n g power i s s i m i l a r t o t h a t of pp , except n e a r ecarn. = 90' where i t i s n o t vanishing from symmetry arguments.

We would l i k e t o i n d i c a t e t h a t a s i m i l a r c a l c u l a t i o n has been done using t h e p e r t u r - b a t i v e QCD am l i t u d e s / 4 / and one f i n d s much s m a l l e r r e s u l t s p a r t l y due t o t h e f a c t t h a t 9 = 4 = 0 . Moreover t h e c a l c u l a t i o n i s only r e l i a b l e n e a r 90' because f o r 8 c.m.< 70' t h e hard QCD cross s e c t i o n blows up very q u i c k l y and i t s extrapo- l a t i o n is t o t a l l y u n r e a l i s t i c .

( X f ~ h i s s i t u a t i o n i s s i m i l a r t o t h a t o f t h e Coulomb-nuclear i n t e r f e r e n c e a t very

small momentum t r a n s f e r 1151.

(5)

JOURNAL DE PHYSIQUE

Fig. 3 - P r e d i c t i o n s f o r t h e pn ana- l y z i n g power A v e r s u s ec

a t two d i f f e r e n t e n e r g i e s r m '

I n c o n c l u s i o n we b e l i e v e t h a t t h e e l a s t i c nucleon-nucleon a n a l y z i n g power a t l a r g e a n g l e s i s very important t o measure because i t s d e t e r m i n a t i o n i s a r e a l challenge t o o u r knowledge o f s p i n dependence a t s h o r t d i s t a n c e .

REFERENCES

/ I / BOURRELY C. , LEADER E . , and SOFFER J . , Phys . Rep. 59 (1980), 95.

/2/ CRAIGIE N.S., HIDAKA K . , JACOB 14. and RENARD F.M., Phys. Rep. 2 (1983), 69.

/3/ CROSBIE E.A. e t a l . , Phys. Rev. D23 (1981), 600.

/4/ FARRAR G., GOTTLIEB S., SIVERS ~. nd THOMAS G.M., Phys. Rev. (1979), 202.

BRODSKY S . J . , CARLSON C.E., and LIPKIN H., Phys. Rev. D20 (1979), 227S.

/ 5 / BRODSKY S.J. and LEPAGE G.P., Phys. Rev. D24 (b981), 2848.

161 PREPARATA G., Proceedings 1974 E r i c e Summer School, Ed. A. Z i c h i c h i , (Academic Press, New York 1975) , p . 54.

PREPARATA G . and CRAIGIE N., Nucl. Phys. B102 (1976), 478.

PREPARATA G. and SZEGO K., Phys. L e t t . 6 8 3 r n 9 7 7 ) , 239 and Nuovo Cimento, 47A (1978), 303.

- PREPARATA G., Nucl. Phys. B122 (1977), 29.

/ 7 / P R E P A R A T A G . a n d S O F F E R J . , y s . L e t t . ~ ( 1 9 7 9 ) , 3 0 4 a n d P h y s . L e t t . ~ (1980). 187.

CHIAPPETTA P. and SOFFER J. , Phys . Rev. D28 ( 1983) , 21 62.

NARDULLI G., PREPAXATA G. and SOFFER J., P r e p r i n t M a r s e i l l e CPT-83/P.1558, and Nuovo Cimento, t o appear.

NARDULLI G., PREPARATA G. and SOFFER J , , P r e p r i n t B a r i BA-G~/84-05, t o be published i n Phys. Rev. D.

BOURRELY C., SOFFER J. and WU T.T., Phys. Rev. 2 (1979), 3249.

BOURRELY C. , 'SOFTER J. and WU T.T. , CERN P r e p r i n t TH.3887 (May 1984) , t o be published i n Nucl. 'Phys . B.

KRISCH A.D,, Phys. ~ e v . ' ~ e t t , . 2 (1967), 1149.

ALLABY J.V. e t a l . , Nucl. Phys-. B52 (1973), 316.

RAYMOND R.S. e t a l . , P r e p r i n t Ul?. HE 84-1 1 .

VANZHA A.P., LAPIDUS L. I. and TARASOV L.V., Sov. Journ. Nucl . Phys. 3

(1973), 565.

KOPELIOVICH B.Z. and LAPIDUS L.I., Sov. Journ. N u c l . Phys. 2 (1974), 1 14.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to