• Aucun résultat trouvé

STUDIES OF RAPID MELTING AND FREEZING OF 3He IN HIGH MAGNETIC FIELDS

N/A
N/A
Protected

Academic year: 2021

Partager "STUDIES OF RAPID MELTING AND FREEZING OF 3He IN HIGH MAGNETIC FIELDS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220157

https://hal.archives-ouvertes.fr/jpa-00220157

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

STUDIES OF RAPID MELTING AND FREEZING OF 3He IN HIGH MAGNETIC FIELDS

B. Yurke, E. Polturak, D. Sagan, D. Lee

To cite this version:

B. Yurke, E. Polturak, D. Sagan, D. Lee. STUDIES OF RAPID MELTING AND FREEZING OF 3He IN HIGH MAGNETIC FIELDS. Journal de Physique Colloques, 1980, 41 (C7), pp.C7-129-C7-132.

�10.1051/jphyscol:1980720�. �jpa-00220157�

(2)

JOURNAL DE PHYSIQUE CoZZoque C7, suppZ6ment au n o 7 , Tome 41, juiZZet 2980, page C 7 - 1 2 9

STUDIES OF RAPID MELTING A N D FREEZING O F

3 ~ e

IN HIGH MAGNETIC FIELDS*

B. Yurke, E. P o l t u r a k , 0. Sagan and D.M. Lee

Laboratory of Atomic and Solid State Physics and MateriaZs Science Center, CorneZZ University, Ithaca, New York 14853, USA.

Resume.- Nous avons e n r e g i s t r e des courbes de p r e s s i o n de f u s i o n en f o n c t i o n du temps dans une c e l - l u l e de Pomeranchuk avec des champs magnetiques a l l a n t de 2,O

a

2,5 T e t pour des t a u x de compres- s i o n v a r i a b l e s . Nous avons u t i l i s e des mesures de l t a t t @ n u a t i o n de son z&ro, e f f e c t u e e s dans l a c e l l u l e simultanement, pour d 6 t e c t e r l e s t r a n s i t i o n s Al e t A2 dans 3He s u p e r f l u i d e . Nous avons @ t u - d i e l e s anomalies de l a courbe de f u s i o n antgrieurement observ&es p a r Shuberth, Bakalyar e t Adams /3/. Nos r e s u l t a t s vont dans l e sens de 1 'i n t e r p r e t a t i o n de Yu e t Anderson /6/, q u i r e l i e n t ces anomalies aux p r o p r i 6 t g s de t r a n s p o r t du s p i n dans 3He l i q u i d e .

A b s t r a c t . - M e l t i n g pressure vs. t i m e t r a c e s have been obtained i n a Pomeranchuk c e l l i n magnetic f i e l d s o f 2.0 and 2.5 T a t v a r y i n g compression r a t e s . Zero sound a t t e n u a t i o n measurements, which have been condu t e d i n t h e c e l l simultaneously, were used t o d e t e c t t h e A1 and A2 t r a n s i t i o n s of

5

t h e s u p e r f l u i d He. The m e l t i n g curve anomalies p r e v i o u s l y observed by Shuberth, Bakalyar and Adams /3/, have been studied. Our r e s u l t s support t h e i n t e r p r e t a t i o n o f Yu and Anderson /6/, i n which these anomalies a r e r e l a t e d t o t h e s p i n t r a n s p o r t p r o p e r t i e s o f t h e l i q u i d 3He.

Studies o f t h e m e l t i n g curve o f 3 ~ e i n a mag- peated t h e SBA experiment over a wide range of com- n e t i c f i e l d a r e o f i n t e r e s t w i t h r e s p e c t t o t h e p r e s s i o n r a t e s , and our observations f u r t h e r sup- phase diagram o f b o t h s u p e r f l u i d He /1/ ( t h e A1 3 p o r t t h e Yu-Anderson p i c t u r e .

and A2 t r a n s i t i o n s ) and t h e n u c l e a r s p i n o r d e r i n g The experiment was performed i n a Poaeranchuk o f s o l i d He /2/. 3 Recently Shuberth e t a l . /3/ c e l l a t magnetic f i e l d s o f 2.0 and 2.5 T. Over t h e (SBA) discovered a "barkstep" on t h e pressure vs. wide range o f compression r a t e s used, t h e A1 and t i m e t r a c e d u r i n g f a s t compressional c o o l i n g i n a A2 t r a n s i t i o n s were n o t always v i s i b l e on t h e pres- Pomeranchuk c e l l a t 2.0 T and 2.8 T magnetic f i e l d s . sure vs. t i m e t r a c e s . We t h e r e f o r e used t h e a t t e n - They i n t e r p r e t e d t h e backstep as a p o s s i b l e i n d i - u a t i o n peaks o f u l t r a s o u n d i n t h e l i q u i d as a mark- c a t i o n o f a f i r s t o r d e r t r a n s i t i o n i n t h e s o l i d He 3 e r o f these two t r a n s i t i o n s /7/. The s o n i c c e l l i n t o a new phase. Also, t h e pressure d i f f e r e n c e contained a p a i r o f 10 MHz X c u t q u a r t z transducers.

between t h e A, and A2 t r a n s i t i o n s on t h e m e l t i n g The t r a n s m i t t i n g c r y s t a l was pulsed a t r a t e s be- curve, PAT-PA2, obtained by SBA, imp1 i e d a temper- tween 10 and 100 Hz t o ensure a s u f f i c i e n t l y f a s t a t u r e d i f f e r e n c e , TA1-TA2, l a r g e r than t h a t expected response even a t t h e h i g h e s t compression rates.

on the basis o f t h e l i n e a r temperature s p l i t t i n g - The sonic c e l l was l o c a t e d near t h e s t r a i n gauge i n magnetic f i e l d r e l a t i o n of 64 uK/T measured by t h e Pomeranchuk c e l l . The thermal l a g between t h e

G u l l y e t a l . /I/. sound c e l l and t h e s t r a i n gauge was estimated by

A number o f authors /4//5//6/ suggested t h a t comparing t h e l o c a t i o n i n time o f t h e sound a t t e n - t h e observed backstep might be associated w i t h t h e u a t i o n and pressure f e a t u r e s associated w i t h t h e A1 1 iq u i d r a t h e r than t h e s o l i d . I n p a r t i c u l a r , Yu and and A2 t r a n s i t i o n s . Using 64 uK/T t o c o n v e r t PA1- Anderson /6/ suggested t h a t t h e f e a t u r e s observed by PA2 i n t o TA1-TA2, we found a l a g o f 3 pK t o 15 vK, SBA c o u l d be explained i n terms o f s p i n t r a n s p o r t depending onthe compression r a t e . This i s much p r o p e r t i e s o f l i q u i d He.

3

We have e s s e n t i a l l y r e - s m a l l e r than t h e e f f e c t s discussed here and we d i d

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980720

(3)

C 7 - 1 3 0 JOURNAL DE PHYSIQUE

n o t c o r r e c t t h e data f o r i t .

To determine t h e e f f e c t o f compression r a t e on t h e shape o f t h e m e l t i n g curve, one would l i k e t o p l o t pressure vs. temperature, f o r v a r y i n g compres- s i o n r a t e s . T h i s i s n o t p o s s i b l e , s i n c e t h e r e i s p r e s e n t l y no thermometer having a s u f f i c i e n t l y f a s t response. A l t e r n a t i v e l y , we used one o f t h e A t r a n s i t i o n s i n t h e l i q u i d as a f i x e d p o i n t , and t h e slope dP/dt a t some pressure, Po, as a measure o f t h e c o o l i n g r a t e through t h e r e l a t i o n (dP/dt) =

Po ( d P / d ~ ) ~ , ( d T / d t ) ~ ~ . We then normalized t h e t i m e scales f o r a l l t h e t r a c e s t o have t h e same (dP/dt')po, where t ' i s t h e normalized time, i . e . t h e t i m e scaled by a constant f a c t o r , d i f f e r e n t f o r each compression r a t e . The ( a r b i t r a r y ) o r i g i n o f t h e t ' scale was s e t a t t h e f i x e d temperature p o i n t . The h o r i z o n t a l a x i s o f t h e P vs. t ' p l o t i s then a monotonic f u n c t i o n o f temperature which should be r o u g h l y t h e same f o r a l l t h e t r a c e s . We found t h i s procedure t o be q u a l i t a t i v e l y independent o f t h e choice o f Po, provided t h a t Po was chosen i n r e g i o n where t h e pressure t r a c e was l i n e a r i n t i m e f o r a l l t h e data obtained w i t h v a r i o u s compression r a t e s .

F i g u r e 1 shows a s e t o f P vs. t ' t r a c e s ob- t a i n e d a t 2.5 T. Here t h e A2 t r a n s i t i o n was taken as t h e f i x e d p o i n t and t h e t -+ t ' n o r m a l i z a t i o n was done t o g e t t h e same dP/dtl a t some pressure a f t e r t h e backstep occurred. Note t h a t t h i s procedure does n o t r e q u i r e the t r a c e s t o overlap, y e t a l l t h e t r a c e s c o l l a p s e onto a s i n g l e curve f o l l o w i n g t h e backstep. The lowest l y i n g curve i n F i g u r e 1 was obtained d u r i n g a very slow compression and does n o t show any backstep. By suddenly i n c r e a s i n g t h e com- pression r a t e a f t e r t h e backstep occurred, we were a b l e t o b r i n g t h e pressure up again, and t o observe another backstep when t h e compression r a t e was again decreased sometime l a t e r .

These observations can be q u a l i t a t i v e l y ex- p l a i n e d u s i n g t h e magnetization d e f i c i t model of Yu and Anderson /6/. I n t h i s model, t h e lowest l y i n g curve i n F i g u r e 1 i s i d e n t i f i e d as a m e l t i n g curve along which t h e s o l i d i s formed w i t h t h e e q u i l i b r i u m magnetization a p p r o p r i a t e t o t h e magnetic f i e l d and temperature. During t h e f a s t compression, s p i n t r a n s p o r t i n t h e normal l i q u i d cannot supply t h e necessary amount o f s p i n s f o r t h e s o l i d t o form w i t h an e q u i l i b r i u m magnetization. A lower magnetization r e s u l t s i n a lower e f f e c t i v e f i e l d on t h e s o l i d sur- face and thus a h i g h e r m e l t i n g pressure ( t h e m e l t i n g curve i s depressed by magnetic f i e l d s /1//2/). Ac- c o r d i n g t o t h e model, below t h e s u p e r f l u i d t r a n s i - t i o n , s p i n t r a n s p o r t becomes much f a s t e r , presumably due t o onset o f supercurrents /6/. Once t h e r a t e o f s p i n t r a n s p o r t becomes s u f f i c i e n t l y f a s t f o r t h e so-

l i d t o form w i t h the e q u i l i b r i u m magnetization, t h e - 3 - 2 -1 0 1 2 3 4

Rescaled Time m e l t i n g curve should r e t u r n t o i t s e q u i l i b r i u m value. We suggest t h a t t h e pressure backstep i t s e l f F i g . 1 : Pressure ( r e l a t i v e to PA2) vs. normalized may be viewed i n t h i s model as t h e magnetic analog t i m e t r a c e s f o r v a r i o u s compression r a t e s a t 2.5 T.

~h~ horizontal axis is proportional to temperature of t h e t r a n s i t i o n t h a t occurs i n a c u r r e n t c a r r y i n g ( d e t a i l s o f the normal i z a t i o n procedure a r e g i v e n i n

t h e t e x t ) . The arrows show t h e p o s i t i o n of t h e ~ u ~ e r c o n d u c t o r once t h e temperature drops enough f o r and A2 t r a n s i t i o n s f o r each t r a c e . The compression

r a t e s used ( t o p t o bottom) were 5.89,5.78,3.16,2.41,

'

' 9 where Ic and I are the and ac-

1.49,1.00, and 0.44 m b a r b i n , r e s p e c t i v e l y , a t

pressures f o l l o w i n g t h e backstep. t u a l c u r r e n t s /8/. Here, t h e s p i n c u r r e n t i s analo-

(4)

gous t o I , whereas magnetization d e f i c i t ( o r equi- v a l e n t l y , t h e pressure d i f f e r e n c e between the mea- sured and e q u i l i b r i u m me1 t i n g curves) i s analogous t o t h e v o l t a g e d i f f e r e n c e , which vanishes f o r Ic >

I. The f a c t t h a t t h e backstep i s observed o n l y i n t h e presence o f a s u p e r f l u i d i s a l s o supported by t h e r e c e n t measurements i n Grenoble, i n which no backstep was observed f o r f i e l d s above 5 T, where t h e lowest temperature a t t a i n e d by Pomeranchuk c o o l i n g (determined by t h e o r d e r i n g o f t h e sol i d ) was h i g h e r than t h e Tc o f t h e l i q u i d /9/.

0.3 1 .O 3.0 10 3 0

Compression

Rate (

mbar/ min)

Fig. 2: PA and PA2 a t 2.5 T as a f u n c t i o n o f com- p r e s s i o n

(01

and decompression (a) r a t e . S o l i d l i n e s a r e a guide t o t h e eye.

I n F i g u r e 2, we show t h e pressures a t which t h e A1 and A2 t r a n s i t i o n s occur i n t h e l i q u i d (as d e t e r - mined by t h e sound a t t e n u a t i o n ) as a f u n c t i o n o f compression (and decompress i o n ) r a t e s . Note t h a t PAl s h i f t s even a t v e r y low compression r a t e s i n c o n t r a s t t o PA2, which remains c o n s t a n t over a much wider range

/lo/.

T h i s i n d i c a t e s , w i t h i n t h e Yu- Anderson p i c t u r e , t h a t t h e c r i t i c a l v e l o c i t y f o r s p i n supercurrents, vc, i s s i g n i f i c a n t l y h i g h e r i n t h e A2 phase. It i s i m p o r t a n t t o mention, i n t h a t respect, t h a t we c o u l d n o t observe any backstep be- tween t h e A1 and A t r a n s i t i o n s no m a t t e r how slow

2

t h e compression was. The backstep, when observed, always occurred e i t h e r a t A2 o r a t a temperature below it. The f a c t t h a t t h e p o s i t i o n o f t h e back- step f a l l s very near t h e A2 t r a n s i t i o n over a range o f compression r a t e s ( F i g u r e 1 ) i m p l i e s a r a p i d i n - crease i n vc below t h e A2 t r a n s i t i o n . T h i s i s i n q u a l i t a t i v e agreement w i t h t h e dramatic increase of t h e s p i n r e l a x a t i o n r a t e below A2 observed by Cor- r u c c i n i and Osheroff /11/. Assuming t h a t t h e spins a r e t r a n s p o r t e d uniformly from t h e b u l k l i q u i d t o t h e c e l l w a l l s , where the s o l i d nucleates, we ob- t a i n an approximate expression f o r vc by equating t h e r a t e o f l i q u i d t o s o l i d conversion ( c o o l i n g r a t e ) t o t h e s u p e r f l u i d mass t r a n s p o r t r a t e w i t h v e l o c i t y vc:

here, C i s t h e s p e c i f i c heat o f t h e l i q u i d , AS i s t h e entropy d i f f e r e n c e between l i q u i d and s o l i d /9/, V and A a r e t h e volume and surface area o f t h e c e l l , r e s p e c t i v e l y , and O ~ / O S t h e s u p e r f l u i d den- s i t y f r a c t i o n /12/. I n a d d i t i o n , we took T ( ~ P / ~ T )

= AQ/AV from t h e SBA paper / 3 / . Near t h e A2 t r a n - s i t i o n , we o b t a i n v % 0.1 mmlsec, which i s n o t un-

C

reasonable when compared w i t h measurements done i n r e s t r i c t e d geometries / 1 3 / .

F i n a l l y , t h e pressure s p l i t t i n g , PA1 -PA2, i n Fig'ure 2 c l e a r l y depends on t h e compression ( o r de- compression) r a t e . By e x t r a p o l a t i n g t o zero com- p r e s s i o n r a t e r a t e , we f i n d (PA1-PA2)/H = 0.018 mbar/T both a t 2.0 and 2.5 T, which agrees w e l l w i t h 0.02 mbar/T measured by G u l l y e t a l . /I/.

I n conclusion, our work supports t h e i n t e r p r e - t a t i o n o f t h e SBA observations i n terms o f l i q u i d r e l a t e d e f f e c t s . We a r e indebted t o L. Friedman f o r h e l p w i t h t h e experiment, and R.C. Richardson and D.D. Osheroff f o r u s e f u l discussions.

(5)

JOURNAL D E PHYSIQUE

REFERENCES

*The work described h e r e i n was supported by t h e N a t i o n a l Science Foundation by Grant #DMR-78-10901 and through t h e C o r n e l l M a t e r i a l s Science Center under Grant #DMR-76-81083A02. MSC Report #4242.

/1/ Gully, W.J., 0.0. Osheroff, D.T. Lav~son, R.C.

Richardson and D.M. Lee, Phys. Rev.

g,

1633 (1 973).

/2/ Kummer, R.B., R.M. Mueller, and E.D. Adams, J.

Low Temp. Phys.

3,

319 (1977). Also r e f e r t o extensive l i s t o f references.

/3/ Shuberth, E.A., D.M. Bakalyar, and E.D. Adams, Phys. Rev. L e t t .

42,

101 (1979).

/4/ Delrieux, J.M., unpublished.

/5/ Lee, D.M., B u l l . Am. Phys. Soc.

24,

604 (1979).

/6/ Yu, C., and P.W. Anderson, Phys. L e t t .

%,

236 (1979).

/7/ Lawson, D.T., H.M. Bozler, and D.M. Lee, Phys.

Rev. L e t t .

3,

121 (1975).

/8/ Tinkham, M. I n t r o d u c t i o n t o Superconductivity, (McGraw-Hill, Tokyo 1975), p. 101.

/9/ G o d f r i n , H., G. F r o s s a t i , A. Greenberg, B.

Hebral

,

and D. Thoulouze, p r e p r i n t .

/TO/ A t 2.5 T, t h e c r i t i c a l compression r a t e above which PA2 s t a r t e d t o s h i f t , was lower by a fac- t o r o f 2 from t h e r a t e measured a t 2.0 T. T h i s may be r e l a t e d t o t h e f i e l d dependence o f t h e c r i t i c a l v e l o c i t y and t h e TI r e l a x a t i o n time.

/11/ C o r r u c c i n i , L.R., and D.D. Osheroff, Phys. Rev.

B17, 126 (1978).

-

/12/ Berthold, J.E., R.W. Giannetta, E.N. Smith, and J.D. Reppy, Phys. Rev. L e t t .

37,

1138 (1976).

/13/ Parpia, J.M., and J.D. Reppy, Phys. Rev. L e t t . 43, 1332 (1979). We a l s o r e f e r t o o t h e r mea-

-

surements c i t e d t h e r e i n .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to