• Aucun résultat trouvé

PICOSECOND DYNAMICS OF CARRIERS IN AMORPHOUS SEMICONDUCTORS

N/A
N/A
Protected

Academic year: 2021

Partager "PICOSECOND DYNAMICS OF CARRIERS IN AMORPHOUS SEMICONDUCTORS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220733

https://hal.archives-ouvertes.fr/jpa-00220733

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PICOSECOND DYNAMICS OF CARRIERS IN AMORPHOUS SEMICONDUCTORS

Z. Vardeny, J. Tauc, C. Fang

To cite this version:

Z. Vardeny, J. Tauc, C. Fang. PICOSECOND DYNAMICS OF CARRIERS IN AMOR- PHOUS SEMICONDUCTORS. Journal de Physique Colloques, 1981, 42 (C4), pp.C4-539-C4-542.

�10.1051/jphyscol:19814116�. �jpa-00220733�

(2)

JOURNAL DE PHYSIQUE

Co2Zoqv.e

C4,

suppZ6ment au nO1O, Tome

42,

octobre 1981 page

C4-539

PICOSECOND DYNAMICS OF CARRIERS I N AMORPHOUS SEMICONDUCTORS

Z . Vardeny, J. Tauc a n d C . J. ~ a n z

Division of Engineering and Department o f Physics, Brown University, Providen- ce, Rhode Island 02912,

U.S.A.

*MU Planck I n s t i t u t e fur FestkSrperphysik, S t u t t g a r t , F.R.G.

A b s t r a c t . - Using t i m e r e s o l v e d p h o t o i n d u c e d a b s o r p t i o n w i t h s u b p i c o s e c o n d r e s - o l u t i o n we s t u d i e d h o t c a r r i e r t h e r m a l i z a t i o n f o l l o w e d by d e e p t r a p p i n g and r e c o m b i n a t i o n i n a - S i , a-Si:H, a-Si:F, a-Si:H:F and a-As2Seg. I n a-Se and a - A ~ 2 S 3 - ~ S e , ( 0 . 2 5 ( X ( 0 . 7 5 ) t h e o b s e r v e d r e l a x a t i o n s were a t t r i b u t e d t o g e m i n a t e r e c o m b i n a t i o n .

I n t r o d u c t i o n . - A p a s s i v e l y modelocked dye l a s e r p r o d u c i n g s u b p i c o s e c o n d p u l s e s was used t o s t u d y t h e u l t r a f a s t dynamics o f e x c e s s c a r r i e r s by t h e t i m e r e s o l v e d photo- i n d u c e d a b s o r p t i o n i n a - S i , a-Si:H, a-Si:H:F and c h a l c o g e n i d e g l a s s e s : a-Se, a-AspSej and a-As2Sg-,Sex (0.25 ( X ( 0 . 7 5 ) . We found t h a t when t h e e x c i t i n g photon e n e r g y

%up i s l a r g e r t h a n t h e band g a p Eg, t h e p h o t o g e n e r a t e d c a r r i e r s a r e n o t bound t o - g e t h e r and we c o u l d f o l l o w t h e h o t c a r r i e r t h e r m a l i z a t i o n a s w e l l a s t h e c o n s e c u t i v e t r a p p i n g and r e c o m b i n a t i o n p r o c e s s e s . On t h e o t h e r h a n d , when Eg >/F;wp, t h e photo- g e n e r a t e d c a r r i e r s a r e bound t o g e t h e r and t h e i r g e m i n a t e r e c o m b i n a t i o n i s o b s e r v e d . I n some o f t h e s t u d i e d amorphous s e m i c o n d u c t o r s a p o l a r i z a t o n memory a s s o c i a t e d w i t h induced d i c h r o i s m was o b s e r v e d .

E x p e r i m e n t a l . - The dye l a s e r and e x p e r i m e n t a l s e t - u p h a v e b e e n d e s c r i b e d e l ~ e w h e r e . l - ~ The l a s e r p r o d u c e s l i n e a r l y p o l a r i z e d l i g h t p u l s e s a t % w p = 2eV w i t h a s i n g l e s i d e e x o n e n t i a l s h a p e and t p = 0 . 6 - 0 . 8 ps d u r a t i o n , 1-2 n J e n e r g y and r e p e t i t i o n r a t e d - 1 0 6 s - l . We used t h e pump and p r o b e t e c h n i q u e ; t h e p r o b e p u l s e i s d e l a y e d by v a r y i n g t h e l e n g t h o f i t s o p t i c a l p a t h . The p r o b e beam p a s s e d t h r o u g h a p o l a r i z a t i o n r o t a t o r and i t s p o l a r i z a t i o n was e i t h e r p a r a l l e l

( 1 1 )

o r p e r p e n d i c u l a r

(I)

t o t h a t o f t h e pump beam. A l l e x p e r i m e n t s were done w i t h o p t i c a l l y t h i n samples: d < a a t 2eV, s o t h a t t h e p h o t o g e n e r a t e d c a r r i e r c o n c e n t r a t i o n n v a r i e d from sample t o sample ( a s a - l ) between 5 X 1016 and 1019 cm-3 p e r p u l s e .

O r i g i n s o f o b s e r v e d r e l a x a t i o n s . - The proposed e l e c t r o n i c mechanisms f o r t h e t r a n s - i e n t photo-induced a b s o r p t i o n c o e f f i c i e n t h a ( t ) f o r c a s e s : ( a ) Ziwp

>

Eg ( b ) 5 w p

<

Eg a r e shown i n F i g . 1. I n c a s e ( a ) h o t c a r - A

a r i e r s w i t h e x c e s s e n e r g y BE a r e e x c i t e d

a c r o s s t h e band gap by t h e pump p u l s e w i t h

%W, energy.hwp. These c a r r i e r s t h e r m a l i z e t o

t h e b o t t o m o f t h e band b y l o o s i n g t h e i r e n e r g y due t o t h e e l e c t r o n - p h o n o n i n t e r a c t i o n .

c a r r ~ e r s D u r i n g t h i s p r o c e s s t h e y c a n r e a b s o r b l i g h t .

S i n c e t h e o p t i c a l a b s o r p t i o n c r o s s - s e c t i o n Of h o t c a r r i e r s i 3 c r e a s e s 4 w i t h AE

,

i t i s p o s s i b l e t o o b s e r v e t h e f a s t t h e r m a l i z a t i o n p r o c e s s by o p t i c a l method, p r o v i d i n g t h e s y s t e m ' s r e s p o n s e i s f a s t enough. The e l e c t r o n - h o l e d i s t a n c e a f t e r t h e r m a l i z a t i o n F i g . 1 - Proposed mechanism f o r p h o t o - , ( t h e r m a l i z a t i o n r a d i u s r o ) i s l a r g e r i n c a s e

induced a b s o r p t i o n decay ( a ) t h a n t h e Onsager c a p t u r e r a d i u s r c ( a ) Kwp

>

Eg, ( b ) *up

<

Eg. and t h e c a r r i e r s move i n d e p e n d e n t l y o f e a c h

o t h e r . E v e n t u a l l y , t h e t h e r m a l i z e d c a r r i e r s

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19814116

(3)

JOURNAL DE PHYSIQUE

d e l a y ( P S )

F i g . 2

-

Time dependence o f t h e p h o t o i n d u c e d a b s o r p t i o n i n a - S i , a-Si:H and a-Si:H:F f o r

I I

p o l a r i z a t i o n s . S o l i d c u r v e s

-

e x p e r i m e n t a l , d o t t e d c u r v e s

-

c a l c u l a t e d .

F i g . 3

-

Same a s i n F i g . 2 b u t f o r a-AszS2.4S 0.6, a-Se and a-As2Sej.

w i l l b e removed from t h e b o t t o m o f t h e c o n d u c t i o n band by t r a p p i n g , r e c o m b i n a t i o n o r b o t h . l y 5 I n c a s e ( b ) where .tiw

<

Eg, c a r r i e r s a r e e x c i t e d i n t h e Urbach t a i l ( F i g . I(:)), ro

<

rc and t h e e l e c t r o n and h o l e a r e bound t o g e t h e r . I n t h i s c a s e t h e r e c o m b i n a t i o n i s g e m i n a t e and i s o b s e r v e d a s a d e c a y o f h a ( t ) , s i n c e A a ( t ) % n ( t ) .

Amorphous S i l i c o n . - T y p i c a l r e s u l t s f o r

I I

p o l a r i z a t i o n a r e shown i n F i g . 2 ; t h e y a r e examples o f c a s e ( a ) . Most samples show a n i n i t i a l nonsymmetric r e s p o n s e around t = 0 t h a t d e c a y s f a s t t o a lower v a l u e A u s . The r e l a t i v e h e i g h t o f t h e measured peak a t t = 0 i s c l o s e l y r e l a t e d t o t h e a v e r a g e i n i t i a l e x c e s s e n e r g y E ( o ) = (6w - % ) I 2 a s s e e n i n F i g . 2 where A % ( s ~ )

>

~ E ( s ~ : H )

fj

AE(S~:H:F)

.

When

I

p o l a r i z a t i o n i s u s e d t h e peak i n h a i s r e d u c e d ; t h i s i s a s c r i b e d t o t h e r e d u c t i o n o f t h e c o h e r e n t a r t i f a c t component . 2 9 3 A t l o n g e r t i m e s when s a t u r a t i o n i s r e a c h e d Aas(L)

<

Ans([ 1) and t h e d e p o l a r i z a t i o n r a t i o p = Aa

( 1

)/Acts([ 1) v a r i e s between 0 . 6 and 0.9.' T h i s shows t 2 a ~ a p o l a r i z a t i o n memory a s s o c i a t e d w i t h p h o t o i n d u c e d d i c h r o i s m c a n e x i s t i n t h e s e m a t e r i a l s f o r s u r p r i s i n g l y l o n g t i m e s . We o b s e r v e d t h a t p -increas- e s w i t h i n c r e a s i n g t h e i n i t i a l e x c e s s e n e r g y AE(0).

The d a t a i n d i c a t e t h a t t h e e x c e s s e n e r g y d i s s i p a _ t i o n r a t e by i n t e r a c t i o n o f e l e c t r o n s w i t h phonons d ~ ~ l d t i s f a s t e r i n a-Si t h a n i n a-Si:H. It i s g e n e r a l l y assumed6 t h a t t h e t h e r m a l i z a t i o n r a t e i n amorphous s o l i d s i s t h e h i g h e s t p o s s i b l e r a t e a s s o c i a t e d w i t h phonon e m i s s i o n h v 2 . Our r e s u l t s show t h a t t h i s i s t h e c a s e f o r a - S i ; hv2 a v e r a g e d o v e r i t s phonon

s p e c t r u m g i v e s 0 . 5 eV/ps i n agreement ~ i t h t h e t h e r m a l - i z a t i o n r a t e e x t r a c t e d from t h e d a t a ~ E ( O ) = 0.35eV, to

'

0 . 7 ~ ~ ) . The f i t t o t h e a-Si c a s e shown i n F i g . 2 was done u s i n g a p i m p u l s e r e s p o n s e A ( t ) % a ( t ) where

~ ( t ) = o s [ l + (bAE(O)/K) ( 1

-

t / 0 . 7 ) ] f o r t

<

0 . 7 p s and o ( t ) = Us f o r t

>

0.7ps where b i s t h e enhancement p a r a m e t e r @U = b E ) . From t h e f i t we o b t a i n e d b = 1 . 2 x ~ O - ~ K - I which i s s u r p r i s i n g l y c l o s e t o t h e v a l u e o f 1 . 3 L O - ~ K - ~ c a l c u l a t e d f o r h o t c a r r i e r a b s o r p t i o n a t 2eV a s s i s t e d by o p t i c a l d e f o r m a t i o n p o t e n t i a l s c a t t e r i n g i n c r y s t a l s . 4

A s l o w e r d i s s i p a t i o n r a t e , t h a t c a n e x p l a i n t h e r e s u l t s i n a-Si:H, i s p r o v i d e d b y F r 5 h l c c h c o u p l i n g t o p o l a r phonons. The a v e r a g e r a t e o f dAE/dt o v e r a Boltzmann d i s t r i b u t i o n ~ X ~ ( - A E / ~ T ~ ) (where Te i s t h e h o t c a r r i e r s t e m p e r a t u r e ) i n f e g r a t e d o v e r t h e i r - a c t i v e phonon s p e c t r u m was c a l c u l a t e d . T h i s r a t e f i r s t i n c r e a s e s s h a r p l y w i t h Te and around Te = 2000K r e a c h e s a b r o a d rn_aximum5 of 0 . 1 e V l p s . For a-Si:H shown i n F i g . 2 AE(O) = 0 . 1 eV and t h e t h e r m a l i z a t i o n t i m e t o = l p s .

The f i t t o t h e o b s e r v e d A a ( t ) i s o b t a i n e d u s i n g A ( t ) W ( t ) = o s ( l + a ~ , ( 0 ) ( 1

-

t / 1 . 2 ) 1 f o r t

<

1 . 2 p s and o ( t ) = U f o r t

>

1 . 2 p s w i t h a = 1 . 7 X ~ O - ~ K - I and Te = 2 @ ( 0 ) / 3 = 800K. A a ( t ) f o r a-Si:H:F was f i t w i t h a s t e p f u n c t i o n j m p u l s e r e s p o n s e A ( t ) = o S u ( t ) . The r e a s o n o f why dAE/dt i s l a r g e r i n a-Si t h a n i n a-5i:H i s unknown a t t h i s t i m e ; one c a n s p e c u l a t e t h a t dAE/dt

(4)

increases with increasing disorder as other electron phonon interaction channels may open.

After thermalization, at longer time a slower decay, that cannot be described by a single exponential, of Aa(t) was dbservedl in sputtered a-Si; at lower T this decay is slower. It was attributed to trapping in deep traps or recombination centers.

We observed similar decays in a-Si:F but not in hydrogenated samples. This suggests that F alone does not compensate the dangling bonds effectively.

Chalcogenide glasses.- Typical results for chalcogenide glasses are presented in Fig. 3. The gap Eg for a-As2S2.4 Seo.6 and a-Se at all T is larger than5wp, there- fore, they represent case (b) (Fig. 1). In a-As2Seg E g < 5 w p and it represents case (a) in the chalcogenide group. In the latter case the relaxations are similar as in a-Si:H discussed above. We will concentrate now on case (b). Excited in the Urbach tail, electron and hole are bourid together as a pair with a binding energy e2/4 n ero ( E is thz dielectric constant). The energy above the ground state is

AE* = - K u

-

E + e /4 rrcro. E is not well defined; we took for it the energy where

a = 1o4cK-1. g~ssuming that the energy g d. sipation rate dA~*/dt = hv2 we calculate ro by solving th equation r = (Dhott0)f72 = ( D ~ ~ ~ A E * / ~ v ~ ) ~ / ~ . Taking

got

= 0.1 cm2/s1 and h v = 3 y m e ~ we obtain values of r between 3 to

98

(Table I).

e values of to = A ~ * / h v ~ are less than 50 femtosecon8s, too short to be observed.

The observed decays are ascribed to recombination.

The Onsager capture radii6 in these materials are r = 80% at 300K and 1 300%

at 80K, considerably larger than ro. Since only a fraction exp[-rc/ro] of carriers C escape the geminate recombination the dominant recombination process is geminate.

The observed decays are exponentials exp[-t/~,] where Tr is longer at smaller Eg.

An important feature of this recombination time rr is that it decreases with de- creasing temperature1 (as shown for a-Se in Fig. 3 and for other chalcogenides in Table I); this is just the opposite of the temperature dependence of the recombina- t ion time observed in a-Si after thermalizationl mentioned above.

Geminate recombination model.- Two models for geminate recombination were considered.

In the first model (usually referred to as time-dependent Onsager model8) the car- riers diffuse towards each other. The number of

was calculated8 to be N(t) = No exp[-rc/ro] [l +

a t-ll2 decay of Aa(t) which is slower at lower the temperature de- pendence of D in amorphous materials), both against the experimental data.

l000

-

Another approach describes the geminate recombination

as a tunneling process1,9 in which ~ ( t ) = ~ ( 0 )

(

exp[-th

1

with time constant r r = v 1exp[2&o~, where B - ~ is the extent of the wave function. This model agrees with the observed exponential decays as

l 0 0 - well as with the temperature dependence of rr. This

dependence is due to the temperature dependence of Eg

-

which is larger at lower T; consequently ro is smaller

a

+- and is shorter. A consequence of this model is that r r depends on Eg only, regardless of whether a certain

value of Eg is obtained by changing composition or

o - 8 ~ temperature. This is clearly confirmed by experiment, ~

f - 3 0 0 K as seen in Fig.

4 where^^

is plotted vs. ro. The data

o-AS, SJ.xSe, lie on a straight line for almost 3 orders of magnitude

of rr. The fit gives v = 1 1 X 1013s-' and

B - ~

= 2.1%;

both parameters have reasonable yfjlues. In the case of a-As Se .hw

>

Eg and ro = rc so that the geminate

r , i i ~ 2

3

recombinat~on Fime constant becomes very long. Indeed, Fig.

4 -

Decay time r r as shown in Fig. 3, Aa(t) shows no apparent decay up plotted vs. the thermaliza- to 60ps.

t ion radius ro for

a-A~2S3-~Se, and a-Se

.

Our results do not contradict the work on the tempera- ture dependence of the luminescence decay in GD

(5)

JOURNAL DE PHYSIQUE

a - S i : ~ l l i n which d i f f u s i o n had t o b e i n c l u d e d f o r e x p l a i n i n g t h e d a t a on g e m i n a t e r e c o m b i n a t i o n a t h i g h T. I n o u r c a s e t h e e x c i t a t i o n o c c u r s i n t o t h e Urbach t a i l , r o

<<

r c and t h e d i f f u s i o n i s n e g l i g i b l e a t a l l T.

We t h a n k F. J a n s e n f o r t h e a-Se and a - A s ~ S e j samples and T. R . K i r s t and J . S t r a i t f o r a s s i s t a n c e w i t h t h e e x p e r i m e n t s . T h i s work was s u p p o r t e d i n p a r t by NSF g r a n t DMR-79-09819 and t h e NSF M a t e r i a l s R e s e a r c h L a b o r a t o r y program a t Brown U n i v e r s i t y .

*On l e a v e from C h i n e s e U n i v e r s i t y o f S c i e n c e and Technology, B e i i i n g , PROC Reference's.

D. E . A c k l e y , J . Tauc and W. P a u l , Phys. Rev. L e t t .

5,

715 ( 1 9 7 9 ) . Z . Vardeny and J. Tauc, Phys. Rev. L e t t .

66,

1223 ( 1 9 8 1 ) .

Z . Vardeny and J . Tauc, s u b m i t t e d t o O p t i c s Communications.

K. S e e g e r , S e m i c o n d u c t o r s P h y s i c s , S p r i n g e r , New York, p . 374, 1973.

Z . Vardeny, J . Tauc and C. J . Fang, P r o c . I n t . T o p i c a l Conf. on T e t r a h e d r a l l y Bonded Amorphous S e m i c o n d u c t o r s , C a r e f r e e , A r i z o n a 1981, i n p r i n t .

J . C . K n i g h t s and E . A. David, J . Phys. Chem. S o l .

5,

5 4 3 ( 1 9 7 4 ) . E. M. Conwell i n S o l i d S t a t e P h y s i c s , S u p p l . 9 , Acad., New York,, 1967.

K. M . Hong and J . N o o l a n d i , J . Chem. Phys. 6 8 , 5 1 6 3 ( 1 9 4 8 ) . N . F. Mott, E . A. D a v i s , R. A. S t r e e t , P h i l . Mag.

32,

961 ( 1 9 7 5 ) .

J . M o r t , I . Chen, M. Morgan and S . Grammatica, S o l . S t . Comm. ( i n p r i n t ) . J. N o o l a n d i , K. M. Hong and R. A. S t r e e t , J . Non-Cryst. S o l .

E,

669 ( 1 9 8 0 ) .

TABLE I

Geminate Recombination Decay P a r a m e t e r s i n C h a l o g e n i d e G l a s s e s

Sample

*From D . E. A c k l e y ' s Ph.D. T h e s i s , Brown U n i v e r s i t y , 1979.

Références

Documents relatifs

The first investigation of hot carrier relaxation in amorphous semiconductors was reported by our group very recently.' In the crystalline materials mentioned above, the hot

paragraph. You need to adjust to the automatic return because, as you will see later, extra returns will cause unintended results. A typewriter space bar moves

Circles indicate maximum LL of the given matrix, and triangles indicate the best fitting parameters to the real data (that were also used to generate the simulated data).. In this

If external lines are to be used then the corresponding port pins should be programmed as bit ports with the correct data direction. Finally, theCo~nter/Timer

In the post task questionnaire, participants using the baseline interface were asked to indicate the usefulness of the book-bag in general while participants

Below is the kinetic description of this device as shown in

9 As outlined in these brief summaries, the role of science in Professional Foul and Hapgood has much in common with Stoppard’s use of chaos theory in Arcadia, since catastrophe

The auditing of the integration of the CASN NI competencies is driven by the need for curriculum development, imposed by external forces including the licensing bodies articulation