• Aucun résultat trouvé

ELECTRONIC RELAXATION IN RARE EARTH METALS AND ALLOYS - A NON-KRAMERS EXAMPLE : Tm3+

N/A
N/A
Protected

Academic year: 2021

Partager "ELECTRONIC RELAXATION IN RARE EARTH METALS AND ALLOYS - A NON-KRAMERS EXAMPLE : Tm3+"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00219574

https://hal.archives-ouvertes.fr/jpa-00219574

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ELECTRONIC RELAXATION IN RARE EARTH METALS AND ALLOYS - A NON-KRAMERS

EXAMPLE : Tm3+

N. Dixon, L. Fritz, Y. Mahmud, B. Triplett, S. Hanna, G. von Eynatten

To cite this version:

N. Dixon, L. Fritz, Y. Mahmud, B. Triplett, S. Hanna, et al.. ELECTRONIC RELAXATION IN

RARE EARTH METALS AND ALLOYS - A NON-KRAMERS EXAMPLE : Tm3+. Journal de

Physique Colloques, 1980, 41 (C1), pp.C1-25-C1-31. �10.1051/jphyscol:1980104�. �jpa-00219574�

(2)

JOURNAL DE PHYSIQUE

Colloque

C1,

suppl4ment au n

O

1 , Tome 41, janvier 1980, page

C1-25

ELECTRONIC R E W T I O N

IN

RARE EARTH METALS AND ALLOYS

-

A NON-KRAFZERS

W P L E :

m3+

N.S. Dixon, L.S. F r i t z , Y. Mahmud, B.B. T r i p l e t t , S.S. Hanna and G.Von ~ y n a t t e n

*

Physics dept., S t a n f o r d U n i v e r s i t y , S t a n f o r d , Ca 94305 USA.

" P h y s i c s dept., U n i v e r s i t y o f Konstanz, Konstanz, Germany.

A b s t r a c t

-

E l e c t r o n i c r e l a x a t i o n i n r a r e e a r t h m a t e r i a l s h a s been a s u b j e c t of c o n s i d e r a b l e i n t e r e s t i n r e c e n t y e a r s . S e v e r a l m e t a l l i c thulium compounds, Tm, TmA1, h C u , and Tm,Y1-xCu, were s t u d i e d u s i n g MEssbauer spectroscopy o v e r t h e temperature range o f 65,mK t o T > TNgel. A l l o f t h e s p e c t r a can b e w e l l d e s c r i b e d by i n c l u d i n g e l e c t r o n i c r e l a x a t i o n u s i n g t h e m a t r i x formalism o f L. L. H i r s t . The g e n e r a l f e a t u r e s o f t h e s p e c t r a f o r a l l t h e s e m a t e r i a l s a r e s i m i l a r , even though Tm is hexagonal and shows a com- p l e x s p i n s t r u c t u r e i n neutron d i f f r a c t i o n s t u d i e s , TmAl i s orthorhombic, and TmCu and Tm Y Cu a r e cubic.

x 1-x

1. INTRODUCTION

-

The presence o f e l e c t r o n i c r e - l a x a t i o n means t h a t a Mzssbauer nucleus is i n an environment o f f l u c t u a t i n g h y p e r f i n e f i e l d s pro- duced by t h e v a r i o u s c r y s t a l f i e l d s t a t e s of t h e e l e c t r o n i c system, c o n s i d e r e d h e r e f o r t h e r a r e e a r t h s t o b e t h e 4f e l e c t r o n s o n l y . I f t h e s e f i e l d s a r e f l u c t u a t i n g a t f r e q u e n c i e s much g r e a t e r t h a n t h e c h a r a c t e r i s t i c n u c l e a r p r e c e s s i o n frequen- c i e s , t h e nucleus w i l l be a b l e t o respond t o o n l y t h e average s t a t i c Boltzmann f i e l d s of t h e c r y s t a l f i e l d s t a t e s . I n t h i s f a s t r e l a x a t i o n l i m i t , t h e M6ssbauer e f f e c t w i l l produce a s i n g l e h y p e r f i n e s t r u c t u r e spectrum; f o r i n s t a n c e , t h e f a m i l i a r s i x - l i n e spectrum of m a g n e t i c a l l y o r d e r e d 571?e. I f , on t h e o t h e r hand, t h e mean l i f e t i m e s o f t h e crys- t a l f i e l d s t a t e s a r e much g r e a t e r t h a n t h e i n v e r s e o f t h e c h a r a c t e r i s t i c n u c l e a r p r e c e s s i o n frequen- c i e s , t h e nucleus w i l l b e a b l e t o respond t o t h e s t a t i c h y p e r f i n e f i e l d s o f each c r y s t a l f i e l d s t a t e s e p a r a t e l y . I n t h i s slow r e l a x a t i o n l i m i t , a M6ssbauer spectrum w i l l c o n s i s t of a s u p e r p o s i t i o n of component s p e c t r a , e a c h weighted according t o t h e Boltzmann p o p u l a t i o n o f t h e c r y s t a l f i e l d s t a t e producing it. I n t h e i n t e r m e d i a t e o r r e l a x a t i o n r e g i o n , where t h e t r a n s i t i o n r a t e s between c r y s t a l f i e l d s t a t e s a r e w i t h i n s e v e r a l o r d e r s of magni-

s e e s f l u c t u a t i n g h y p e r f i n e f i e l d s , and r a t h e r com- p l e x ' s p e c t r a can r e s u l t . F i g u r e 1 i l l u s t r a t e s t h e s e t h r e e r e g i o n s o f i n t e r e s t f o r Tm m e t a l below i t s magnetic o r d e r i n g temperature.

F i g . 1. T h e o r e t i c a l l i n e s h a p e s f o r Tm m e t a l below Ty&el i n t h e f a s t , i n t e r m e d i a t e , and slow r e l a x a - t r o n r e g i o n s .

E l e c t r o n i c r e l a x a t i o n e f f e c t s i n Mijssbauer s p e c t r a of heavy r a r e e a r t h m a t e r i a l s have been recognized s i n c e t h e 1960's 1 1

-

131, b u t v e r y t u d e o'f t h e p r e c e s s i o n f r e q u e n c i e s , t h e nucleus l i t t l e work h a s been r e p o r t e d on t h e non-Kramers

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980104

(3)

C1-26 JOURNAL DE PHYSIQUE

i o n s , such as Tm 3+ [141. I n a l l the Tm compounds then gluing t h e powdered and annealed samples t o and a l l o y s t h a t we have studied, e l e c t r o n i c relaxa- beryllium d i s k s with a l i g h t varnish. The Tm metal t i o n e f f e c t s on the ~ i j s s b a u e r s p e c t r a a r e apparent, absorber kindly provided by R. L. Cohen was vqpor d e s p i t e the f a c t t h a t a l l the m a t e r i a l s t r e a t e d deposited d i r e c t l y onto a beryllium disk.

here order magnetically, i n d i c a t i n g an appreciable To a t t a i n the necessary Doppler v e l o c i t i e s of exchange i n t e r a c t i o n . I n metals one a l s o expects up t o

+

80 cm/sec, a transducer motor w a s modified the conduction-electron exchange coupling t o en- 1151 by adding a matched s e t of four c o i l springs hance t h e spin-spin r e l a x a t i o n , and thus one may t o the l i g h t p a i r of concentric centering springs o f t e n expect t h e f a s t r e l a x a t i o n l i m i t t o be a t - of the d r i v e t o increase i t s resonant fyequency t o

tained. about 40 Hz.

2. EXPERIMENTAL DETAILS

-

A l l s p e c t r a discussed here were obtained with absorbers attached t o the mixing chamber of a 3 ~ e - 4 He d i l u t i o n r e f r i g e r a t o r [15] (shown schematically i n Fig. 2)

,

which could

Fig. 2. Schematic diagram of t h e Mossbauer s p e c t r e meter and lower portion of t h e 3 ~ e - 4 ~ e d i l q t i o n re- f r i g e r a t o r : (1) o u t e r dewar w a l l , (2) 77 K s h i e l d ,

(3) 4 K wall, (4) 1 K s h i e l d , (5) copper mixing chamber, (6) germanium r e s i s t a n c e thermometer and S i diode thermometer, (7) copper absorber mount,

(8) absorber on beryllium, (9) Xe-CO2 proportional counter, (10) 16'3r (Al) source i n a "hot f i n g e r "

attached t o t h e 4 K w a l l , (11) thin-wall s t a i n l e s s skeel d r i v e rod, (12) modified Ranger E l e c t r o n i c s , Inc. VT-700 d r i v e motor, (13) beryllium vacuum s e a l windows.

be regulated a t temperatures between approximately 0.05 K and 300 K.

The Mcssbauer source used was. 16'3r i n A l .

3 . THEORY

-

The ~ g s s b a u e r t r a n s i t i o n i n 1691tn is a 3/2+ + 1/2+ t r a n s i t i o n , s o t h a t one expects *he f a m i l i a r s i x - l i n e o r two-line p a t t e r n f o r a s t a t i c magnetic f i e l d o r e l e c t r i c f i e l d g r a d i e n t a t t h e nucleus. The excited s t a t e h a l f - l i f e i s 3.5 nsec, s o t h e n a t u r a l linewidth i s

TO

= 0.8 cm/sec. The t o t a l magnetic s p l i t t i n g i n t h e Tm 34- f r e e ion l i m i t hyperfine f i e l d of nearly 7 MOe f161 i s around 110 cm/sec, and t h e Tm3+ f r e e ion l i m i t q u a d r u p l e s h i f t i s taken t o be 7 . 8 4 cm/sec from t h e value observed i n W e 2 [171.

The Tm3+ e l e c t r o n i c ground m u l t i p l e t of t h e 4f1' configuration i s 'H6, with t h e f i r q t e x c i t e d m u l t i p l e t well separated a t about 11,000 K [16J.

The t o t a l e l e c t r o n i c angular momentum J = 6 i s t h e r e f o r e a good quantum number, and t h e r e w i l l be 13 w e l l defined c r y s t a l f i e l d s t a t e s . I n cubic sym- metry i n t h e absence of magnetic f i e l d s , these w i l l be s p l i t i n t o 2 s i n g l e t s , 1 non-Kramers doublet, and 3 t r i p l e t s [18]. I n a magqetically ordered ma- t e r i a l , we may define a m ~ l e e u l a r exchange f i e l d , Hex

,

and thus w r i t e t h e c r y s t a l f i e l d H m i l t o n i a n f o r t h e ground m u l t i p l e t a s :

The m1, TmCu, and wY1-xCu absorber m a t e r i a l s

were prepared by a r c melting the appropriate m

$ i ~ = Hex ?Z +

C

'n OJI J>

2nm

n,m amounts of c o n s t i t u e n t s i n an argon atmosphere, and

(4)

where the &-direction i s defined a s t h e d i r e c t i o n of? maqnetizafion, 0 a r e s p h e r i c a l tensor o p e r a t o r

-n

equ$,vqlents 1191,

<JI~

8

11

J > a r e t h e a,

B,

y of E l l i o t n

and Stevens 5201 and C n a r e c r y s t a l f i e l d para- a\eters ( i n energy u n i t s ) . Diagonalizing t h i s Hamiltonian. we then have c r y s t a l f i e l d s t a t e s of t h e form

The

hyperfine i n t e r a c t i o n a t t h e nucleus from t h e s e c r y s t a l f i e l d s t a t e s may then be w r i t t e n :

Hare A F -qNa#gff/Jr where the l i m i t i n g e f f e c t i v e field H z f f ipeludes t h e f r e e ion l i m i t f i e l d from t h e 4f e l e c t r o n s p l u s core p ~ l a r i z a t i o n and conduc-

2 4f t i o n e l e c t r o n p o l a r i z a t i o n ; B = 1/4e Q q, /

[ 3

-

~q ( J + I ) ~

I

where -eqtf i s the l i m i t i n g value of

%he e l e c t r i c f i e l d g r a d i e p t from t h e 4f e l e c t r o n s , including atomic Sternheimer s h i e l d i n g s ; and Q I l a t t fo t h e l a f t i o e quadrupole i n t e r a c t i o n including con- duqtion e l e c t r o n e f f e c t s .

For t h e f a s t r e l a x a t i o n l i m i t , t h e expectation values tJz> and < 3

-

J ( J + l ) > a r e taken t o be ~ ~ ~ thqstq of t h e Boltzmann averageso£ t h e e n t i r e c r y s t a l f i e l d m u l t i p l e t . For t h e slow r e l a x a t i o n l i m i t and f o r thq r e l a x a t i o n a n a l y s i s t h e s e a r e taken t o be the expectation values f o r e a ~ h of t h e c r y s t a l f i e l d states, s e p a r a t e l y .

~ o l l o w i n g t h e p e r t u r b a t i o n approach of H i r s t

[I),

the energy absorption spectrum f o r the M&- hauer e f f e c t i s then given by:

Here

5

i s t h e column matrix of t h e electromagnetic multipole o p e r a t o r y i e l d i n g t h e i n t e n s i t i e s of t h e

various l i n e s of the spectrum;

g -

i s t h e u n i t dia- gonal matrix; W_ is - a diagonal matrix containing the equilibrium (Boltzmann) populations of t h e s t a t e s

(both e l e c t r o n i c and n u c l e a r ) ;

- 2'

i s a diagonal matrix of elements

wi + iri,

where t h e index i r e f e r s t o a given electro-nuclear ~ G s s b a u e r tran- s i t i o n , w. i s t h e y-ray frequency, a s determined from Eq. 2, and

r .

i s t h e (minimum) experimental linewidth; and

g -

i s t h e r e l a x a t i o n matrix y e t t o be discussed.

For diagonal hyperfine i n t e r a c t i o n s t h e nucleus alone may be taken a s t h e quantum mechanical reso- nant system so t h a t t h e multipole operator a c t s only on the nuclear s t a t e s , and t h e r e l a x a t i o n processes a c t only on the e l e c t r o n i c s t a t e s . The matrices of E q . 3 can then be p u t i n t o block diagonal form by an a p p r o p r i a t e ordering of s t a t e s , such t h a t f o r Tm 3+

t h e r e w i l l be s i x s i m i l a r 13 x 13 blocks, one f o r each of t h e s i x allowed Mb;ssbauer t r a n s i t i o n s .

These blocks 5

-

f o r t h e r e l a x a t i o n matrix

E w i l l

-

a l l be i d e n t i c a l , and a r e given by:

Here

Ir.

> i s an e l e c t r o n i c c r y s t a l f i e l d s t a t e ; the K~~ s a r e t h e e l e c t r o n i c operators of t h e r e l a x a t i o n

*

d r i v i n g mechanism; and J (w T) i s t h e s p e c t r a l q i j '

d e n s i t y function representing t h e p r o b a b i l i t y t h a t t h e thermal b a t h ( l a t t i c e o r conduction e l e c t r o n s ) give a quantum hw t o the system through t h e coup-

i j

l i n g ..K ~ , . where h \ j i s t h e enerqy d i f f e r e n c e between the two c r y s t a l f i e l d s t a t e s

Iri>

and

Ir

3

.>.

For magnetic r e l a x a t i o n mechanisms, such a s spin-spin i n t e r a c t i o n s (including spin-conduction e l e c t r o n i n t e r a c t i o n s ) o r varying magnetic f i e l d s

(5)

c1-28 JOURNAL DE PHYSIQUE

from l a t t i c e v i b r a t i o n s , t h e K q ' s may g e n e r a l l y b e

-

t a k e n a s J Z , _J+, J-, and t h e s e l e c t i o n r u l e A m =

,.,

-

J

+

1, 0 h o l d s f o r t r a n s i t i o n s induced between t h e c r y s t a l f i e l d s t a t e s . This i s t a k e n a s one l i m i t - i n g case i n our a n a l y s i s , r e f e r r e d t o h e r e a s s e l e c t i o n r u l e r e l a x a t i o n .

For e l e c t r o n i c r e l a x a t i o n mechanisms such a s l a t t i c e v i b r a t i o n s of t h e c r y s t a l l i n e e l e c t r i c f i e l d t h e K q ' s

-

may be taken a s t h e c r y s t a l f i e l d o p e r a t o r s 0 m

,

b u t w i t h o u t t h e s t r i n g e n t symmetry

,n

l i m i t a t i o n s on t h e allowed v a l u e s of n and m t h a t h o l d f o r t h e s t a t i c c r y s t a l f i e l d . T r a n s i t i o n s be- tween c r y s t a l f i e l d s t a t e s w i l l t h e r e f o r e be almost completely u n r e s t r i c t e d . To approximate t h i s c a s e

Eq. 2, a s w e l l a s t h e l i n e w i d t h s and r e l a t i v e i n t e n - s i t i e s of t h e s i x t r a n s i t i o n s , f o r t h e Tm metal.

The maximum e f f e c t i v e magnetic f i e l d a t t h e nucleus (< JZ> = 6) i s t h u s found t o be 6.5 MOe, l e s s t h a n t h e c a l c u l a t e d f r e e i o n l i m i t of 6.95 MOe 1161, i m - p l y i n g a n e g a t i v e c o n t r i b u t i o n from conduction e l e c - t r o n p o l a r i z a t i o n . The l i n e i n t e n s i t i e s d i f f e r from t h e u s u a l 3:2:1:1:2:3 r a t i o s because of p a r t i a l pre- f e r e n t i a l o r i e n t a t i o n from t h e vapor d e p o s i t i o n pro- c e s s .

I n 1968, Cohen 1241 suggested a m u l t i p l e - s i t e i n t e r p r e t a t i o n o f Tm m e t a l ~ b ' s s b a u e r s p e c t r a based on t h e e a r l y neutron d i f f r a c t i o n r e s u l t s . This i n - t e r p r e t a t i o n assumed t h e f a s t r e l a x a t i o n l i m i t and we a l l o w a l l p o s s i b l e c r y s t a l f i e l d t r a n s i t i o n s accounted f o r t h e s t r u c t u r e of t h e s p e c t r a i n o n l y w i t h e q u a l p r o b a b i l i t y , i - e . , ri<j = J ( w .

.

,T) i n

9 11 a l i m i t e d temperature range. A s i n g l e - s i t e r e l a x a -

~ q . 4. T h i s w i l l be r e f e r r e d t o a s random r e l a x a - t i o n a n a l y s i s , however, p r o v i d e s an adequate des-

t i o n . c r i p t i o n o f t h e s p e c t r a throughout t h e e n t i r e tem-

We a l s o adopt t h e white n o i s e approximation p e r a t u r e range o f i n t e r e s t . F i g u r e 3 shows repre- which assumes a c o n s t a n t phonon d e n s i t y o v e r t h e

range o f c r y s t a l f i e l d s p l i t t i n g s . For i s o t r o p i c r e l a x a t i o n mechanisms, J (w ,T) can be t a k e n a s

s

i j

J ( O , T ) and be f a c t o r e d o u t of t h e r e l a x a t i o n m a t r i x and becomes an o v e r a l l r a t e parameter, where i t i s understood t h a t t h e e x p o n e n t i a l f a c t o r of Eq. 4 must be e x p l i c i t l y r e t a i n e d .

4. RESULTS AND DISCUSSION

-

C r y s t a l f i e l d para- meters f o r Tm m e t a l (hexagonal c r y s t a l s t r u c t u r e ) have been determined from s u s c e p t i b i l i t y measure-

ments [21]

.

Neutron d i f f r a c t i o n s t u d i e s 1223 show VELOCITY k m l a e c I M L O C I T Y (cm/sec)

magnetic s p i n wave s t r u c t u r e below TNgel = 56 K , F i g . 3 . Mijssbauer s p e c t r a of Tm m e t a l w i t h random r e l a x a t i o n f i t s and TmAl w i t h s e l e c t i o n r u l e r e l a x - with ferromagnetism commencing below 30 K. From a t i o n f i t s .

t h e s e and m a g n e t i z a t i o n s t u d i e s 123 1

,

t h e e l e c - s e n t a t i v e s p e c t r a below TNgel w i t h f i t s o b t a i n e d t r o n i c ground s t a t e a t low temperature i s known t o from o u r random r e l a x a t i o n a n a l y s i s . T h i s a n a l y s i s be p u r e mJ = 6. Our low temperature s p e c t r a a t a l s o d e s c r i b e s w e l l t h e asymmetric quadrupole doub- 65mK and 1.1 K ( s e e Fig. 3) t h u s determine t h e con- l e t s observed above t h e magnetic o r d e r i n g tempera- s t a n t A and t h e low temperature v a l u e o f o f t u r e . S e l e c t i o n r u l e r e l a x a t i o n a n a l y s i s y i e l d s

(6)

s i m i l a r f i t s t o t h e s p e c t r a below TNeCel, b u t h a s n o t y e t been completed f o r s p e c t r a above TNgel. I t should be noted t h a t t h e value of t h e exchange f i e l d required t o o b t a i n t h e f i t s below T de-

gel v i a t e s considerably from t h a t expected from a mole- c u l a r f i e l d approximation c a l c u l a t i o n . Since t h i s i s t r u e only i n Tm metal, we f e e l t h i s may be due t o t h e s p i n wave s t r u c t u r e .

C r y s t a l f i e l d parameters f o r TmAl (orthorhom- b i c c r y s t a l s t r u c t u r e ) were derived from t h e tem- p e r a t u r e dependence of t h e quadrupole i n t e r a c t i o n and low temperature parameters from our s p e c t r a . The e f f e c t i v e magnetic f i e l d a t t h e nucleus i n TmAl is found from t h e spectrum a t 2.8 K t o be 6.69 MOe.

A s can be seen i n Fig. 3, TmAl s p e c t r a d i s p l a y mag- n e t i c hyperfine s p l i t t i n g above t h e ordering tem- p e r a t u r e TNGel = 11 K (251.

m

o b t a i n t h e observed

s t r u c t u r e , it i s necessary t o r e t a i n a small b u t non-zero value of t h e exchange f i e l d above TNgel,

VELOCITY (cn/rec) VELOCITY (crnhec)

Fig. 4. ~ Z s s b a u e r s p e c t r a of TmCu w i t h ( a ) random r e l a x a t i o n f i t s , and (b) s e l e c t i o n r u l e r e l a x a t i o n f i t s .

and a l s o t o be i n t h e slow o r intermediate region.

The f i t s shown i n t h e f i g u r e were obtained w i t h our s e l e c t i o n r u l e r e l a x a t i o n a n a l y s i s , and again t h e random r e l a x a t i o n a n a l y s i s y i e l d s s i m i l a r r e s u l t s . S p e c t r a o f hnAl a t temperatures above t h e c o l l a p s e of t h e magnetic hyperfine s t r u c t u r e show a s y m e t r i c quadrupole doublets s i m i l a r t o those of Tm metal.

C r y s t a l f i e l d parameters were obtained f o r m c u by matching t h e ground s t a t e moments < J > and

< 33z2

-

J ( J + ~ ) > with t h e observed s p l i t t i n g s a t 65mK, ( s e e Fig. 4) t a k i n g values f o r A and B of Eq. 2 from Tm metal and W e 2 , r e s p e c t i v e l y , and using an exchange f i e l d derived from a molecular f i e l d approximation c a l c u l a t i o n w i t h TNgel = 11 K

[26]. C r y s t a l f i e l d parameters f o r Tm 0.85'0. 1!?icu were taken t o be t h e same a s those of TmCu, w i t h a decreased exchange f i e l d accounting f o r t h e ob- served decrease i n ordering temperature. For

m0

70Y0 3 0 C ~ , it was necessary t o a l s o include non-zero CZ0 and Q ~ l a t t t o match t h e observed low temperature s p l i t t i n g s and account f o r a small quadrupole s p l i t t i n g observed above t h e ordering temperature. A s seen i n Fig. 5, t h e low tempera-

VELOCITY (crn/sec I

Fig. 5. Mijssbauer s p e c t r a of Tm 85Y0 l S ~ u and and

no.

7oY0. 3 0 C ~ w i t h random r e k x a t x b n f l t s .

(7)

C1-30 JOURNAL DE PHYSIQUE

t u r e s p e c t r a of Tm

0.85'0.

isCU

and

%.

70'0. 3oCU

Show l i n e broadening due t o a d i s t r i b u t i o n of hy- P e r f i n e f i e l d s caused by d i l u t i o n s i m i l a r t o t h a t seen by Abbundi e t a l . I271 i n Dy-Sc a l l o y s .

The W u and v l - x C ~ s p e c t r a a t higher tem- p e r a t u r e s show the now f a m i l i a r r e l a x a t i o n l i n e - shapes. Figure 4 s h m s f i t s t o t h e W u d a t a with both t h e random and s e l e c t i o n r u l e r e l a x a t i o n ana- lysesand Fig. 5 shows s p e c t r a of !rm0-85Y0.15C~ and Tm0.70Y0.30C~ with random r e l a x a t i o n f i t s . Similar f i t s a r e obtained f o r t h e Tm0*85Y0.15C~ with t h e s e l e c t i o n r u l e a n a l y s i s , b u t t h i s a n a l y s i s i s not y e t complete f o r t h e Tm

0.70~0. 3ocu'

Figure 6 shows t h e temperature dependence of t h e r e l a x a t i o n r a t e s derived from f i t s t o t h e W u and !rmxYl-xCu spectra. A f e a t u r e t o note i s t h a t t h e r e l a x a t i o n r a t e s increase with decreasing Tm concentration, which i s a r e f l e c t i o n of t h e de- creasing ordering temperatures due t o a decreased exchange i n t e r a c t i o n between t h e !Cm ions. This i s again s i m i l a r t o the Dy-Sc a l l o y s .

The most s t r i k i n g f e a t u r e apparent i n t h e f i - gure, however, i s t h e strong temperature dependence of t h e r e l a x a t i o n r a t e s . The T m metal and TmAl r e l a x a t i o n r a t e s shown i n Fig. 7 show s i m i l a r temperature dependences much g r e a t e r than l i n e a r with temperature. This i s o f t e n i n d i c a t i v e of spin- l a t t i c e r e l a x a t i o n , b u t h e r e could a l s o possibly be due t o spin-spin r e l a x a t i o n with higher c r y s t a l f i e l d s t a t e s c o n t r i b u t i n g a s they become populated.

Selection Rules Selection Rules

Fig. 7. Relaxation r a t e s vs. temperature f o r Tm and TmA1.

I t should be noted t h a t t h e absolute magni-

T ( K ) tudes of t h e r e l a x a t i o n r a t e s derived can be r a t h e r

Fig. 6. Relaxation r a t e s vs. tempprature f o r TmCu s e n s i t i v e t o t h e c r y s t a l f i e l d parameters and ex- and RnxYl-xCu.

change f i e l d used, i n d i c a t i n g a need f o r indepen- dent determinations of t h e s e parameters.

I n conclusion we have seen e l e c t r o n i c relaxa-

(8)

t i o n e f f e c t s i n a l l of t h e thulium m a t e r i a l s we have studied. By simply including r e l a x a t i o n i n our a n a l y s i s , we have been a b l e to c o n s i s t e n t l y d e s c r i b e t h e Mdssbauer s p e c t r a of a number of various thulium compounds.

REFERENCES

111 H i r s t , L. L., J. Phys. Chem. S o l i d s

31

(1970) 655. For o t h e r t h e o r e t i c a l treatments, see Blume, M. and co-workers Phys. Rev. L e t t .

14

(1964) 96 and l a t e r papers and Refs. [91

-

1131

-

[2] Ofer, S., Khurgin, B., Rakavy, M. and Nowick, I . , Phys. L e t t .

11

(1964) 205.

[3] Cohen, R. L., Phys. Rev.

137

(1965) A1809.

[4] Nowick, I . , and Wickmann, H. H. Phys. Rev.

140 (19651 A869; Phys. Rev. L e t t .

18

(1966)

-

949.

[5] Wickman, H. H., and Nowick, I . , J. Phys.

Chem. S o l i d s

28

(1967) 2099.

[6] Wiedemann, W., and Zinn, W . , Phys. L e t t . (1967) 506.

[7] Zinn, W., andwiedemann, W . , J. Appl. Phys.

39 (1968) 839.

-

[El H i r s t , L. L. S e i d e l , E. R., ~ Z s s b a u e r , R. L., and co-workers, Phys. L e t t .

29A

(1969) 673 and l a t e r papers.

[9] K. Khurgin, B., Nowick, I . , Rakavy, M. Oferr S., J. Phys. Chem. S o l i d s

31

(1970) 49.

1101 Gonzalez-Jiminez, F., Imbert, P., Hartman- Boutron, F., and co-workers, Phys. Rev.

g

(1974) and l a t e r papers.

[ I l l Shenoy, G. K., Dunlap, B. D. and co-workers, J. phys,

35

(1974) c6-425 and l a t e r papers.

[12] stijhr, J. and Wagner, W., J. Phys. F: Metal Phys. (1975) 812.

[13] F o r e s t e r , D. W., and Ferrando, W. A., Phys.

Rev. B

13

(#1976) 3991.

Clauser, M. J., and Mgssbauer, R. L., Phys.

Rev.

178

(1969) 559.

Dixon, N. S. e t a l . , t o be published.

Ofer, S., Nowik, I., and Cohen, S. G., i n

"Chemical Applications of ~ Z s s b a u e r Spectros- copy

,"

ed. V. I. Goldanskii and R. G. Hei b e r (Academic Press, New York and London, 19681 gp. 427.

Cohen, R. L. Phys. Rev.

134

(1964) A49.

Lea, K. R., Leask, M. J. M . , and Wolf, W. P., J. Phys. Chem. S o l i d s

2

(1962) 1381.

Orbach, R., Proc. Roy. Soc.

A264

(1961) 458.

E l l i o t , R. J. and Stevens, K. W. H., Proc.

Roy. Soc. (1953) 553.

Touborg, P. Phys. Rev. (1977) 1201.

Koehler, W. C . , Cable, J. W. Wollan, E. O., and Wilkinson, M. K., Phys. Rev.

126

(1962) 1672 and Brun, T. O., Sinha, S. K., Waka- bayashi, N . , Lander, G. H . , Edwardo, L. R., and Spedding, F. H., Phys. Rev. B 1 1 1 9 7 0 ) 1251. The l a t t e r neutron d i f f r a c t i o n r e s u l t s show t h a t t h e s p i n wave becomes commensurate with t h e l a t t i c e a t % 30 K [23] Richards, D.B., and Legvold, S., Bhys. Rev.

186 (1969) 508.

-

[ 241 Cohen, R.L., Phys. Rev.

169

(1968) 432.

[25] BBcle, C., Lemaire, R., and Paccard, D., J. ~ p p l . Phys.

41

(1970) 855.

[ 261 Walline, R.E., and Wallace, W.E., J. Chem.

Phys. 41 (1964) 1587.

[ 271 Abbundi

,

R.

,

Rhyne, J. J.

,

Sweger

,

D.M.

,

and

Segman, R. Phys. Rev.

B28

(1978) 3313.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to