• Aucun résultat trouvé

RECENT RESULTS IN SU(3) LATTICE QCD WITH FERMIONS

N/A
N/A
Protected

Academic year: 2021

Partager "RECENT RESULTS IN SU(3) LATTICE QCD WITH FERMIONS"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: jpa-00221911

https://hal.archives-ouvertes.fr/jpa-00221911

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

RECENT RESULTS IN SU(3) LATTICE QCD WITH FERMIONS

G. Martinelli

To cite this version:

G. Martinelli. RECENT RESULTS IN SU(3) LATTICE QCD WITH FERMIONS. Journal de

Physique Colloques, 1982, 43 (C3), pp.C3-278-C3-286. �10.1051/jphyscol:1982356�. �jpa-00221911�

(2)

JOURNAL DE PHYSIQUE

CoZZoque

C3,

suppl6ment au n o

12,

Tome

43,

de'cembre

1982

page

C3-278

RECENT RESULTS

I N

~ ~ ( 3 1 L A T T I C E QCD WITH FERMIONS

G. M a r t i n e l l i

Laboratori NazionaZi di Froseati,

I N F N ,

Frascati, I t a l y

'1. I n t r o d u c t i o n . - I n t h e l a s t y e a r a b i g p r o g r e s s h a s been made i n l a t t i c e QCD by s t a r t i n g t h e computation of t h e spectrum o f t h e hadrons by Monte Carlo t e c h n i q u e s . Although many problems remain s t i l l open, t h e f i e l d i s r a p i d l y developing and I b e l i e v e t h a t many of t h e p r e s e n t d i f f i c u l t i e s w i l l be overcome i n t h e n e x t f u t u r e . I n t h i s t a l k I w i l l r e c a l l t h e b a s i c i n g r e d i e n t s f o r t h e s e computations, I w i l l d i

IfYS

t h e l i m i t a t i o n s of Monte-Carlo t e c h n i q u e s and r e p o r t t h e more r e l e v a n t r e s u l t s

.

F i n a l l y I w i l l b r i e f l y d e s c r i b e a r e c e n t computation o f t h e proton anomalous magnetic moment on t h e l a t t i c e .

2 . L a t t i c e QCD w i t h fermions.- A r a t h e r g e n e r a l form, widely used i n Monte-Carlo s i - mulations, f o r t h e a c t i o n of i n t e r a c t i n g quarks and gluons on an e u c l i d e a n l a t t i c e i s [ 2 ] :

c o l o u r rind s p i n i n d i c e s have been omitted f o r s i m p l i c i t y , $ i s t h e quark f i e l d w i t h f l a v o u r f , U (x)

v

i s t h e gauge f i e l d i n t h e y - d i r e c t i o n . S

f ~ )

i s one of t h e p o s s i b l e pure gauge f ~ e l d a c t i o n s on t h e l a t t i c e . For example, i n t h e Wilson f o r m u l a t i o n [ 3 ] , SG(U) h a s t h e form :

where N i s t h e number of c o l o u r s a n d B = 2N/g 2 w i t h go = l a t t i c e coupling c o n s t a n t . U i s t h e product of l i n k m a t r i c e s over an eyementary p l a q u e t t e .

P

I n e q . ( l ) , f o r r = o we have a Kogut-Susskind [ 4 ] l i k e a c t i o n plagued by t h e fermion doubling problem [2,5] ; f o r r=l we o b t a i n t h e a c t i o n o r i g i n a l l y proposed by K. Wilson [ 3 ]

.

The main problem w i t h fermions i s t h a t t h e fermions degrees of freedom a r e anticommuting v a r i a b l e s t o bhich u s u a l Monte-Carlo methods cannot be a p p l i e d .

£ 1 ) For l a c k of space I w i l l d i s c u s s o n l y t h e more r e c e n t r e s u l t s f o r S U ( 3 ) c o l o u r gauge t h e o r i e s . Other p a p e r s r e l a t e d t o t h i s s u b j e c t a r e l i s t e d i n r e f . [ l ] ( s e e a l s o t h e t a l k by C . Rebbi a t t h i s c o ~ ~ f e r e n c e )

.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982356

(3)

The e x p e c t a t i o n v a l u e of some gauge i n v a r i a n t Operator depending on quark and gluon f i e l d s can be w r i t t e n a s

< 6 ( u , $, V ) =

L t u l

~ [ $ I ~ [ T I ~ - ~ ( ~ ~ ~ ~ T '

o i u , i , i )

/a bid

e-s'ul'r')

JlulTf

B e t d f ( ~ !

I 5

[u, A;'(U)

I

-

t h e formal i n t e g r a t i o n over fermions i s p o s s i b l e because t h e a c t i o n i n e q . ( l ) i s q u a d r a t i c i n t h e fermionic f i e l d s .

The determinant of A ( U ) c o n t a i n s t h e e f f e c t s of t h e fermion loops on t h e gluon Green d u n c t i o n s - f s diagrammatically shown i n f i g . 1 . For a f i x e d gauge f i e l d f c o n f i g u r a t i o n

{u/ ,

A ( U ) i s t h e quark propagator i n presence of t h e e x t e r n a l f i e l d

U ( s e e f i g . 2 ) . Many techniques [ 6 , 7 ] have been proposed i n o r d e r 2 t q compute f L''(U) and d e t b f ( U ) . The enormous number of elements of A ( U ) (32N V

,

where V i s

f f n

t h e t o t a l volume; t y p i c a l l y t h i s number i s of t h e o r d e r of l o y ) makes very d i f f i c u l t t h e computation of i t s d e t e r m i n a n t f o r computer time o r memory problems; on t h e o t h e r s i d e t h e computation o f A-I ( U ) appeared much more f e a s i b l e by using w e l l known r e l a x a t i o n t e c h n i q u e s [ 7 ] . f

A l l t h e r e s u l t s r e p o r t e d below were obtained p u t t i n g d e t A ( U ) = 1 (quenched approximation). We have good r e a s o n s t o b e l i e v e t h a t t h i s i s a goo3 approximation of t h e h a d r o n i c world a t l e a s t i f one excludes very s p e c i a l c a s e s ( l i k e f o r example t h e width of t h e p + 2 s ) . I t i s c l e a r however t h a t t o o b t a i n f u l l y meaningful r e s u l t s it w i l l be n e c e s s a r y i n t h e f u t u r e t o i n c l u d e t h e e f f e c t s of quark loops. I n t h e quen- ched approximation eq. ( 3 ) becomes :

-

1

The quark propagator A f ( U ) has been g e n e r a l l y computed, f o r a f i x e d gauge f i e l d con- f i g u r a t i o n generated by u s u a l Monte-Carlo a l g o r i t h m s , w r i t i n g t h e r e c u r s i v e equation:

B ( U ) : B ( U ) = I - B ( U ) ; I i s t h e i d e n t i t y m a t r i x and 0 an a r b i t r a r y v e c t o r . The f i x e d p o l n t s o l u t i o n ( X f = Xn =

x*)

of eq. ( 5 ) i s :

n+ 1

and g i v e s t h e n t h e i n v e r s e o f A ( U ) . f

3. Computation of hadron masses.- Let u s d e f i n e o p e r a t o r s with t h e same quantum num- b e r o f t h e p a r t i c l e s we want t o measure t h e masses :

I t i s t h e n ' s t r a i g h t f o r w a r d t o compute t h e c o r r e l a t i o n f u n c t i o n s o f t h e s e o p e r a t o r s . For example i n t h e pion c a s e :

(4)

JOURNAL DE PHYSIQUE

F i g . 1 - T y p i c a l diagram c o n t r i b u t i n g t o d e t A f ( U )

F i g . 2

-

Quark p r o p a g a t o r i n an e x t e r n a l f i e l d

Flg. 3

-

T h i s f i g u r e shows t h e t y p i c a l behaviour o f t h e s q u a r e masses o f t h e IIand of t h e p a g a i n s t t h e quark mass m ( i n a r b i t r a r y u n i t s ) . The c r o s s e s r e p r e - s e n t t h e measured p o i n t s . The v a l 8 e o f t h e quark mass c o r r e s p o n d i n g t o m = 140 MeV ( m = m *) i s i n d i c a t e d by a d o t . The minimum v a l u e of t h e q z a r k m a s s a t waich Y i n i t e volume e f f e c t s a r e n o t t o o l a r g e and it i s p o s s i b l e t o c m u t e t h e p i o n and r h o masses l i e s v e r y f a r from t h e phy-

P P s i c a l p o i n t m

.

9

(5)

G. M a r t i n e l l i

G f ( x , o ) i s t h e propagator of a quark of f l a v o u r f between 0 and x. I n e q . ( 8 ) d e t A ( U ) = 1.

f

I f t h e r e i s only a s i n g l e p a r t i c l e s t a t e propagating we e x p e c t t h a t :

~ ( t ) =

C -

~ ( x ) % e-mt

X

t f i x e d

On a p e r i o d i c l a t t i c e w i t h p e r i o d T e q . ( 9 ) should be r e p l a c e d by :

G ( t ) % e o s h [ m ( t - ~ / 2 )

1

(10)

The c o e f f i c i e n t m measures t h e mass of t h e hadron i n l a t t i c e u n i t s . Because o f r a d i a l e x c i t a t i o n s and many p a r t i c l e s s t a t e s p r o p a g a t i n g simultaneously w i t h t h e l o w e s t l y i n g s t a t e e q . ( 9 ) becomes t r u e only f o r t +

-.

For f i n i t e t , t o t a k e i n t o a c c o u n t f o r t h e propagation of many d i f f e r e n t s t a t e s and p a r t i a l l y c o r r e c t t h e s e s y s t e m a t i c

f 2 ) e f f e c t s it i s convenient t o p a r a m e t r i z e t h e propagator (on a p e r i o d i c l a t t i c e ) a s

.

G ( t ) = iil cos h [ m l ( t - T/2)1

+

a 2 COS h [ k 2 ( t -

T / ~ ) I

m2 > ml (11)

ml i s t h e mass of t h e l o w e s t l y i n g s t a t e and, f o r mesons, a i s r e l a t e d t o f T , f 1 .

...

BY f i t t i n g t h e p r o p a g a t o r s one o b t a i n s t h e masses of t h e p a r t r c l e s i n u n i t s of t i e l a t t i c e spacing. T o t r a n s l a t e t h e s e r e s u l t s i n p h y s i c a l u n i t s one h a s t o f i x a funda- mental s t r o n g i n t e r a c t i o n s c a l e and a mass parameter f o r each quark f l a v o u r . T h i s i s n o t however t h e end of t h e s t o r y : one should r e p e a t t h e computation of t h e masses a t s e v e r a l v a l u e s of t h e coupling c o n s t a n t B i n t h e p e r t u r b a t i v e r e g i o n and v e r i f y t h a t A l l t h e masses s c a l e inr$he w e l l known, p e r t u r b a t i v e l y computable way, e - g . :

No s y s t e m a t i c a n a l y s i s [ w i t h t h e e x c e p t i o n of t h e hopping parameter expansion by A. Hasengratz e t a l . [ I ]

1

h a s been y e t done on t h e s c a l i n g behaviour of t h e masses, a l b e i t t h e r e s u l t s , w i t h i n l a r g e s t a t i s t i c a l and s y s t e m a t i c a l e r r o r s , a r e compatible w i t h s c a l i n g . The l a c k of s c a l i n g found f o r e x c i t e d g l u e b a l l s t a t e s [9] i n d i c a t e s t h a t a more c a r e f u l s t u d y of t h i s p o i n t i s r e q u i r e d .

A r e l e v a n t source of s y s t e m a t i c and s t a t i s t i c a l e r r o r s i s due t o t h e f a c t t h a t , a t l e a s t f o r hadrons made by t h e l i g h t e s t (up and down) q u a r k s , it i s n o t pos- s i b l e t o compute t h e hadron masses d i r e c t l y a t t h e p h y s i c a l p i o n mass. I n f a c t , f o r t h e v a l u e s o f t h e parameters commonly used i n t h e l i t e r a t u r e t h e i n f r a r e d c u t o f f Na ( N i s t h e l i n e a r s i z e of t h e l a t t i c e ) i s s m a l l e r o r e q u a l t o t h e p i o n Compton l e n g t h l/mV. Because of f i n i t e volume e f f e c t s t h e minimum p o s s i b l e quark mass t u r n s f 2 ) I t has been r e c e n t l y shown [8] t h a t , even u s i n g a p a r a m e t r i z a t i o n l i k e t h a t o f

eq.11, t h e a c t u a l computations of t h e masses a r e a f f e c t e d by s y s t e m a t i c e r r o r s %lo-15%.

(6)

C3-282 JOURNAL DE PHYSIQUE

o u t e m p i r i c a l l y t o be such t h a t :

l / m K

;

+ m 500 700 MeV (13)

The s i t u a t i o n i s s c h e m a t i c a l l y r e p r e s e n t e d i n < i g . 3.The measurementsare taken f a r from t h e " p h y s i c a l " r e g i o n corresponding t o m = 140 MeV and an e x t r a p o l a t i o n t o small v a l u e s of t h e quark masses i s needed.

~ g i s

e x t r a p o l a t i o n g i v e s a s y s t e m a t i c e r r o r and a m p l i f i e s t h e s t a t i s t i c a l e r r o r of t h e measured p o i n t s .

4. R e s u l t s f o r hadron spectroscopy i n SU(3).- T h f 3 y e s u l t s f o r hadron spectroscopy, taken from r e f s . [10.11.121 a r e l i s t e d i n t a b l e I

.

I n t h e f i r s t 5 rows t h e tvoe of

-

L

l a t t i c e fermion a c t i o n ( r ; s e e e q . ( l ) ) , t h e s i z e of t h e l a t t i c e (Volume), t h e avera- ge number of gauge f i e l d c o n f i g u r a t i o n s ( N ) and t h e v a l u e s of t h e coupling c o n s t a n t

( 6 )

used bo o b t a i n t h e r e s u l t s argo?gported t o g e t h e r w i t h t h e t o t a l e s t i - mated computer time ( t ) s p e n t f o r t h e s i m u l a t i o n i n u n i t s o f CDC 7600 CPU time.

The group of r e f . [ l O ] f i x e s t h e s t r o n g i n t e r a c t i o n s c a l e by f i x i n g t h e mass i s predkcted assuming t h e s c a l i n g law o f e q . ( 1 2 ) . I n t h e o t h e r

i s f i x e d s o t h a t t h e p mass i s p r e d i c t e d . I n a l l t h e c a s e s Smasses were f i x e d by f i x i n g t h e pion mass t o i t s p h y s i c a l v a l u e ( i n t h e approximation m

up=mdown)

.

Some d i f f i c u l t i e s have been e n f a y n t e r e d ( a t l e a s t f o r r#o) i n computing t h e masses of t h e 6 ( 9 8 0 ) , A1 gnd

B

mesoys.

.

The reason i s probably due t o t h e use of l o c a l o p e r a t o r s (e.g. 'A = u ( x ) Y yld(x) ) f o r p-wave e x c i t a t i o n s f o r which it is more n a t u r a l t o use s p a t i a l l y extended o p e r a t o r s a s f o r example [I31 1 :

I t h i n k t h a t f o r t h e s e s t a t e s t h e s i t u a t i o n should be f u r t h e r c l a r i f i e d b e f o r e making a comparison w i t h experimental numbers.

The p h y s i c a l r e s u l t s should be independent of t h e a c t i o n we choose on t h e l a t t i c e i n t h e continuum l i m i t a + 0 (g + 0). Then we e x p e c t t h e r e s u l t s of t a b l e 1 t o be compatible Rmong them. However weOnotice s e v e r a l d i s c r e p a n c i e s :

i ) f T from r e f . 12 ( f o u r t h column i n t h e t a b l e ) i s s i g n i f i c a n t l y below a l l t h o t h e r s . This r e s u l t s seems r a t h e r s t r a n g e i n v i e w o f t h e f a c t t h a t t h e v a l u e s of

- f

f P a r e a l l compatible f5)

.

ii) The continuum r e n o r m a l i z a t i o n group i n v a r i a n t quark mass [14] t h a t one o b t a i n s s t a r t i n g from t h e r e s u l t s of r e f s . [10,111 i s incompatible w i t h t h e r e s u l t of r e f . [12]

.

T h i s d i s c r e p a n c y c o u l d be due t o l a r g e f i n i t e b a r e coupling e f f e c t s ( t h e measurements were taken a t d i f f e r e n t v a l u e s of

B)

s i n c e t h e b a r e coupling cons- t a n t i s s t i l l of o r d e r u n i t y .

iii) The mass of t h e barvons ( p r o t o n and A

++

) f o r Susskind fermions (second column) t u r n s o u t t o be exceedingly h i g h ( m +mA++)/2 % 1700 MeV.

P

I d o n ' t s e e any p o s s i b l e e x p l a n a t i o n of t h i s r e s u l t . A l l t h e o t h e r r e s u l t s -1

.

f 3 ) The v a l u e s of f K and fl, I n t h e f i r s t column were n o t p u b l i s h e d i n r e f . [ l o ] .

£4) For a d e t a i l e d d i s c u s s i o n s e e t h e o r i g i n a l papers [10,11,12].

f 5 ) Notice however t h a t a d i f f e r e n t o p e r a t o r was used i n r e f [12] t o compute f T .

(7)

G. Martinelli

, 1 - 1

1 F. FUCITO I H. HAMBER I H. HAMBER I D. WEINTGARTEN 1 i

I ( G. MARTINELLI ( G. PARIS1 ( G. PARIS1 1 I I

I C. OMERO I I I I I

I G. PARIS1 I I I I I

I R. PETRONZIO I REF.ll I REF.ll I REF.12 1 I

I F. RAPUANO I I I 1 I

I REF. 10 I 1 I

I I I I

I I

1

I

0.5 I

1

I r I

I

I I I I I

I 32

1 8 1

28 I

8

I Nconf I

5.6 I

4.0

1 -4

I 6.0 1 6.0 1

6.0

1 5.55 1

R

I

T(o# 970 MeV 1 950

L

100 MeV I 7 3 0 I ~ ~ ~ M e V 1 m6(g80) I

I I

I I r r r l r r r l l - / I l l

I

I

j 220

5

90 MeV lyl

I

%

200 MeV I 2 9 0 1 i ; w I rn ++

-mp

I

I I A

.

. . .

J I

.

1

TABLE I

(8)

JOURNAL DE PHYSIQUE

seem t o be ( w i t h i n l a r g e s t a t i s t i c a l e r r o r s ) compatible. One should n o t i c e t h a t t h e c m u t e d f T and f - l a r e t o o l a r g e when compared t o t h e i r experimental v a l u e s and t h e A ?+P

-

p r o t o n mass $ l i t t i n 9 t o o small.

We b e l i e v e t h a t t h e s e s y s t e m a t i c d i s c r e p ~ n c i e s a r e connected t o t h e f a c t t h a t t h e l a t t i c e spacing i s s t i l l t o o l a r g e compared t o t h e s i z e of t h e hadrons and t h e y should become l e s s s e r i o u s a t l a r g e r v a l u e s of 6. The s y s t e m a t i c over-estimation o f baryon masses, a l t h o u g h t h e Monte-Carlo r e s u l t s a r e compatible w i t h i n t h e e r r o r s with t h e experimental v a l u e s , a p p e a r s t o a r i s e from l a r g e f i n i t e volume ( i n f r a r e d ) e f f e c t s . These e f g e c t s could be removed by going ( a t f i x e d 0) t o l a r g e r l a t t i c e s .

I n t a b l e s I1 and I11 I l i s t o t h e r p r e d i c t i o n t a k e n from r e f s . [I11 and [I51 f o r t h e charm and s t r a n g e quark spectroscopy.

I n conclusion t h e r e s u l t s a r e very encouraging b u t a t p r e s e n t we have pro- blems coming from u l t r a v i o l e t and i n f r a r e d l i m i t a t i o n s of t h e l a t t i c e .

5. The computation of t h e anomalous magnetic moment

1J61 .-

The mass of a Dirac par- t i c l e i n presence of an e x t e r n a l weak magnetic f i e l d 3 i s given by :

m n = m o

+ -

m (n

+ T )

1

+

+

u .

+

0

m i s t h e mass i n absence of t h e f i e l d + ; e i s t h e e l e c t r i c charge ; n i s an i n t e g e r l z b e l l i n g d i f f e r e n t Landau l e v e l s and IJ i s t h e magnetic moment. Eq. (15) shows t h a t t h e measurement of t h e magnetic moment can be reduced t o t h e computation of t h e mass of a p a r t i c l e i n an e x t e r n a l magnetic f i e l d . On t h e l a t t i c e a uniform, c o n s t a n t ma- g n e t i c f i e l d i s i n t r o d u c e d by r e p l a c i n g t h e c o l o u r l i n k U ( x ) by :

u uw

( x ) +

u

( x ) x

u

( x ) EXT

u u

U~~~ (XI = eiaX Y

which corresponds t o a magnetic f i e l d p o i n t i n g i n t h e d i r e c t i o n with s t r e n g t h :

e l ~ I =

+

a/a 2 (171

We t a k e a small enough s o t h a t e q . ( 1 5 ) h o l d s and we d e f i n e :

G(+,+) i s t h e s p i n up, s p i n down ( p r o t o n o r neutron) propagator,+summed over t h e s p a t i a l d i r e c t i o n s a s i n eq. ( 9 ) a t f i x e d d i s t a n c e t. For s m a l l

I H I

and t l a r g e enough we expect :

Using e q . ( 1 9 ) a t t = 4 , 5 we measured t h e gyromagnetic f a c t o r f o r t h e p r o t o n and t h e neutron q p , N , d e f i n e d a s :

- 2 m p , ~

.

'P,N

'P,N = e

(9)

G. M a r t i n e l l i

e i s t h e u n i t e l e c t r i c charge ;

up

and

\

a r e t h e measured p r o t o n , n e u t r o n magne- t i c moments (eq. 19) and masses r e s h e c t i v e l y :

A t t = 5 we o b t a i n e d :

gp = 2.96

+

0.58 (exp

*

2.79) gN = -1.93

+

0.45 (exp

*

1.90) lgp/gNI = 1.60 ? 0.15 (exp

*

1.47)

i n f a i r l y good agreement with t h e experimental v a l u e s .

Remember however t h a t t h e s e r e s u l t s a r e a f f e c t e d by r a t h e r l a r g e s y s t e m a t i c e f f e c t s because of e x c i t e d s t a t e s propagating simultaneously w i t h t h e lowest l y i n g s t a t e s f o r s m a l l t.

CHARMED MESONS

m (2980) 13000

"

30 MeV

[

I ? I

I

I 1

3400 2 50 WeV

I

I

m,, (3414)

I I

I

m, (3507)

1

3500 f 50 MeV

I pc i

1 I

+- 1

3600

+

100 MeV

1

I I

TABLE I1

STRANGE HADRONS

i

mK*

1

890

+

70 MeV

j

I I

I

I

m$

I

990 t 50 MeV

i

I I I

(10)

JOURNAL

DE PHYSIQUE

References.. -

[I] -

HAMBER H. and PARISI G., Phys. Rev. Lett.

47,

1792 (1981) ;

MARINARI E., PARISI

G.

and REBBI C., Phys. Rev. Lett.

41,

1795 (1981);

HAMBER H., MARINARI E., PARISI G., REBBI C., Phys. Lett.

m,

314 (1982);

WEINTGARTEN

D.,

Phys. Lett.

m,

57 (1982);

HASENFRATZ A., HASENFRATZ P., KUNTZ Z. and LANG C.B., PhyS. Lett.

E,

289, (1982).

[2] - KARSTEN L.H. and SMIT J., Nucl. Phys.

m,

103 (1981).

[3] - WILSON K.G., Erice Lecture Notes (1975) published in "New phenomena in Subnuclear physics", ed. A. Zichichi (Plenum, New York, 1977)

.

[41

-

See for example SUSSKIND L., ~ h y s . Rev.

G,

3031 (1977)

.

[5]

-

NIELSEN H.B. and NINOMIYA M., Nucl. Phys.

E ,

20 (1981).

[6]

-

FUCITO F., MARINARI E., PARISI G., REBBI C., Nucl. Phys. (FS2) 369 (1981) ;

SCALAPINO D. J., SUGAR R.L., Phys. Rev. Lett.

46,

519 (1981).

[7] - PETCHER D.N., WEINTGARTEN D.H., Phys. Lett.

z,

333 (1981).

181

-

BERNARD C., DRAPER

T.

and OLYNYK K., Univ. of California, preprint U C L A / ~ ~ / TEP/~O, (June 1982).

[9] - BERG B., Lectures notes presented at the J-Hopkins Workshop, Florence June

2-4,

1982, CERN - TH 3327 (June 1982).

[lo]

- FUCITO F., MARTINELLI G., OMERO C., PARISI G., PETRONZIO R., RAPUANO F.

CERN - TH 3288 (April 1982), to be published in Nucl. Phys. B (FS).

[ 11

1 -

HAMBER H., PARISI G., Brookhaven Report, BNL 31322 (May 1982)

.

[I21 - WEINTGARTEN

D.,

Indiana Univ. Preprint IUHET-82 (June 1982)

.

El31 - KUNTZ.

Z,

talk delivered at the " ~ 1 t h Worshop on Current problems in High Energy Particle Theory", Firenze, June 2-4 (1982).

[I41

-

GONZALES ARROYO A., MARTINELLI G. and YNDURAIN F.J., Frascati report

~ ~ ~ - 8 2 / 3 3 (May 1982) to appear in Phys. Lett. B.

1151

-

MARTINELLI G., OMERO C., PARISI G., PETRONZIO R., CERN-TH 3335 (June 1982) to appear in Phys.Lett. B.

[I61

-

MARTINELLI G., PARISI G., PETRONZIO R., KAPUANO F., CERN

-

TH 3334 (June 19821 to appear in Phys. Lett. B.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to