• Aucun résultat trouvé

CONTACT METHODS FOR DIAGNOSTICS OF THERMAL PLASMA

N/A
N/A
Protected

Academic year: 2021

Partager "CONTACT METHODS FOR DIAGNOSTICS OF THERMAL PLASMA"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00230841

https://hal.archives-ouvertes.fr/jpa-00230841

Submitted on 1 Jan 1990

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CONTACT METHODS FOR DIAGNOSTICS OF THERMAL PLASMA

P. Stefanovij, P. Pavlovij, M. Jankovij, S. Oka

To cite this version:

P. Stefanovij, P. Pavlovij, M. Jankovij, S. Oka. CONTACT METHODS FOR DIAGNOSTICS OF THERMAL PLASMA. Journal de Physique Colloques, 1990, 51 (C5), pp.C5-281-C5-288.

�10.1051/jphyscol:1990534�. �jpa-00230841�

(2)

CONTACT METHODS FOR DIAGNOSTICS OF THERMAL PLASMA

P.Lj. STEFANOVIC, P.B. P A V L O V I ~ , M.M. JANKOVIC? and S.N. OKA Institut for Nuclear Sciences "Boris KidriC", vinCa Institut for Thermal Sciences and Energy Research, P.O. Box 522, 11001 Belgrade.

Yugoslavia

F

&

% .

&

-

On p r u t e dans ce papier l e principe de mesure, ainsi que des exemples d'applications possibles, pour l e s mathodes de mntact suivantes: l/ sorde enthalpique (calorim6riie), 2/ sonde de Pitot mobile, 3/ -le mobile. Les deux premikes n&hcdes sont directement insp- du tube de Pitot. Ia t r o i s i h ethode consiste en dew passages oil plus avec un 616rmt sensible de -1e l e long de l'i%mlemmt.

lbplus de l a description d&ta.ill& de m e m&hode, on p r k t e quelques r6sultats exp6rheataux pour un j e t plasma air-azote 8 l a s o r t i e de l a tomhe.

A b s t r a c t

-

I n t h i s paper p r i n c i p l e of measurement, t o g e t h e r w i t h i l l u s t r a - t i v e examples of p o s s i b l e a p p l i c a t i o n s , a r e p r e s e n t e d f o r t h e following c o n t a c t methods: 1) e n t h a l p y ( c a l o r i m e t r i c ) probe, 2 ) f l y i n g P i t o t L p r o b e , 3 ) f l y i n g thermocouple. C a l o r i m e t r i c o r e n t h a l p y probe i s , i n f a c t , water cooled P i t o t - p r o b e f o r d i r e c t measurement of s t a g n a t i o n p r e s s u r e and s t a g n a t i o n e n t h a l p y . Dynamic method o f f l y i n g P i t o t - p r o b e e n a b l e s a b r i e f c o l l e c t i n g of experimental d a t a and i m p l i e s good dynamic c h a r a c t e r i s t i c s of pneumatic p a r t of measuring system. Measuring of plasma flow temperature by flying or dynamic thermooouple, c o n s i s t s of two o r more p a s s i n g s with s e n s i t i v e element of thermocouple along t h e diameter of t h e flow. Besides t h e d e t a i l e d d e s c r i p t i o n of each method, some experimental r e s u l t s a r e p r e s e n t e d f o r a i r - n i t r o g e n plasma j e t a t t h e e x i t of t h e experimental plasma t o r c h .

1. INTRODUCTION

Term of thermal o r dense plasma i s r e l i e d with p a r t i a l l y d i s s o c i a t e d o r i o n i - zed gas, b u t n o t s o r a r e f i e d t h a t r a d i a t i o n p r o c e s s e s of energy t r a n s f e r beco- mes dominant compared t o p a r t i c l e s c o l i s i o n p r o c e s s e s . Term of thermal plasma is c l o s e l y connected with t h e c o n d i t i o n of l o c a l thermodynamic e q u i l i b r i u m

(LTE) which i m p l i e s unique value of temperature f o r every p a r t i c l e a t one s i n - g l e p o i n t . G r e a t e r d e v i a t i o n s from e q u i l i b r i u m plasma should be expected a t lower . p r e s s u r e s (<0.1 b a r )

.

Experimental i n v e s t i g a t i o n of flow parameters f o r dense o r thermal plasma (high temperature 5000-15000 K , multiphase flow, chemical r e a c t i o n s ) i s very complex problem. For d i a g n o s t i c s of t y p i c a l plasma flows, p l e n t y of c o n t a c t and o p t i c a l methods a r e p r e s e n t l y i n use.

Temperatures of 5000 K and more exceed m e l t i n g p o i n t of a l l t e c h n i c a l materi- a l s , s o some s p e c i a l c o n s t r u c t i o n s had t o be developed t o enable a p p l i c a t i o n of c o n t a c t methods. Contact methods a r e based on small dimension probes: a ) c o - o l e d f o r s t a t i c ( p o i n t by p o i n t ) measurements and b ) uncooled f o r dynamic mea- surements. Although c o n t a c t methods induce some flow d i s t u r b a n c e and u s u a l l y g i v e s lower accuracy ( t y p i c a l range (5-10%) compared with o p t i c a l methods,- a r e widely used i n thermal plasma d i a g n o s t i c s because:

-

they a r e based on cheap commercial s e n s o r s and i n s t r u m e n t s ,

-

they can be q u i c k l y i n s t a l l e d , and e a s i l y and inexpensively used,

-

they can measure a whole p r o f i l e o r even a flow f i e l d i n a s h o r t p e r i o d of time ( f o r dynamic methods t y p i c a l scanning p e r i o d i s of t h e o r d e r 1 s e c ) . Paper p r e s e n t s development and a p p l i c a t i o n p o s s i b i l i t i e s f o r : 1) m i n i a t u r e ca- l o r i m e t r i c o r e n t h a l p y probe, 2 ) dynamic method of f l y i n g P i t o t - p r o b e and

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1990534

(3)

C5-282 COLLOQUE DE PHYSIQUE

3 ) dynamic method o f f l y i n g thermocouple.

2. ENTHALPY (CALORIMETRIC) PROBE

For measuring t h e d i s t r i b u t i o n o f p r e s s u r e and e n t h a l p y i n t h e r m a l plasma flows (T<15000 K ) , e n t h a l p y probe i s w i d e l y s p r e a d e d e x p e r i m e n t a l . m e t h o d / 1 , 2 , 3 , 4 / . T h i s method e n a b l e s measuring t h e l o c a l v a l u e s of s t a g n a t i o n p r e s s u r e and en- t h a l p y i n f l o w f i e l d w i t h h i g h g r a d i e n t s o f thermodynamic and f l o w p a r a m e t e r s . S p e c i a l advantage of t h i s method i s h i g h quenching v e l o c i t y o f "gas-sample"

which e n a b l e s a s i m u l a t i o n o f f r e e z i n g d e v i c e i . e . e x a m i n a t i o n o f p o s s i b l e p r o d u c t s of chemical r e a c t i o n . F o r t h i s r e a s o n e n t h a l p y probe i s w i d e l y u s e d I n plasma c h e m i s t r y and m a t e r i a l p r o c e s s i n g .

Method i s b a s e d on two measurements i n e a c h measuring p o i n t : w i t h and w i t h o u t a s p i r a t i o n o f "gas-sample" through t h e c e n t r a l c h a n n e l o f d i a m e t e r d i ( f i g u r e 1 ) . I n regime w i t h o u t a s p i r a t i o n , s t a g n a t i o n p r e s s u r e and " t a r a " h e a t f l u x ( % ) from plasma t h r o u g h o u t e r probe s u r f a c e t o c o o l a n t w a t e r a r e measured

( Q ~ = ~ c @ T ~ ; m-mass f l o w r a t e , d p - s p e c i f i c h e a t c a p a c i t y and Tb-temperature ri- se o f c o o l a n t w a t e r ) . I n regime w i t h a s p i r a t i o n , h e a t f l u x t o c o o l a n t w a t e r i s e q u a l t o t h e sum of h e a t f l u x t h r o u g h t h e o u t e r probe s u r f a c e (Qa) and h e a t f l u x from "gas-sample" (mcp~Ta=Qa+G(hi-h,); h i and h, a r e s t a g n a t i o n e n t h a l p y of t h e " g a s sample" a t t h e i n l e t and o u t l e t o f t h e probe. I f a s p i r a t i o n i s i s o - k i n e t i c s i . e . i f mass flow r a t e o f g a s sample G , i s e q u a l ( o r l e s s ) t o t h e f r e e s t r e a m mass flow r a t e ( G S ~ W ~ ? T / ~ ; W and p a r e f r e e s t r e a m v e l o c i t y and d e n c i t y o f t h e q a s a t t h e i n l e t o f t h e p r o b e ) . h e a t f l u x e s t o t h e o u t e r probe s u r f a c e i n two regimes

e n t h a l p y : a r e e q u a l (Qa=Qb)- and o b t a i n formula f o r measured S t a g n a t i o n

There a r e few b a s i c r e q u i r e m e n t s which e n t h a l p y probe h a s t o meet i n o r d e r t o q u a l i f y it self as a d i a g n o s t i c s t o o l :

1) The p r o b e h a s t o b e r i g i d and t h e r m a l l y p r o p e r l y p r o t e c t e d t o s u r v i v e e x t r e - mely h o s t i l e environment o f plasma f l o w s .

2 ) The p r o b e must b e s m a l l enough t o e n s u r e s u f f i c i e n t s p a r t i a l r e s o l u t i o n and s m a l l d i s t u r b a n c e o f t h e flow.

3 ) The p r o b e h a s t o b e s e n s i t i v e t o d e t e c t e n t h a l p y v a r i a t i o n s i n f l o w f i e l d w i t h h i g h g r a d i e n t s o f f l o w p a r a m e t e r s .

Dimensions o f i . d . ( 1 . 6 mm) and 0 . d . (3.2 mm) a r e choosen t o s a t i s f y a l l p r e - v i o u s l y mentioned c r i t e r i o n s . Dimensions g1.6/83.2 and c o n s t r u c t i o n w i t h s t a - i n l e s s s t e e l t u b e s argon welded a t t h e p r o b e s t i p , e n a b l e r e l i a b l e work o f t h e p r o b e i n t h e r m a l plasma w i t h e n t h a l p y up t o 10 MJ/kg, s t a g n a t i o n h e a t f l u x up t o 8 MW/m and mass f l o w r a t e o f c o o l a n t w a t e r o f minimum 10 g / s , and h i g h sen- s i t i v i t y o f t h e probe S= (ATa- &Tb) /bTa<27%. Accuracy o f t h e measurement depends

&a a c c u r a c y of measurements o f t e m p e r a t u r e and mass flow r a t e o f c o o l a n t w a t e r , and o f measurement o f mass flow r a t e o f gas through t h e c e n t r a l c h a n n e l o f t h e p r o b e , and h a s been d e t e r m i n e d a p p r o x i m a t e l l y a t 5% /5/. Under t h e assumption o f LTE One can c a l c u l a t e t e m p e r a t u r e from measured v a l u e o f s t a g n a t i o n enthalpy, and v e l o c i t y from measured v a l u e o f s t a g n a t i o n p r e s s u r e . T h i s means t h a t u s e o f e n t h a l p y probe a t r e a l e x p e r i m e n t a l s i t u a t i o n ( f r e e j e t , model o f plasma r e a c - t o r ) e n a b l e s one t o g e t d i s t r i b u t i o n o f f o u r b a s i c flow p a r a m e t e r s . From t h e expences p o i n t o f view, t h i s i s g r e a t advantage i n comparison w i t h o t h e r expe- r i m e n t a l methods f o r plasma f l o w s d i a g n o s t i c s . F i g u r e s 5-8 p r e s e n t a x i a l pro- f i l e s o f j e t flow f i e l d w i t h c o n s t a n t v a l u e l i n e s o f s t a g n a t i o n e n t h a l p y , s t a g - n a t i o n p r e s s u r e , t e m p e r a t u r e and v e l o c i t y o b t a i n e d from measurement by e n t h a l p y probe f o r one working regime o f t h e e x p e r i m e n t a l plasma t o r c h .

3. D I N A M I C MEASUREMENT OF STAGNATION PRESSURE

Dynamic measurement i s based on f a s t p a s s i n g s w i t h P i t o t - p r o b e a l o n g t h e diame- t e r o f plasma flow /6,7/. E x p e r i m e n t a l i n s t a l l a t i o n i s s c h e m a t i c a l l y p r e s e n t e d a t f i g u r e 3. An uncooled P i t o t - p r o b e 2 , w i t h p r e s s u r e t r a n s d u c e r 3, i s f i x e d d i r e c t l y on pendulum 1. Pendulum o s c i l a t e s w i t h i n t h e p l a n e p e r p e n d i c u l a r t o j e t a x i s . During t h e r a p i d probe f l i g h t a c r o s s t h e j e t , p r e s s u r e s i g n a l i s r e - c o r d e d i n memory o f computer. O p t i c a l p o s i t i o n d e t e c t o r 4 i s u s e d t o c o s r e l a t e t h e t i m e dependence o f p r e s s u r e - s i g n a l - w i t h r a d i a l c o o r d i n a t e . T h i s method i s v e r y u s e f u l b e c a u s e o f s e v e r a l adventages:

(4)

-

a whole p r e s s u r e p r o f i l e can b e measured i n v e r y s h o r t p e r i o d o f time.

-

uncooled probe w i t h s m a l l dimensions can be u s e d w i t h minimal flow d i s t u r - b a n c e s .

Main problem o f t h e method i s phase and a m p l i t u d e d i s t o r t i o n o f i n l e t s i g n a l i n a c o u s t i c p a r t o f measuring system, f i g u r e 3, which c o n s i s t s o f t h e P i t o t probe t u b e , volume V 1 , and t h e chamber above t h e t r a n s d u c e r membrane, volume v 2 -

B a s i c d i f f e r e n t i a l e q u a t i o n s g o v e r i n g t r a n s i e n t one d i m e n s i o n a l a d i a b a t i c flow o f c o m p r e s s i b l e f l u i d w i t h f r i c t i o n i n d u c e d by u n i t s t e p p r e s s u r e f u n c t l o n a t t h e i n l e t o f t h e P i t o t p r o b e ( x s O , p=pOI u=O; T > O , p=pO+pm) a r e :

where i s : X - d i s t a n c e from i n l e t , a l o n g P i t o t p r o b e , T - t i m e , U - v e l o c i t y , p-pres- s u r e , R - f r i c t i o n r e s i s t a n c e , p - d e n s i t y , C-speed o f sound. L a p l a c e t r a n s f o r m o f t h e above e q u a t i o n s g i v e s d i f f e r e n t i a l e q u a t i o n wich governs dynamic b e h a v i o r of t h e pneumatic s y s t e m i n complex ( f r e q u e n c y ) domain. T r a s f e r f u n c t i o n @ ( S ) of t h e pneumatic system i s a r a t i o o f t h e s o l u t i o n s o f t h i s d i f f e r e n t i a l equa- t i o n a t t h e b o u n d a r i e s o f t h e s y s t e m i . e . p r e s e n t s t h e r a t i o between i n l e t s i g n a l , P (x=O , S ) , and i t s r e s p o n s e i n volume V 2 , P ( x = l l , S ) , i n complex a r e a :

P ( x = l l , S )

@ ( S ) =

P(x=O,S) = {cosh ( L J ( ~ + s p ) s / p J

+

VL J ( R + S P ) S / P s i n h

I L

J ( ~ + s p ) s / p l } t 4 )

e

where i s : S - l a p l a c e t r a n s f o r m v a r i a b l e , ~ = 3 2 p / d f ( d e r i v e d f o r l a m i n a r flow from Hagen-Pois'euille l a w ) , L = l l / c , V=V2/V1 ( F i g . 4 ) . T r a n s f e r f u n c t i o n c a n B@fve a s a b a s e f o r s e l e c t i o n o f t h e p r e s s u r e t r a n s d u c e r and d e s i g n of P i t o t t u b e w i t h good dynamic c h a r a c t e r i s t i c s . M a i n demands f o r t h i s p u r p o s e a r e f o l l o w i n g :

-

volume V2 above t h e t r a n s d u c e r membrane h a s t o be minimized,

-

l e n g t h o f P i t o t - p r o b e t u b e h a s t o b e a s s h o r t a s p o s s i b l e , h a v i n g i n mind t h a t such an o p t i m a l l e n g t h can s t i l l p r o t e c t t r a n s d u c e r a g a i n s t h i g h t h e r m a l S t r e s s e s ,

-

an o p t i m a l i n t e r n a l d i a m e t e r o f t h e P i t o t - p r o b e t u b e h a s t o be choosen i n a way t o meet a l o c a l measurement r e q u i r e m e n t s and t o g i v e a good dynamic c h a r a c t e r i s t i c o f t h e measuring system a t t h e same t i m e .

B e s i d e e r r o r s c h a r a c t e r i s t i c f o r s t a t i c P i t o t - p r o b e measurements, a c c u r a c y o f t h i s method depends on dynamic c h a r a c t e r i s t i c s o f t h e measuring system. With c a r e f u l s i z i n g o f t h e probe and by c o r r e c t c h o i c e o f p r e s s u r e t r a n s d u c e r , r e - l a t i v e e r r o r can be d e c r e a s e d t o 5 % f o r d i a g n o s t i c s o f plasma f l o w s which h a s been e x p e r i m e n t a l l y proved by c a l i b r a t i o n measurements / 7 / . Example o f t h i s method performances i s shown a t f i g u r e 9 which p r e s e n t s i s o b a r s i n a x i a l c r o s s s e c t i o n of t h e j e t .

4 . DYNAMIC THERMOCOUPLE METHOD

Essence o f t h i s method i s t o make a r a p i d p a s s i n g w i t h t h e j u n c t i o n o f t h e thermocouple through t h e c r o s s - s e c t i o n of plasma j e t and t o ,record i t s tempe- r a t u r e change. R a d i a l p r o f i l e o f j e t t e m p e r a t u r e can be c a l c u l a t e d by p r o c e s - s i n g o f c o n t i n u o u s t e m p e r a t u r e r e c o r d i n g s from two o r more p a s s i n g s ( f i g u r e 2 b ) . I n t h e f i r s t p a s s i n g s t a r t t e m p e r a t u r e o f thermocouple i s e q u a l t o room tempe- r a t u r e b u t i n t h e second thermocouple i s h e a t e d t o t e m p e r a t u r e 400-500°C.

I f we n e g l e c t r a d i a t i o n of t h e t i p , we can assume t h a t c o n v e c t i v e h e a t f l u x q ( r 1 ) a t any o b s e r v e d p b i n t ( p o i n t A, f i g u r e 2 a ) can be o b t a i n e d by d i f f e r e n - t i a t i n g of r e c o r d e d t e m p e r a t u r e s i g n a l T s ( r ) o f s p h e r i c thermocouple ( w i t h r a d i u s R ) .

where p i s d e n s i t y o f thermocouple m a t e r i a l and Cp i s i t s s p e c i f i c h e a t capa- c i t y . Under t h e assumption t h a t c o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t s from plasma t o thermocouple t i p , a t t h e same o b s e r v e d p o i n t A , b u t i n d i f f e r e n t p a s s i n g s , a ' ( r l ) and a" ( r l ) , a r e e q u a l , we o b t a i n :

(5)

C5-284 COLLOQUE DE PHYSIQUE

from t h i s e q u a t i o n we f i n a l l y o b t a i n expresion f o r c a l c u l a t i n g t h e temperature of t h e plasma j e t a t observed p o i n t A.

- -

Basic parameter which d e f i n e s p o s s i b i l i t i e s of t h i s method, i s v e l o c i t y of thermocouple p a s s i n g through t h e plasma j e t . There a r e two o p o s i t e demands f o r t h i s v e l o c i t y :

-

it has t o be high enough t o avoid t h e m e l t i n g of thermocouple,

-

i t has t o be small enough t o l i m i t t h e i n i t i a l i r r e g u l a r regime of h e a t i n g t h e thermocouple, t o s m a l l r e g i o n of t h e j e t (1/20 of j e t d i a m e t e r ) / 8 / . Temperature probe i s s c h e m a t i c a l l y p r e s e n t e d a t f i g u r e 2b. K type thermocouple

(chromel-alumel) has been used due t o i t s l i n e a r c h a r a c t e r i s t i c s . Thermocouple t i p was s p h g r i c , w i t h 0.95 mm i n diameter.

Demand f o r e q u a l i t y of convective h e a t t r a n s f e r c o e f f i c i e n t s a '(r) and a" ( r ) i s hard t o be f u l l f i l e d i n p r a c t i c e . C e r t a i n d i f f e r e n c e between temperature o f t h e f i l m , surrounding s p h e r i c thermocouple t i p , i n two p a s s i n g s can cause d i f - f e r e n c e i n h e a t t r a n s f e r c o e f f i c i e n t s of few p e r c e n t a g e s . Ratio between t h e s e b o e f f i c i e n t s K = a ' ( r ) / a l ' ( r ) can be experimentaly determined from t h r e e o r more p a s s i n g s a l o n g t h e same diameter o f t h e j e t . Value of K should be c o n t r o l l e d and c e r t a i n c o r e c t i o n s i n c a l c u l a t i o n procedure should be involved each time when K i s g r e a t e r t h a n 1.02. This value of K i n v o l v e s s y s t e m a t i c e r r o r i n ca-

l c u l a t i o n by e x p r e s s i o n ( 7 ) o f about 8% i n t h e d i r e c t i o n of i n c r e a s i n g t h e temperature. On t h ~ o t h e r hand c a l c u l a t i o n ( 7 ) i s c a r r i e d o u t under t h e a s s &

p t i o n of i d e a l i z e d h e a t t r a n s f e r regime from j e t t o thermocouple. Radiation of thermocouple j u n c t i o n i s n e g l e c t e d a s w e l l a s conduction l o s s e s i n i t s w i r e s . This causes s y s t e m a t i c e r r o r l e s s than 7.5% i n t h e d i r e c t i o n of d e c r e a s i n g t h e c a l c u l a t e d temperature. Systematic e r r o r s mentioned a r e o p o s i t e i n s i g n and they a r e balancing each o t h e r t o c e r t a i n amount.

While d i f f e r e n t i a t i n g hemperature s i g n a l s and c a l c u l a t i n g h e a t f l u x by expres- s i o n (5), a d j a c e n t e r r o r occurs, which can be decreased by u s i n g equipment f o r automatic d a t a c o l l e c t i n g with high frequency. Sumar e r r o r of t h e method does n o t exceed 1 0 % , and having i n mind s i m p l i c i t y and e x p e d i t e v i t y of measuring procedure, we can conclude t h a t t h i s method can be r e a d i l y used when high ac-

curacy of measurement i s n o t an i m p e r a t i v e . Figure 1 0 p r e s e n t s t h r e e r a d i a l temperature p r o f i l e s f o r one working regime of experimental plasma t o r c h obta- i n e d by p r o c e s s i n g of c o n t i n i o u s temperature r e c o r d i n g s f o r s e v e r a l p a s s i n g s p e r c r o s s - s e c t i o n .

5. CONCLUSION

General adventage o f methods d e s c r i b e d i s t h e i r simple c o n s t r u c t i o n and, ac- c a r d i n g t o t h a t , t h e i r r e l a t i v e l y low c o s t , compared t o d i f f e r e n t c o n t a c t l e s s methods. P a r a l e l use of t h e s e methods e n a b l e s complete d i a g n o s t i c s of plasma

flow f i e l d , w i t h g e t t i n g a l l s i g n i f i c a n t flow parameters, f o r r e l a t i v e l y s h o r t time. Accuracy of t h e s e methods i s of t h e o r d e r 5 t o 10%, and from experimen- t a l i n v e s t i g a t i o n of plasma flows p o i n t of view, i s completely s a t i s f a c t o r y . During t h e developing process of c e r t a i n plasma technology, when g l o b a l diag- n o s t i c s of temperature and flow f i e l d s a r e o f p r i o r i n t e r e s t , t h e s e methods a r e of g r e a t importance. When main t a s k of measurement i s t o c o l l e c t e x p e r i - mental d a t a f o r mathematical modelling of plasma flow p r o c e s s e s , where high accuracy of measurements a r e of g r e a t importance, t h e i r a p p l i c a t i o n i s l i m i t e d . 6. LITERATURA

/ l / J.Grey, P.F.Jacobs, M.P.Sherman: Rev.Sci.Instrum. 33 (19621, No 7,

pp.738-741.

/2/ M.D.Petrov, V.A.Sepp: Tepl.Visok.Temperaturi, 8 (1970), No.4,pp.868-874, / 3 / A.A.Nekrasov, A.D.Pekin: I z m e r i t e l n a j a t e h n i k a , ( 1 9 7 2 ) , No.4, pp.47-48.

(6)

for Diagnostics Thermal Plasma at the Exit of Electric Arc Heater, ISPC-9, Pugnochiuso, Italy, September 4-8, (1989).

/6/ P.Barken, A.M.Whitman, AIAA Journal, 4, (1966), No 9, pp.1691-1693.

/7/ P.Stefanovi.6, S.Oka, P.Pavlovi6: Procesi perenosa v odnoi i dvuhfaznih sredah, zb.nauE.trud. pod redakcijom S.S.Kutateladze i S.Oke, No~osibirsk

(1986), SO AN SSSR, ITF pp.126-139.

/8/ S.P.Paljakov, P.F.Bulanij: UsoverKenstvovanie metoda dinamiEeskoi termopa- ri,

IF^,

30, (19761, No 3, pp.35-39.

l-water inlet and outlet 2-micro orifice

3-electromagnetic valve 4-vacuum pump

5,6-differential pressu-re transducer

Fig.1. Enthalpy probe

(7)

COLLOQUE DE PHYSIQUE

brass t u b e

F i g . 2 a . T e m p e r a t u r e probe E i g . 2 b T e m p e r a u r e and f l u x s i g n a l s

F i g . 3 . SCHEMATIC DIAGRAM O F APPARATUS F i g . 4 . SCHEMATIC DIAGRAM O F 1 . PENDULLUM 2 . PITOT-PROBE MEASURING SYSTEM P I - 3 . PRESSURE TRANSDUCER 4 . O P T I - TOT-TUBE PRESSURE

C$& DETECTOR 5. TORCH TRANSDUCER

(8)

(UIUI) L

-

B ~ S m u o Y ? ? $ F

(UIUI) A

-

a,

s s Z m Y O r T ? $ ~ &

r@l# s- E % - -

I, 11 II

s

- Y ) a

(3 Ll

m

N U

' t .

W .rl C, a .rl 4J 4

& l3

0 d 0 9 Ll

rn

a -4

(9)

COLLOQUE DE PHYSIQUE

Fig.9. Axial profiles of stagnation pressure o b t ~ i n e d by flying Pitot-probe

Fig.10. Radial profiles of temperature

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to