• Aucun résultat trouvé

EXPERIMENTAL INVESTIGATIONS ON THE PERFORMANCE OF GRANULAR SiO2 AEROGEL AS A TRANSPARENT INSULATION OF MASS WALLS

N/A
N/A
Protected

Academic year: 2021

Partager "EXPERIMENTAL INVESTIGATIONS ON THE PERFORMANCE OF GRANULAR SiO2 AEROGEL AS A TRANSPARENT INSULATION OF MASS WALLS"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00229491

https://hal.archives-ouvertes.fr/jpa-00229491

Submitted on 1 Jan 1989

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

EXPERIMENTAL INVESTIGATIONS ON THE PERFORMANCE OF GRANULAR SiO2 AEROGEL

AS A TRANSPARENT INSULATION OF MASS WALLS

E. Boy, M. Munding, V. Wittwer

To cite this version:

E. Boy, M. Munding, V. Wittwer. EXPERIMENTAL INVESTIGATIONS ON THE PERFOR- MANCE OF GRANULAR SiO2 AEROGEL AS A TRANSPARENT INSULATION OF MASS WALLS. Journal de Physique Colloques, 1989, 50 (C4), pp.C4-99-C4-105. �10.1051/jphyscol:1989415�.

�jpa-00229491�

(2)

REVUE DE PHYSIQUE APPLIQUEE

Colloque C4, Supplement au n 0 4 , Tome 24, Avril 1989

EXPERIMENTAL INVESTIGATIONS ON THE PERFORMANCE OF GRANULAR SiO, AEROGEL AS A TRANSPARENT INSULATION OF MASS WALLS

E. BOY, M. MUNDING and V. WITTWER*

Fraunhofer-Institut fiir Bauphysik, Bereich Wdrme/Klima (Dir.: Prof. Dr.

-Ing. habil. K.A. Gertis) PO Box 80 04 6 9 , 0-7000 Stuttgart 80, F.R.G.

" ~ r a u n h o f e r - ~ n s t i t u t fiir Solare Energiesysteme (Dir.: Prof. Dr. A.

Goetzberger) Oltmannstr. 22, 0-7800 Freiburg, F.R.G.

R6sum6

-

En i n t e r p o s a n t un aerogel granule dans l'espace i n t e r m d d i a i r e des v i t r a g e s i s o l a n t s il e s t p o s s i b l e d'am6liorer l e s q u a l i t 6 s i s o l a n t e s de ces 616ments de v i - trage. L ' a p p l i c a t i o n de t e l s 616ments de v i t r a g e sur de p a r o i s e x t 6 r i e u r e s massives q u i sont capables de stocker de 1'Energie peut r e n f o r c e r l e u r pouvoir i s o l a n t par des gains 6nergEtiques compl6mentaires. En moyenne l o r s de l a p 6 r i o d e de chauffage, l a q u a n t i t 6 de chaleur transmise 5 l P i n t 6 r i e u r par des p a r o i s avec une i s o l a t i o n t r a n s - parente e s t e f f e c t i v e m e n t p l u s grande que l e s p e r t e s de chaleur. Les e f f e t s 6nerg6- t i q u e s e t thermiques d'une t e l l e c o n s t r u c t i o n murale sont examinEs au moyen des 616- ments d'essai o r i e n t 6 s au sud. Sur une p a r o i en b6ton de 0,2 m d'&paisseur, on a mont6 deux f e u i l l e s de v e r r e 6 t a n t remplies d'une couche d'aerogel de 12 mm. La va-

l e u r k de c e t t e couche i s o l a n t e transparente e s t 1,l Wl(m2K), son degr6 de transmis- s i o n e s t 0,5. La valeur k de l a c o n s t r u c t i o n e n t i G r e e s t 0'97 W/(m2K). Pendant l a p6- r i o d e de chauffage e n t r e f 6 v r i e r e t mai 1986, on a mesur6 une tempgrature maximale de 44 O C 1 l a s u r f a c e e x t 6 r i e u r e de l a p a r o i en b6ton e t de 30 OC

I

sa s u r f a c e i n t 6 - r i e u r e . Pendant l a p6riode de mesure q u i , avec 1712 d e g r 6 - j o u r s , correspond au c l i m a t tnoyen de 1'Europe c e n t r a l e (resp. 3761 Kd pour l a p6riode de chauffage). l a valeur k e f f e c t i v e de c e t t e c o n s t r u c t i o n de p a r o i s'6lGve

1

-0,5 W/(m2K). Malgr6 ce c o e f f i - c i e n t k n 6 g a t i f . l e s p e r t e s de chaleur dOes

5

l a t r a n s m i s s i o n ne peuvent B t r e absolu- ment empBch6es par une t e l l e c o n s t r u c t i o n de paroi, En e f f e t il y a des p6riodes avec des s u r p l u s de chaleur mais aussi des p6riodes q u i ne permettent que de simples r 6 - duct i o n s des p e r t e s en transmission. La chaleur exc6dente peut nganmoins p e r m e t t r e d ' 6 g a l i s e r l e s p e r t e s de chaleur dOes $ l a v e n t i l a t i o n . Pour 6 v i t e r des gains de cha- l e u r i n d g s i r a h l e s en 6t6, une p r o t e c t i o n s o l a i r e d o i t B t r e pr6vue. L ' a p p l i c a t i o n de t e l s 616ments aux facades des b i t i m e n t s peut c o n t r i b u e r

B

l a r 6 d u c t i o n cons6quence de

l a consommation d'6nergie de chauffage.

Abstract

-

By i n s e r t i n g granulated aerogel i n t o t h e intermediate space o f double g l a z - ings, t h e thermal r e s i s t a n c e o f these g l a z i n g u n i t s c o u l d be s i g n i f i c a n t l y improved.

When g l a z i n g elements o f t h i s t y p e a r e a p p l i e d t o mass w a l l s , t h e i r s t r o n g i n s u l a t i n g e f f e c t s w i l l be f u r t h e r increased by a d d i t i o n a l passive s o l a r gains. I n t h e average o f t h e h e a t i n g p e r i o d , t r a n s p a r e n t i n s u l a t e d w a l l s convey more gains from t h e o u t s i d e t o t h e i n s i d e t h a n h e a t i s l o s t . Experimental i n v e s t i g a t i o n s have been performed on south f a c i n g w a l l s w i t h a g l a z i n g u n i t composed o f two 4 mm glass panes and a 12 mm l a y e r o f granulated aerogel sandwiched i n between. T h i s u n i t was mounted on a concrete w a l l o f 0.2 m t h i c k n e s s . The w a l l c o n s t r u c t i o n has an o v e r a l l U-value o f 0.97 W/(m2K). The U- value of t h e g l a z i n g u n i t i s 1.1 ~ i ( m * ~ j a'nd t h e t r a n s m i t t a n c e O.S.'Ouring t h e moni- t o r i n g p e r i o d from February through May 1986 t h e concrete w a l l experienced maximum e x t e r i o r s u r f a c e temperatures o f 44 O C ; f o r t h e e n t i r e measurement p e r i o d , t h e e f f e c - t i v e U-value o f t h i s w a l l c o n s t r u c t i o n amounts t o -0.5 Wl(m2K). T h i s p e r i o d i s charac- t e r i s e d by 1712 degree days ( r e s p e c t i v e l y 3761 Kd f o r t h e h e a t i n g p e r i o d ) and a mean Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1989415

(3)

i n s o l a t i o n o f 2 . 1 kWhl(m2d) i n c i d e n t on t h e south f a c i n g w a l l which a r e t y p i c a l values f o r t h e C e n t r a l European c l i m a t e . B u t even w i t h negative e f f e c t i v e U-values, transmis- s i o n heat losses cannot be prevented a l t o g e t h e r . There a r e p e r i o d s w i t h very h i g h amounts o f s u r p l u s heat, and t h e r e a r e a l s o times t h a t a l l o w o n l y f o r a r e d u c t i o n o f transmission losses. The occasional p e r i o d s w i t h s u r p l u s heat may nevertheless compen- s a t e f o r v e n t i l a t i o n heat losses. To a v o i d overheating i n summer, some e f f i c i e n t s o l a r p r o t e c t i o n must be provided. By u s i n g these g l a z i n g components on b u i l d i n g envelopes t h e heat consumption o f those b u i l d i n g s can be s i g n i f i c a n t l y reduced.

1

-

INTRODUCTION

I f t r a n s p a r e n t thermal i n s u l a t i o n i s used i n combination w i t h s o l i d e x t e r i o r w a l l s , t h e i n s u - l a t i n g e f f e c t s may be enhanced by h e a t gains from s o l a r r a d i a t i o n Ill. F i g u r e 1 shows t h e f u n c t i o n o f a t r a n s p a r e n t i n s u l a t e d mass w a l l i n a conceptual diagram: Solar r a d i a t i o n w i l l be p a r t i a l l y t r a n s m i t t e d through t h e i n s u l a t i n g l a y e r and i s absorbed a t t h e e x t e r i o r surface o f t h e w a l l behind t h e i n s u l a t i n g l a y e r . Due t o t h i s attached l a y e r , a h i g h percentage o f t h e absorbed energy i s conducted i n t o t h e i n t e r i o r l e a f 121. Depending on t h e i n s o l a t i o n t h e w a l l w i l l heat up and a temporary heat t r a n s f e r i n v e r s i o n from t h e o u t s i d e t o t h e i n s i d e can be achieved. The t r a n s p a r e n t i n s u l a t e d w a l l a c t s as a heater.

Solar radiation

~nsu~atidn layer

F i g . 1

-

Transparent w a l l i n s u l a t i o n i n a conceptual diagram.

Organic p l a s t i c m a t e r i a l s such as polycarbonat honeycombs, c a p i l l a r y s t r u c t u r e s o r a c r y l i c foam, b u t a l s o i n o r g a n i c g l a s s f i b e r m a t e r i a l s or aerogel a r e a p p r o p r i a t e m a t e r i a l s t o be used i n t r a n s p a r e n t i n s u l a t i o n systems 131. To f u r n i s h those products w i t h s u f f i c i e n t mechan- i c a l p r o p e r t i e s and t o ensure a good weather and f i r e p r o t e c t i o n behaviour t h e y a r e used be- tween double g l a z i n g s 141. F i g u r e 2 g i v e s a schematic p r e s e n t a t i o n o f a double glazed window f i l l e d w i t h granulated SiO, aerogel. I n t h i s paper r e s u l t s o f experimental i n v e s t i g a t i o n s performed on a w a l l c o n s t r u c t i o n o f t h i s t y p e w i l l be presented.

-Glass pane

-Granulated Si02

-

aerogel

-Edge sealing

Fig. 2 - Schematic p r e s e n t a t i o n of a double-glazed window f i l l e d w i t h granular Si02 aerogel.

(4)

Experimental i n v e s t i g a t i o n s o f a g l a z i n g u n i t mounted t o a 0.2 m heavy concrete w a l l were c a r r i e d o u t a t t h e t e s t s i t e o f our i n s t i t u t e i n S t u t t g a r t . The aerogel window (see F i g . 2) c o n s i s t s o f two 4 mm g l a s s panes w i t h conventional rim s e a l i n g . The space o f 12 mm between t h e panes i s f i l l e d w i t h granulated aerogel 15, 61.

The U-value o f t h i s g l a z i n g u n i t i s 1.1 W/(m2K), i t s d i f f u s e t r a n s m i t t a n c e i s 0.5, and t h e o v e r a l l U-value o f t h e w a l l c o n s t r u c t i o n i s 0.97 Wl(m2K). The t h i c k n e s s o f t h e i n s u l a t i n g l a y e r i n f l u e n c e s b o t h t h e s o l a r t r a n s m i s s i o n and t h e thermal transmittance. F i g u r e 3 shows t h e s o l a r t r a n s m i t t a n c e o f granulated aerogel between g l a s s panes o f 2 mm t h i c k n e s s as com- pared t o PMMA foam and c a p i l l a r y s t r u c t u r e m a t e r i a l . O f course, t h e t r a n s m i t t a n c e i s depend- i n g on t h e porous diameter i n t h e case o f foam and, accordingly, on t h e diameter o f t h e ca- p i l l a r i e s . The values given i n F i g s . 3 and 4 are based on diameters o f 5 mm f o r t h e aerogel granules, o f 5 mm f o r t h e foam pores and o f 1.7 mm f o r t h e c a p i l l a r i e s .

For a l a y e r o f 30 mm t h e d i f f u s e s o l a r t r a n s m i t t a n c e o f t h e aerogel window i s 0.34. PMMA foam a t t a i n s higher r a t e s , namely 0.46, and c a p i l l a r y s t r u c t u r e has a value o f 0.63, f o r t h e same l a y e r t h i c k n e s s (see F i g . 3). A t r a n s m i t t a n c e o f 0.5 on t h e o t h e r hand corresponds t o a U- value o f about 0.4 Wl(m2K) f o r t h e c a p i l l a r y s t r u c t u r e m a t e r i a l , o f 1.2 f o r t h e aerogel win- dow, and o f 1.7 Wl(m2K) f o r PMMA foam.

F i g . 4

-

R e l a t i o n between d i f f u s e s o l a r t r a n s - m i t t a n c e and U-value o f a window f i l l e d w i t h g r a n u l a r aerogel as compared t o PMMA foam and c a p i l l a r y s t r u c t u r e m a t e r i a l l a y e r s 141. (The aerogel window panes a r e 2 mm t h i c k . )

F i g . 3

-

E f f e c t s o f pane t h i c k n e s s on t h e s o l a r t r a n s m i t t a n c e o f a window f i l l e d w i t h granulated aerogel as compared t o PMMA foam and c a p i l l a r y s t r u c t u r e m a t e r i a l l a y e r s 141. (The aerogel win- dow panes a r e 2 mm t h i c k . )

-0 10 20 30 LO 50 60

thickness Cmml

1.0

0.8

0.6

0.2

o----

0 0.4 0.8 1.2 1.6 2.0 2L

U-value [ ~ l ( r n ~ ~ ) l

(5)

By replacing the a i r i n the intermediate space w i t h argon gas or by evacuating it, t h e u n i t ' s thermal resistance may be f u r t h e r improved. Test s i t e and t e s t conditions are indicated i n Fig. 5. The aerogel window i s one o f Seveicl south facing w a l l elements w i t h transparent i n - s u l a t i o n 17/ which had been under i n v e s t i g a t i o n . The c l i m a t i c conditions p r e v a i l i n g during the measurement cycle from February t o May 1986 are characterized by outdoor a i r temperatures between -16 O C and more than 30 O C . Measured climate parameters included i n s o l a t i o n (up t o 6.7 kWh/(m2d)), degree days (1712 f o r the measurement period, 3761 Kd f o r the heating pe- r i o d ) , and indoor a i r temperatures (about 20 OC).

Fig. 5

-

South f a c i n g w a l l elements w i t h F i g . 6

-

D e t a i l e d view o f the glazing u n i t d i f f e r e n t transparent i n s u l a t i n g materials w i t h granular Si02 aerogel.

and an opaque insulated reference w a l l ( l e f t element). The w a l l element w i t h the aerogel window i s placed a t r i g h t .

The element presented i n the r i g h t p a r t o f Fig. 5 contains granulated SiO, aerogel. Figure 6 shows t h i s component, which reminds a l i t t l e o f a structured marble plate, i n greater d e t a i l .

3

-

EXPERIMENTAL RESULTS

I n the f o l l o w i n g , the most s i g n i f i c a n t r e s u l t s concerning thermal performance and energy b a l - ance w i l l be demonstrated and discussed. I n Fig. 7, the mean monthly e x t e r i o r w a l l surface temperatures o f the transparent insulated t e s t w a l l and the range of f l u c t u a t i o n during the measurement period are contrasted w i t h the outdoor a i r temperature. Values f o r the averaged outdoor a i r temperature o f each month are between -6 O C and 15 O C . During the monitoring pe- r i o d temperatures f l u c t u a t e d between a minimum o f -16 O C and a maximum o f 31 O C . Average tem- peratures recorded f o r the w a l l ' s e x t e r i o r surface behind the i n s u l a t i n g layer varied between

19 O C and 25 O C . I n terms o f hourly mean values, the lowest temperature was 12 O C and the

highest one was 44 O C .

(6)

Outdoor air Exterior surface

-20

-

Feb. Mar. Apr. May -20

-l:m/

Feb. Mar. Apr. May

F i g . 7

-

Mean monthly e x t e r i o r w a l l s u r f a c e temperatures o f t h e transparent i n s u l a t e d t e s t w a l l ( r i g h t ) as compared t o t h e outdoor a i r temperature ( l e f t ) a r e i n d i c a t e d by t h e hatched area.

F i g u r e 8 presents mean monthly temperatures f o r t h e i n t e r i o r w a l l surfaces o f t h e transparent i n s u l a t e d t e s t w a l l i n comparison t o t h e reference w a l l having an opaque i n s u l a t i o n o f t h e same U-value. The monthly mean temperatures o f t h e t e s t w a l l range from 19 O C t o 23 O C , those o f t h e reference w a l l from 16 O C t o 20 O C . I n February and March, t h e temperatures read a t t h e i n t e r i o r s u r f a c e o f t h e reference w a l l f l u c t u a t e between 15 O C and 19 O C , which i s a much lower l e v e l than t h a t recorded f o r t h e t r a n s p a r e n t i n s u l a t e d t e s t w a l l . I n f a c t , t h i s t e s t w a l l experiences temperatures between 15 O C and 30 O C as e a r l y as February and March.

Test wall Reference wall

(transparent) (opaque)

.

-

Feb. Mar. Apr. May

F i g . 8

-

Mean monthly i n t e r i o r w a l l s u r f a c e temperatures o f t h e t r a n s p a r e n t i n s u l a t e d t e s t w a l l ( l e f t ) as compared t o t h e opaque i n s u l a t e d reference w a l l ( r i g h t ) . The data spread a g a i n

i s i n d i c a t e d by hatching.

(7)

C 4 - 1 0 4 REVUE DE PHYSIQUE APPLIQUEE

F i g u r e 9 i l l u s t r a t e s t h e i n f l u e n c e o f c l i m a t e on t h e e n e r g e t i c behaviour o f b o t h t e s t and r e f e r e n c e w a l l . I n order t o consider t h e i n f l u e n c e o f i n s o l a t i o n as w e l l as t h e outdoor a i r temperature, a new f a c t o r has been defined:

I n s o l a t i o n

T h i s i s t h e so c a l l e d degree-day i n s o l a t i o n f r a c t i o n . By analogy w i t h t h e d e f i n i t i o n o f t h e U-value (thermal t r a n s m i t t a n c e c o e f f i c i e n t ) , an e f f e c t i v e U-value i s d e f i n e d t h a t t a k e s heat g a i n e f f e c t s from s o l a r r a d i a t i o n i n t o account:

Heat f l u x d e n s i t y

Ueff = D i f f e r e n c e between indoor and ambient a i r temperature

-

1

-

Y

N

2

E a3 3

d

9

-1

I

3

? - 2 .- +

%

- 3

- L

0 0.1 0.2 0.3 0.L 0.5

degree-day insol. frac. [ k ~ h / ( r n ~ ~ d ) l

r i g . 9

-

Measured e f f e c t i v e U-values o f t h e t e s t w a l l w i t h and w i t h o u t s u r p l u s h e a t as a f u n c t i o n o f c l i m a t e (degree day i n s o l a t i o n f r a c t i o n ) . I n a d d i t i o n t o t h e o v e r a l l U-value o f t h e w a l l c o n s t r u c t i o n s , t h e measured e f f e c t i v e U-value o f t h e opaque i n s u l a t e d reference w a l l

i s given (see c i r c l e t o p l e f t ) .

The a b s o r p t i o n o f s o l a r r a d i a t i o n r e s u l t s i n a temporary i n v e r s i o n o f heat t r a n s f e r w i t h i n t h e t r a n s p a r e n t i n s u l a t e d w a l l and, a t l e a s t , i n a r e d u c t i o n o f heat losses as compared t o t h e opaque i n s u l a t e d r e f e r e n c e w a l l . F i g u r e 9 shows t h a t t h e e f f e c t i v e U-value o f t h e r e f e r - ence w a l l i s p r a c t i c a l l y independent o f s o l a r i n p u t .

There a r e two l i m i t i n g values, namely one c o n s i d e r i n g s u r p l u s heat, and one d i s r e g a r d i n g s u r - p l u s heat. I f t h e r e a r e o n l y heat losses through t h e w a l l , t h e upper l i m i t o f e f f e c t i v e U- values w i l l be obtained. I n F i g . 9 these values a r e i n d i c a t e d i n t h e graph " w i t h o u t s u r p l u s h e a t " . But even i f t h e r e i s no s u r p l u s heat, t h e e f f e c t i v e U-value i s c l e a r l y reduced as com- pared t o t h e reference w a l l w i t h opaque i n s u l a t i o n . Taking temporary s u r p l u s heat i n t o ac- count, t h e e f f e c t i v e U-values may become negative. The heat gains then a r e exceeding t h e heat losses through t h i s w a l l . I n c l u d i n g s u r p l u s heat, t h e e f f e c t i v e U-value reached -3 Wl(m2K) i n May. The mean value o f t h e measurement p e r i o d amounts t o -0.5 Wl(m2K).

(8)

4

-

CONCLUSIONS

I n a d d i t i o n t o t h e thermal i n s u l a t i n g e f f e c t s achieved by t r a d i t i o n a l opaque i n s u l a t i o n , t r a n s p a r e n t i n s u l a t i o n s u p p l i e s considerable passive s o l a r gains when used as a thermal i n s u l a t i o n o f mass w a l l s . With a double g l a z i n g u n i t f i l l e d w i t h granular s i l i c a aerogel and mounted onto a 0.2 m heavy concrete w a l l , t h e e x t e r i o r s u r f a c e temperature has a maximum o f 44 OC, w i t h a maximum o f 30 OC measured a t t h e i n t e r i o r surface. The U-value o f 0.97 Wl(m2K) w i l l be e f f e c t i v e l y reduced t o a value o f - 0 . 5 Wl(m2K) averaged over t h e m o n i t o r i n g p e r i o d (February through May). To a v o i d overheating i n summer, i t i s necessary t o p r o v i d e some s o l a r p r o t e c t i o n . By u s i n g these g l a z i n g elements on b u i l d i n g envelopes t h e heat consumption o f those b u i l d i n g s can be s i g n i f i c a n t l y reduced. Even d u r i n g t h e h e a t i n g p e r i o d t h e r e a r e many days w i t h s u r p l u s heat.

ACKNOWLEDGEMENT

We a r e g r a t e f u l t o BASF AG, Ludwigshafen (FRG), f o r p r o v i d i n g t h e t e s t m a t e r i a l . T h i s work was supported by BMFT 03 E-8411-A and s e v e r a l German companies (see Ref. 141).

REFERENCES

Ill Schreiber, E.; Boy, E. and Bertsch, K.: Aerogel as a Transparent Thermal I n s u l a t i o n M a t e r i a l f o r B u i l d i n g s . Proc. o f t h e F i r s t I n t e r n a t i o n a l Symposium on Aerogels. Springer Ver-

lag, B e r l i n Heidelberg (1985).

121 Wittwer, V. e t a l . : Translucent I n s u l a t i o n M a t e r i a l s . Proc. INTERSOL 85, Montreal (1985).

131 Ortmanns, G. and F r i c k e , J.: Moderne Fenster. Physik i n unserer Z e i t 1 (1987) 1 - 7 . 141 Goetzberger, A., G e r t i s , K.A. e t a l . : Transparente Warmedammung. F i n a l Report on BMFT P r o j e c t 03E-8411-A. IRB Verlag, T 1830, S t u t t g a r t (1988).

151 Mielke, M. and Wolff, 0.: Aerogels

-

A New Class o f M a t e r i a l . Proc. o f t h e F i r s t I n t e r n a t i o n a l Workshop on Transparent I n s u l a t i o n M a t e r i a l s . F r a n k l i n Company Ltd., Birmingham (1987).

I 6 1 Brocker, F.J. e t a l . : S t r u c t u r a l A n a l y s i s o f Granular S i l i c a Aerogels. Proc. o f t h e F i r s t I n t e r n a t i o n a l Symposium on Aerogels. Springer Verlag, B e r l i n Heidelberg (1985).

171 Boy, E. : Experimental I n v e s t i g a t i o n s o f Passive Solar Energy U t i l i z a t i o n o f Transparent I n s u l a t e d Walls. Proc. o f t h e ISES Solar World Congress, Hamburg (1987).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to