• Aucun résultat trouvé

THE SPUTTERING OF NON-METALS UNDER SLOW MULTIPLY CHARGED IONS

N/A
N/A
Protected

Academic year: 2021

Partager "THE SPUTTERING OF NON-METALS UNDER SLOW MULTIPLY CHARGED IONS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00229434

https://hal.archives-ouvertes.fr/jpa-00229434

Submitted on 1 Jan 1989

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE SPUTTERING OF NON-METALS UNDER SLOW MULTIPLY CHARGED IONS

I. Bitensky, E. Parilis

To cite this version:

I. Bitensky, E. Parilis. THE SPUTTERING OF NON-METALS UNDER SLOW MULTI- PLY CHARGED IONS. Journal de Physique Colloques, 1989, 50 (C2), pp.C2-227-C2-230.

�10.1051/jphyscol:1989236�. �jpa-00229434�

(2)

THE SPUTTERING OF NON-METALS UNDER SLOW MULTIPLY CHARGED IONS

I . S . B I T E N S K Y and E . S . P A R I L I S

Arifov Institute of Electronics, Tashkent 700143, U.S.S.R.

~6sumQ

-

I1 s t a g i t de l'analyse th60rique de l a p u l v & r i s a t i o n des SW

faces non-mQtallique dfi "ltexplosion Coulomb" sous l e bombardement avec l e s i o n s l e n t multiple chargke. I1 a Qt& montri. que l ' e f f e t e s t sensible l t 6 n e r g i e des i o n s , l a temperature e t l a conductivit6 d t Qchantillon, diminuand avec l e u r augmentation.

Abstract

-

The t h e o r e t i c a l a n a l y s i s of s p u t t e r i n g of non-metals under slow multiply charged i o n s v i a "Coulomb explosion" i s c a r r i e d out. It was shown t h a t t h e e f f e c t i s s e n s i t i v e t o i o n energy, temperature and conductivity of a s o l i d and decreases with t h e i r increase.

l

-

INTRODUCTION

The i n t e r a c t i o n of multiply charged i o n s with a s o l i d surface i s of i n t e r e s t both f o r atomic and plasma physica.

I n ref./?/ it has been shown that the i o n emission and sputtering o f non-me- t a l s under slow multiply charged i o n s should s i g n i f i c a n t l y exceed t h e corre- sponding e f f e c t s f o r s i n g l e charged i o n s due t o "Coulomb explosion" of a po- s i t i v e l y charged microscopic domain which r e s u l t s from step-by-step Auger n e u t r a l i z a t i o n of t h e ion/2/and e j e c t i o n of several Auger electrons from l a t - t i c e atoms. Indeed, i n t h e experiments /3-6/ it has been found t h a t t h e se- condary i o n emission from s i l i c o n a s opposed t o a metal increases with t h e ion charge increase /3/.

I n ref./7/ on t h e b a s i s of "Coulomb explosion" mechanism t h e s p u t t e r i n g of a non-metal under slow multiply charged i o n s has been calculated and t h e resu- l t s have been compared with t h e a v a i l a b l e experiments

/5/

by t h a t time.

I n some recent experiments /8,9/ t h e increase of t h e secondary i o n emission with t h e i o n charge increase has been confirmed. A s f o r She t o t a l s p u t t e r i n g y i e l d t h e experimental data were contradictory. I n ref./9/ t h e s p u t t e r i n g of S i under A r z + (z = l

-

9 ) with t h e energy E = 20 keV was independent on ion charge z but i n r e f . / l 0 / t h e sputtering f

09

d i f f e r e n t non-metals ( s i l i - con, g l a s s ) under A r with E = 10 keV exceeded %he s p u t t e r i n g under ArO atoms with t h e same energy by a f a c t o r 1.5

-

2.6. A t the same t i m e t h e sput- t e r i n g y i e l d f o r Au d i d not depend on i o n charge

.

2

-

SPUTTEFUNG BY "COULOMB EXPLOSION"

Under low energy bombardment the n e u t r a l i z a t i o n of a multiply charged ion occurs near t h e surface and %he formed charged domain i s a semisphere with radius R /7/. It could be calculated from t h e energy balance equation. The t o t a l n e 8 t r a l i z a t i o n energy W of z-charged p r o j e c t i l e i s shared between t h e Coulomb repulsion energy W" and t h e k i n e t i c energy of (N -2) Auger elec- t r o n s E ( N being t h e nmberCof i o n s appeared a t Auger neu8ralization of 2-charg&d ioa). I n ref./2/ it has been assumed t h a t N c zz.

The nmber of i o n s appearing per u n i t time i n t h e charged domain i s NZ /C where

T.

i s t h e e f f e c t i v e time of . t o t a l Auger n e u t r a l i z a t i o n of z-charge&

ion. ~ i m b l t a n e o u s l ~ , during t h e time 'iT they a r e n e u t r a l i z e d by t h e conduc- t i n g electrons. For an i n s u l a t o r

T

>?ei and f o r a metal T <<'Ci. A s a re-

sult t h e charged domain t o t h e mome%t

Ti

c o n s i s t s of N ions?

N

=

NZ;(

Ze/Ti>

[I -

exp (

-Zi/ Ce ) I

(1

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1989236

(3)

C2-228 JOURNAL DE PHYSIQUE

The e l e c t r o s t a t i c energy of an unif oxmly charged hemisphere W =0. 327'n2

e Z f l

/a€? e n t e r s i n t o t h e ener balance equation used t o determing N and, the-' r e f o r e , R. s i n c e N = ( 2 / 3 ? ~ n :R :

W,

-

e e

y

= 0.55 ( ~ T n ) l / ~ e2 N ~ / ~ / x

+

(N z

-

z)

-

Ek (2) where n i s t h e number of atoms p e r u n i t volume, e i s e l e c t r o n charge, M? i s d i e l e c t r i c constant, 9 i s t h e work function. For m e t a l s N = O and t h e e l e c t - ron emission y i e l d X --N

--

(W

-

z e lp) i n accordance with ref,/2/, I n c a s e of non-metals ( C be'C ) ?he Coulomb energy of t h e charged domain sho- u l d be t a k e n i n t o acco6nt bifth i n secondary i o n and e l e c t r o n emission. For high z, when t h e f i r s t t e r n i n t h e r i g h t hand s i d e of eq.(2) dominates t h e n N and t h e r e f o r e

X -

W 3/S

.

The Auger n e u t r a l i z a t i o n of a f a s t primary i o n o ~ c u r s p a r t i a l l y i n s l d e %he s o l i d along t h e p a t h v i 2 . ( v. i s t h e i o n ve- l o c i t y ) . The shape of t h e charged domain i s changed.~o&ever,'as i n ref./7/

t h e i o n y i e l d K i s determined by t h e volume i n s i d e t h e d i s r u p t i o n s u r f a c e which i s s semisphere with r a d i u s R reduced by a q u a n t i t y C2depending on ne- u t r a l i z a t i o n time 2,

K = 0 . 4 g T n 2 + ( R ( 3 )

where

z+

i s i o n i z a t i o n degree, Q i s given by

Q = ( 2 M E ~ ) " ~ / ( v e2 n r e ) ( 4 )

H e r e M i s t h e atomic mass of t h e s o l i d , Eb i s t h e s u r f a c e binding energy.The q u a n t i t y a equals t h e e f f e c t i v e t h i c k n e s s of a l a y e r from which t h e p a r t i c - l e s can not be e j e c t e d during time 2 .

The r a d i u s R(v.=

a)=

R

,

R being d e t g m i n e d from eq.(2),while R decreases w i t h vi increahe accor8ing0to

R = R. 2 /( R.

+

0.37 v i z i ) (5)

The eq.(3) d i s p l a y s a t h r e s h o l d of i o n emission from non-metals under multi- p l y charged i o n s : f o r R = 9 t h e y i e l d K = 0. For a given s o l i d R decrea- s e s w i t h both i o n charge and primary energy i n c r e a s e , Besides, from eq.(3) it follows t h a t t h e diagram

versus

R should be a s t r a i g h t l i n e and one can determine %he value CLby t h e segment c u t o f f by t h e l i n e from t h e axis R.

3

-

COMPARISON WITH EXPERINIEN'PS

I n f i g . ? t h e dependence of K ' / ~ on R i s shown f o r d i f f e r e n t t a r g e t s and d i f - f e r e n t primary i o n s with energies: I

-

E = 0.1

-

1 keV /4/ and e x t r a p o l a t e d t o E = 0

/5/,

I1

-

E = 7

-

8 keV

/5/, P11 -

E = 20 keV /g/. The y i e l d K was g a l c u l a t e d by suberacting t h e Sigmund casca8e s p u t t e r i n g c o e f f i c i e n t from t h e t o t a l y i e l d .

The following values of parameters were used: f o r LiF

-

2 0.125 i-:g=2.4, e

y =

6 eV, l&=e$; BY, T . = 2

.

1 0 ; y s 8 f o r S i

-

n = 0.05

,

= 4, p = 4 eV, E = -2- ='1.5 10- S. A s it i s seen from f i g . 1 t h e p o ~ n t s a r e wel?f a l i g n e d alohg t h e s t r a i g h t l i n e s K v s R

,

i . e . eq.(3) s a t i s f a c - t o r i l y d e s c r i b e s t e exp$rimental d a t a with t h e following f i t i n g paramet2rs:

f o r Lip

- a =

0.7

k ,

= 1.7 10-z1 f o r , s i />/

- a =

2.2

1 , ?+=

9 1 0 - 8

f o x S i /g/

-

Q = 3.4 A and p+= 2.9 10-

A n e s t i m a t i o n of n e u t r a l i z a t i o n time f o r a p o s i t i v e z

-

charged d e f e c t i n a s o l i d h a s been obtained i n r e f . / l ? / :

h 2 2 2 -1/4 -5/12

L e = 0.25 ( 2 d z l e k T/m

1

nc (6

h e r e m i s t h e e l e c t r o n mass, k i s Boltzman constant, T is t h e temperature, n i s t h e c u r r e n t c a r r i e r concentration.

AE

follows from eq, ( 4 ) and (5)

a*

T ''9 nvf2, t h e r e f o r e w i t h T and n increa- se, t h e l i n e s K " ~ ( R ) should be s h i f t e d toehe r i g h t . Indeed, i n t h e eftperi- ments /5,9/ some samples w i t h d i f f e r e n t c o n c e n t r a t i o n n , of boron

,

which

i s t h e source of c u r r e n t c a r r i e r s

,

have been used: S i wafer with n, = 10"

-

10'" atom/cm3 corresponding t o s p e c i f i c r e s i s t a n c e 25-2.5 kR/cm i n r e f ,/9/ and a high r e s i s t a n t s i l i c o n (50 k R/cm) w i t h n, =

5

10'9 atom/cm I n ref./5/. Perhaps, it e x p l a i n s t h e d i f f e r e n c e i n CL and

7+

f o r both experi-

(4)

Fig.1

-

IC1I3 vs R f o r : I -ArZ+/4/, Fig.2

-

Electron emission y i e l d metal i o n s / 5 / ~ L i F ; 1 1 - ~ 1 ~ ~ p o l y c ~ s - vs W

-

z e

g

f o r A l z ' and

V L +

i o n s

t a l S i

/5/

; 111

-

ArZ'-, s i n g l e cry- on L ~ F and S i /6/. S o l i d curves:

s t a l S i /g/. The i o n charges z a r e theory.

designated by numbers.

The e l e c t r o n emission y i e l d i s given by

where p i s t h e p r o b a b i l i t y of e l e c t r o n escape. I n ref./'/2/ it has been foun- ded t h a t t h e dependence K(W ) d e v i a t e s from a l i n e a r one f o r A r g f imping- ing. t h e p o l y c r y s t a l W ( E ='20 keV). It was explained by t h e emission of one f a s t Auger e l e c t r o n af? f i l l i n g t h e deep i n n e r s h e l l vacancy, L e . t h e assumption /2/ of equal energy s t e p Auger t r a n s i t i o n s was v i o l a t e d , The Mon- t e Carlo c a l c u l a t i o n /13/ of t h e cascade Auger n e u t r a l i z a t i o n of K r Z + o n me- t a l surface confirmed t h e d e v i a t i o n of

2C

(W ) from a l i n e a r dependence f o r high z. I n t h e case of i n s u l a t o r t h i s d e v i a k o n i s caused a l s o by t h e trans- f e r of a p a r t of i o n energy t o e l e c t r o s t a t i c energy of t h e charged domain, I n ref./6/ t h e mentioned dependence indeed d e v i a t e s from l i n e a r one and a s it i s seen from f i g o 2 s a t i s f a c t o r i l y agrees with eq,(7) f o r t h e same values of parameters a s t h e used ones f o r c a l c u l a t i o n of t h e i o n yield.

4

-

DISCUSSION

The comparison of t h e theory w i t h t h e experiment shows t h a t t h e Coulomb ex- plosion model describes r i g h t l y t h e r e g u l a r i t i e s of t h e dependence of i o n emission from non-metals on both i o n charge and i t s v e l o c i t y , A s f o r t h e in- dependence of t o t a l s p u t t e r i n g y i e l d S on i o n charge /g/, it should be taken i n t o account t h a t we have assumed t h e a d d i t i v i t y of "Coulomb explosion" and c o l l i s i o n a l cascade contributions i n t o s p u t t e r i n g , t h e former g i v e s S

-

K/qf

0.6, t h e second S = 'l .7 f o r x = 9, E = 20 keV. T h i s ratioC8&ni t h a t i n t h e charged d 0 m a f 8 ~ h e i o n s begin t o mo$e not only due -t;o Coulomb repulsion,diminishing i t s e f f e c t , The dependence of K on z /9/ can be expla- ined by a r a e h e r high p r o b a b i l i t y f o r t h e e j e c t e d i o n s t o preserve t h e i r charge because they leave t h e domain which i s not n e u t r a l i z e d during t h e ti- me Te

=

1 0 - ' ~ s . It i s c l e a r t h a t f o r recording t h e proper Coulomb explosion s p u t t e r i n g an experiment f o r lower energy should be c a r r i e d out. Even a t 'l0 keV A 1 S i bombardment S z 1 /14/ while according t o eq.(3) SCou1ZL"3, i. e. i n this case t h e ~ o u l o m ~ ~ ~ ~ ~ l o s i o n s p u t t e r i n g p r e v a i l s ,

I n t h e experiment /9/ a comparative measurement of t h e secondary i o n energy d i s t r i b u t i o n under Ar 9t and A r * bombardment of S i s i n g l e c r y s t a l has drawn t h e authors t o t h e conclusion t h a t t h e enhancement of i o n y i e l d occurs only due t o t h e change of e l e c t r o n s t a t e of t h e s p u t t e r e d p a r t i c l e s while t h e me- chanism of s p u t t e r i n g remains e s s e n t i a l l y of cascade type.But a c a r e f u l exa-

(5)

C2-230 JOURNAL DE PHYSIQUE

inination of t h e s e energy d i s t r i b u t i o n s shows t h a t they a r e n o t s i m i l a r : whi- l e t h e t o t a l y i e l d r a t i o K /K,

z 3

t h e r a t i o f o r d i f f e r e n t p a r t s of t h e spe- ctrum has d i f f e r e n t values? For low secondary i o n energy i t equals 4 but i n t h e high energy p a r t of t h e spectrum this r a t i o decreases t o 2. I f t h e en- hancement of i o n y i e l d f o r z= 9 would r e s u l t from p a r t i c l e s with some i n n e r

s h e l l vacancies, t h e n t h e s e i o n s should enhance j u s t t h e h i g h energy p a r t of t h e spectrum, while t h e low energy i o n s a r e t y p i c a l r a t h e r f o r Coulomb repu- l s i o n , Therefore it seems t h a t t h e Coulomb explosion s p u t t e r i n g does cont- r i b u t e i n t o t h e secondary i o n emission i n experiment /9/.

5 -

CONCLUSION

Thus t h e t h e o r e t i c a l a n a l y s i s has shown t h a t some h i g h l y charged i o n s with low energy (small v . and S ) bombarding an i n s u l a t o r o r semiconductor with small c o n d u c t i h t y atCB8G temperature ( l a r g e

T

) should be used f o r re- cording t h e proper Coulomb explosion s p u t t e r i n g , It 6ould be i n t e r e s t i n g t o c a r r y o u t a comparative i n v e s t i g a t i o n of s p u t t e r i n g and i o n emission depen- ding on t h e mentioned parameters.

The bombardment of t h i c k biomolecule l a y e r s by slow h i g h l y charged i o n s (up t o b a r e n u v l e i ) , e.g. Kr 30* o r Xe50+, t h e Auger n e u t r a l i z a t i o n of which l e - ads t o emission of about qo2 e l e c t r o n s /13/ and accumulation of p o s i t i v e i o n s of t h e same q u a n t i t y , should r e s u l t i n a Coulomb explosion. I t would be i n t e r e s t i n g t o c l e a r up experimentally whether it causes desoxption of t h e i n t a c t biomolecules o r only t h e i r fragmentation and s p u t t e r i n g .

REFERENCES

/l/ P a r i l i s , E.S.

,

Pmc.IX 1ntern.Conf. on Phenoniena i n Ionized Gases, Bucharest, 1969, p.q4,,Atomic c o l l i s i o n s i n S o l i d s . Ed. Palmer, N-H Publ. C., 1970, p.324.

/2/ Arifov, U.A., Kishinevsky, L.M., Muchamadiev, E.S, and P a r i l i s , E.S., Zh.Techn.Fiz.

B

(1973) 181.

/3/ Arifov, T.U., Vasiljeva, E.K., Gruich, D.D., Kovalenko, S.F. and Moro- zov, S.N., Izv,AN SSSR, ser.f i z .

40

(1976) 2621.

/4/ Radjabov, Sh,S,, Rakhimov, R.R. and Abdusalamov, D., Izv. AN SSSR., s e r . f i z .

40

(1976) 2543.

/ 5 /

Arifov, T.U., Gruich, D.D. and Itlorozov S.N., Yroc. V S o v i e t Conf. on In-

t e r a c t i o n of atomic p a r t i c l e s with s o l i d . Minsk, USSR, P.I., p.200: ,4478 /6/ Morozov, S.N., G ~ c h , D.D. and Arifov, U.A., Izv. AN SSSR., s e r . f l 2 . S

(1979) 612.

/7/ Bitensky, I,S., Murachmedov, M.N. and P a r i l i s , E.S., Zh. Techn.Fiz. ftq (1979) 1042.

/8/ Radjabov, Sh.S. and Rakhimov, R.R., Izv. AN SSSR, s e r . f i z . 2(1985)1812.

/9/ De Zwart, S.T., P r i e d , T., Boema D.O,, Moekstra, R., Drentje, A.G. and Boers, A.L., Surf .Sci., 1_2_7 (19863 L939.

/IO/Eccles, A. J., van d e r Berg, J.A., Brown, A, and Vickerman, J.G., Appl.

P h y s . L e t t . 2 (1986) 188.

/11/Yunusov,

M,$. ,

Zaikovska a, M.A., Oksengendler, B.L. and Tokhirov, K.R,

,

Phys.St.Sol.( a ) 35(19763 Kl45.

/12/De Zwart, S.T., Thesis, Groningen, 1987.

/13/Mirakhmedov, M.N. and P a r i l i s , E.S,, Proc.

a

S o v i e t Conf. on Emission E l e c t r o n i c s . Kiev, USSR, 1987, p.151,

/14/Sputtering by P a r t i c l e Bombardment. I. Ed. Behrish, R., Springer, B e r l i n , Heidelberg, N-Y.

,

1981.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to