• Aucun résultat trouvé

GROUND-STATE PROPERTIES OF 3He↑ AND D↑ WITHIN THE METHOD OF CORRELATED BASIS FUNCTIONS

N/A
N/A
Protected

Academic year: 2021

Partager "GROUND-STATE PROPERTIES OF 3He↑ AND D↑ WITHIN THE METHOD OF CORRELATED BASIS FUNCTIONS"

Copied!
17
0
0

Texte intégral

(1)

HAL Id: jpa-00220170

https://hal.archives-ouvertes.fr/jpa-00220170

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GROUND-STATE PROPERTIES OF 3He AND D WITHIN THE METHOD OF CORRELATED BASIS

FUNCTIONS

J. Clark, E. Krotscheck, R. Panoff

To cite this version:

J. Clark, E. Krotscheck, R. Panoff. GROUND-STATE PROPERTIES OF 3He AND D WITHIN

THE METHOD OF CORRELATED BASIS FUNCTIONS. Journal de Physique Colloques, 1980, 41

(C7), pp.C7-197-C7-212. �10.1051/jphyscol:1980733�. �jpa-00220170�

(2)

JOURNAL DE PHYSIQUE CoZZoque C7, suppZ6ment au n o 7 , Tome 41, juiZZet 1980, page ~ 7 - 1 9 7

GROUND-STATE PROPERTIES OF 3 ~ e t AND D t WITHIN THE METHOD OF CORRELATED BAS1 S FUNCTIONS J.W. Clark, E. ~ r o t s c h e c k * and R.M. Panoff

McDonneZl Center for t h e Space Sciences and Department of Physics, Washington University S t . Louis, Missouri 63130, USA.

*

Department of Physics, S t a t e University o f New York, Stony Brook, New York 11794, USA.

Resume

.-

On $ t i 1 is e des techniques d ' e q u a t i o n s - i n t e g r a l e s avancees

,

comportant des resommations de chaines dans 'la t h e o r i e HNC, pour en d @ d u i r e le s p r o p r i 6 t 6 s des modPles v a r i a t i o n n e l s de Jastrow pour l e s e t a t s fondamentaux de 3 ~ e t , de 3 ~ e non p o l a r i s e e t des deux especes de D+. On donne l e s r e s u l t a t s pour l ' e n e r g i e en f o n c t i o n de l a densite, pour l a f o n c t i o n de s t r u c t u r e du l i q u i d e e t (dans c e r t a i n s cas) pour l a masse e f f e c t i v e , l a s u s c e p t i b i l i t & magnetique e t l e s elements de ma- t r i c e de formation de p a i r e s . Les r e s u l t a t s i n d i q u e n t q u a i l sera necessaire, p a r t i c u l i e r e m e n t pour 3He non p o l a r i s e , d ' a l l e r p l u s l o i n que l e modele de Jastrow pour o b t e n i r une d e s c r i p t i o n micros- copique q u a n t i t a t i v e de ces s y s t h e s . On d e c r i t l e s e f f o r t s p r e l i m i n a i r e s q u i a n t @t@ f a i t s en vue d ' i n c o r p o r e r des c o r r e l a t i o n s dependant de l ' i m p u l s i o n e t du s p i n ( e t p l u s g&n@ralement d ' a u t r e s c o r r e l a t i o n s non inclusesdans l e modele de Jastrow)

a

l ' a i d e de l a methode des f o n c t i o n s de base correlees, (CBF)

.

A b s t r a c t

.-

Advanced i n t e g r a l - e q u a t i o n techniques, i n c l u d i n g Fenni hypernetted-chain resummation, a r e used t o d e r i v e t h e p r o p e r t i e s o f Jastrow v a r i a t i o n a l models o f t h e ground s t a t e s o f 3Het, u n p o l a r i z e d 3He and two species o f Dt. R e s u l t s a r e r e p o r t e d f o r t h e energy as a f u n c t i o n o f d e n s i t y , f o r t h e l i q u i d s t r u c t u r e f u n c t i o n and ( i n some cases) f o r t h e e f f e c t i v e mass, magnetic s u s c e p t i b i l i t y and p a i r i n g m a t r i x elements. The r e s u l t s i n d i c a t e t h a t i t w i l l be necessary, p a r t i c u l a r l y f o r u n p o l a r i z e d 3 ~ e , t o go beyond t h e Jastrow model t o achieve a q u a n t i t a t i v e microscopic account o f these systems. P r e l i m i n a r y e f f o r t s toward t h e i n c o r p o r a t i o n o f momentum- dependent, spin-dependent and o t h e r non-Jastrow c o r r e l a t i o n s by means o f t h e method o f c o r r e l a t e d b a s i s f u n c t i o n s a r e described.

1. I n t r o d u c t i o n . -

In

t h i s paper we e x p l o r e t h e Jastrow ansatz. Nevertheless, t h e v a r i o u s theo- p r o p e r t i e s o f a Jastrow v a r i a t i o n a l model o f t h e r e t i c a l r e s u l t s i n d i c a t e t h a t t h e Jastrow model ground s t a t e s o f t h e f o l l o w i n g h i g h l y quanta1 s t i l l c o n t a i n s much o f t h e c o r r e c t p h y s i c s o f systems: (a) o r d i n a r y , s p i n - s a t u r a t e d He, ( b ) 3 s t r o n g l y - c o r r e l a t e d Fermi systems even a t r e l a t i v e l y f u l l y s p i n - p o l a r i z e d He and ( c ) two analogous 3 h i g h d e n s i t y , p r o v i d i n g a u s e f u l vantage p o i n t species o f s p i n - p o l a r i z e d D. The p r e d i c t i o n s o f f r o m which more q u a n t i t a t i v e d e s c r i p t i o n s may be t h e model f o r such q u a n t i t i e s as t h e ground-state sought.

energy, t h e l i q u i d s t r u c t u r e f u n c t i o n , t h e s i n g l e - The search f o r more r e a l i s t i c and more com- p a r t i c l e energies and e f f e c t i v e mass, t h e magnetic prehensive t h e o r i e s may, f o r example, be c a r r i e d s u s c e p t i b i l i t y and t h e e f f e c t i v e p a i r i n g m a t r i x o u t w i t h i n t h e framework o f t h e method o f c o r r e - elements a r e presented as f u n c t i o n s o f density. l a t e d b a s i s f u n c t i o n s /9-11,7,8/ (CBFX e i t h e r by The techniques o f Fermi hypernetted-chain t h e o r y means o f (i) nonorthogonal CBF p e r t u r b a t i o n t h e o r y /I-8/ a r e a p p l i e d t o t h e e v a l u a t i o n o f these /I?-13/ o r v i a (ii) a more powerful scheme which q u a n t i t i e s . Comparing w i t h experimental r e s u l t s imp1 ements t h e coup1 ed-cl u s t e r ( o r exponential-S) on r e a l , s p i n - s a t u r a t e d l i q u i d He, 3 it i s found procedure i n t h e CBF c o n t e x t /14/. We r e p o r t here t h a t f o r t h i s system t h e Jastrow d e s c r i p t i o n has on some features o f t h e beginnings o f a t h e o r y c e r t a i n c l e a r d e f i c i e n c i e s , which a r e a s s o c i a t e d f o l l o w i n g p a t h ( i ) (which may b e looked upon as a w i t h t h e absence of momentum-dependent ( o r back- r e n o r m a l i z e d v e r s i o i l o f an e a r l i e r approach o f Woo f l o w ) and spin-dependent c o r r e l a t i o n s f r o m t h e /13/ and Tan and Feenberg /15/). As an a l t e r n a t i v e

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980733

(3)

C 7 - 1 9 8 JOURNAL DE PHYSIQUE

t o CBF theory, one may of course elaborate on t h e v a r i a t i o n a l description, incorporating backflow /16/, spin-dependent /17,18/ and other non-Jastrow c o r r e l a t i o n s d i r e c t l y i n t o t h e ground-state t r i a l function.

2. The Jastrow Model.- We focus our a t t e n t i o n on t h e Jastrow model of the ground s t a t e of a Fermi f l u i d , which i s based on a t r i a l wave function of t h e form

In t h e present applications, Qo i s the ground-state wave function of t h e noninteracting Fermi gas a t density r, = vk:/67r2, where v i s the s i n g l e - p a r t i c l e level degeneracy, i . e . , t h e number of p a r t i c l e s allowed i n a given c e l l of k-space. Correlations due t o i n t e r a c t i o n s a r e introduced by means of t h e operator F, which, i n t h e Jastrow case, i s taken a s t h e superposition

of r e a l , state-independent two-body c o r r e l a t i o n functions. I d e a l l y , the c o r r e l a t i o n function f ( r ) should be determined (optimally) by solving the v a r i a t i o n a l problem

6E[f]/6f = 0

,

(3)

where t h e extremum of

~ [ f ] = <H> = < Y ~ ~ H ~ Y ~ > / < Y ~ ~ Y ~ > ( 4 ) is supposed t o be a minimum. In practice, t h e Euler equation (3) and t h e expectation value (4) must be approximated /19,20/ ( o r the variational problem may be solved straightaway f o r a functional approximating ( 4 ) /21/). A l e s s ambitious and more widely practiced approach involves minimization of an approximate energy functional w i t h respect t o t h e parameters in a s u i t a b l y chosen a n a l y t i c form f o r f ( r ) .

The exact energy functional (4)--in partic- u l a r , i t s k i n e t i c energy portion--can be expressed i n several d i f f e r e n t (but s t r i c t l y equivalent)

forms r e l a t e d by integral i d e n t i t i e s . The most widely used a r e t h e Pandharipande-Bethe (PB), Jackson-Feenberg (JF) and Cl ark-Westhaus (CW) forms Detailed expressions may be found i n /1/ o r / 4 / . These expressions give cH> i n terms of the two- and t h r e e - p a r t i c l e radial d i s t r i b u t i o n functions g ( r l Z ) , g 3 ( r I 2 , r 1 3,r23) and portions of them involving t h e

- 3

S l a t e r function t ( k F r ) = 3 ( k F r ) ( s i n k F r

-

kFr coskFr), and of course a l s o in terms of t h e assumed two- p a r t i c l e potential v(r1 2)

,

t h e c o r r e l a t i o n , function f ( r 1 2 ) and t h e p a r t i c l e mass m. In general, i f approximate versions of g ( r 1 2 ) and g3(123) a r e i n s e r t e d , t h e t h r e e expressions <H>pB, <H>JF and

<H>CW w i l l not agree. The discrepancies give some measure of t h e inconsistency of t h e approximate evaluation of t h e d i s t r i b u t i o n functions--in par- t i c u l a r , a measure of t h e v i o l a t i o n of t h e BBGRY r e l a t i o n between g and g3 /22/.

Construction and a n a l y s i s of approximations t o t h e d i s t r i b u t i o n functions (and therewith t h e energy expectation value) a r e f a c i l i t a t e d by a configuration-space graphical scheme,analogous t o t h a t used widely i n t h e s t a t i s t i c a l theory of clas- s i c a l f l u i d s /23,24/. The building blocks f o r g (and g3) a r e (sub)diagrams with two external (labeled) points, say i j . In t h e present case of Fermi s t a t i s t i c s such diagrams may contain two kinds of 1 ine elements, namely dynamical c o r r e l a t i o n l i n e s cortesponding t o f a c t o r s f ( r ) 2

-

1 and s t a t i s - t i c a l c o r r e l a t i o n 1 in e s (exchange I i n e s ) correspon- ding t o S l a t e r f a c t o r s $(kFr). Fermi i j diagrams a r e therefore c l a s s i f i e d not only according t o t h e i r topological s t r u c t u r e (nodal a s opposed t o non-nodal /23,1/) but a l s o according t o whether a p a i r of exchange l i n e s (one e n t e r i n g , one leaving) i s present a t n e i t h e r ("dd" diagrams),

one

("de"

diagrams) o r ("ee" diagrams) of t h e external points / I / . The sums of a l l contributing non-nodal

(4)

One popular scheme f o r c a l c u l a t i n g t h e key diagrams of t h e indicated exchange c l a s s e s a r e

q u a n t i t i e s X i s t h e Fermi hypernetted-chain XY

procedure of Fantoni and Rosati /3/ (FR-FHNC).

denoted, respectively, X d d ( r ) y Xde(r) and Xee(r) (where r

r Ic.-C. 1).

I t is convenient a l s o to i n -

J

troduce a fourth exchange c l a s s , comprised of i j The X a r e i n t h e i r turn represented in coordindte

XY 2

space a s simple functions of f ( r ) , R(kFr), t h e nodal-diagram sums N and t h e elementary-diagram

XY

(sub)diagrams i n which t h e r e i s a continuous exchange-line path running from i t o j ( o r vice

versa), possibly through intermediate p a r t i c l e s , sums E : XY

x d d ( r ) = r d d ( r )

-

Ndd(r) 9

but no return path closing t h e exchange loop.

These a r e c a l l e d "cc" diagrams; excluding the graph consisting of a s i n g l e a l i n e joining i and j, t h e sum of a l l contributing non-nodal

xcc(r) = -v-lrdd(r)[~(kFr)-v~cc(r)~

+ r d d ( r ) l E c c ( r ) 9 (8) wherein

r d d ( r ) 2 (r)exp[Ndd(r) + Edd(r)]

-

1

-

( 9 )

These equations express t h e formation of t h e non- diagrams of t h i s category is denoted Xcc(r).

The compound-graphical o b j e c t s X ( r ) , with

XY

xy E (dd,de,eel, a r e found t o be the c e n t r a l in- gredients of t h e diagrammatic a n a l y s i s , i n the sense t h a t once they a r e known, t h e d i s t r i b u t i o n

functions ( o r more conveniently t h e corresponding nodal X q u a n t i t i e s by p a r a l l e l connection of

"simple" (nodal o r elementary) diagrams. (An s t a t i c s t r u c t u r e functions) can be calculated from

exact, closed formulas /2,6,1/. For example, t h e elementary diagram i s a non-nodal diagram which s t r u c t u r e function

~ ( k ) = 1 + p/[g(r)-l]eib'C d_r can be obtained from

i s topologically i r r e d u c i b l e . )

In p r i n c i p l e , equations (6) (together w i t h an analogous construction of t h e s t r u c t u r e func- t i o n S3 corresponding t o g 3 ) , equations (8) and equations ( 7 ) s u f f i c e t o determine t h e Jastrow d i s t r i b u t i o n functions g and g3 ( o r S and S3) where we have absorbed a f a c t o r p in forming t h e

(dimensionless) t i l d e Fourier transforms, i x y ( k )

= pIXxy(r)exp(ik:~)dy, e t c .

TheFourier transforms of the sums ofallowed

exactly f o r a given c o r r e l a t i o n function f ( r ) . Indeed, solution of t h i s s e t of equations would generate t h e necessary ingredients f o r exact computation of the energy expectation value i n nodal diagrams of the various exchange c l a s s e s a r e

a l s o simple function of t h e

2

( k ) (and of z ( k ) ) :

XY

any of i t s forms. However, these equations do not a c t u a l l y supply a closed solution of the problem, because t h e E a r e given only a s i n f i n i t e s e r i e s .

XY

In p r a c t i c e , therefore, successive approximations iee(k) = S(k)

-

2Sd (k) + 1

-

iee(k) +

fdd

( k ) ,

i c c ( k ) = icc(k)[v-ll(k)

-

fcc(k)l/[l

-

i c c ( k ) l

.

(7)

These a r e t h e Fermi chain equations, which build

a r e defined by feeding i n successively more com- p l icated s e t s of elementary diagrams. The simplest approximation, explored by Fantoni and Rosati /3/, Zabol itzky /4/ and o t h e r s , c o n s i s t s of s e t t i n g a1 1 t h e chain (nodal) functions N xy by s e r i e s connec-

--

t i o n of non-nodal diagrams

.

-

the Exy = 0. This approximation i s termed FHNC/O.

(5)

C 7 - 2 0 0 JOURNAL DE PHYSIQUE

I n t h e n e x t step, elementary diagrams w i t h f o u r - p o i n t b a s i c s t r u c t u r e s a r e incorporated, g i v i n g t h e FHNC/4 approximation; then f i v e - p o i n t b a s i c s t r u c t u r e s a r e t o be i n c l u d e d (FHNC/5); and so on.

(For more p r e c i s e s p e c i f i c a t i o n , see, f o r example, r e f e r e n c e /I/. )

I t t u r n s o u t t h a t such a scheme v i o l a t e s ( a t e v e r y stage) c e r t a i n long-wavelength asymptotic p r o p e r t i e s /5/ of t h e q u a n t i t i e s i d e ( k ) and i e ( k ) , name 1 y

where S (k) i s t h e t w o - p a r t i c l e s t r u c t u r e f u n c t i o n F

f o r t h e n o n i n t e r a c t i n g system. These p r o p e r t i e s a r e r e f l e c t i o n s o f t h e Paul i e x c l u s i o n p r i n c i p l e , i.e., t h e a n t i s y m n e t r y of t h e (Jastrow) wave f u n c t i o n . They may be e s t a b l i s h e d r i g o r o u s l y f o r t h e f u l l Xde, Xee; they a l s o h o l d i n approximation schemes i n which s u i t a b l y chosen f i n i t e subclasses o f elementary diagrams a r e i n c l u d e d ( f o r example, i n t h e s o - c a l l e d KR-FHNC// approximations /1,6/).

Normally, f o r reasonable f, v i o l a t i o n o f (10) by t h e FR-FHNC/O approximation ( o r h i g h e r approxi- mations w i t h i n t h e FHNC/ scheme) w i l l n o t have any s e r i o u s e f f e c t on an e v a l u a t i o n o f t h e ground-state energy, s i n c e i t i s , predominantly, t h e long-range b e h a v i o r o f t h e i n g r e d i e n t s Xde(r), Xee(r) which i s a t issue. However, o t h e r q u a n t i t i e s o f physical i n t e r e s t (e.g. S(k) a t small k ) a r e more s e n s i t i v e t o P a u l i v i o l a t i o n s . Moreover, when we t u r n t o t h e v a r i a t i o n a l problem (3), and t h e i m p l i c a t i o n s o f i t s behavior f o r t h e s t a b i l i t y o f many-body s t a t e s , i t becomes e s p e c i a l l y d e s i r a b l e t o t a k e p r o p e r c a r e o f t h e asymptotic c o n d i t i o n s (10).

To t h i s end, we s h a l l make use o f t h e FHNC/C approximation devised by one o f us /6/. L e t t h e FR-FHNC/O approximations t o

gde, gee,

as g i v e n by equations (81, be designated

, : : P 2;:;

then t h e

e f f e c t s o f t h e o m i t t e d elementary diagrams, r e - q u i r e d t o ensure ( l o ) , a r e e s t i m a t e d by u s i n g i n - stead t h e " c o r r e c t e d " approximations

I n a l l cases i n which t h e r e l e v a n t elementary diagrams have a c t u a l l y been c a l c u l a t e d , t h i s e s t i m a t e has proven t o be a c c u r a t e t o w i t h i n a few p e r c e n t /6/. The FHNC/C a p p r o x i m a t i o n t o t h e con- s t r u c t i o n o f t h e d i s t r i b u t i o n ' f u n c t i o n s c o n s i s t s i n m o d i f y i n g t h e FHNC/O scheme s i m p l y by t h e use o f (1 1 ) f o r jde and

gee

i n t h e c h a i n equations (7)

(and

only

t h e r e i n ) .

The E u l e r e q u a t i o n (3) may be s u b j e c t e d t o a g r a p h i c a l a n a l y s i s which para1 l e l s t h a t a l r e a d y executed f o r t h e d i s t r i b u t i o n f u n c t i o n s e n t e r i n g

<H>. Indeed, ( 3 ) assumes t h e f o r m

-(fi2/4m)02g(rl + g c (r) =

o ,

(12)

where g

'

( r ) i s a g e n e r a l i z e d t w o - p a r t i c l e d i s t r i - b u t i o n f u n c t i o n which may b e f o r m a l l y c o n s t r u c t e d by a process o f g r a p h i c a l d i f f e r e n t i a t i o n , i n d i - cated t h r o u g h o u t by a prime, a p p l i e d t o t h e d i a - grammatic r e p r e s e n t a t i o n o f g ( r ) /5/. We s h a l l n o t e n t e r i n t o t h e d e t a i l s here, b u t i t i s im p o r t a n t t o n o t e t h a t t h e e x p l i c i t d e f i n i t i o n f o r g t ( r ) depends on t h e e x p r e s s i o n

(PB,

JF, CW) adopted f o r t h e k i n e t i c energy p o r t i o n o f <H>, and ac- c o r d i n g l y so do t h e new s o r t s o f l i n e elements i n t r o d u c e d upon g r a p h i c a l d i f f e r e n t i a t i o n o f g.

The o p t i m i z a t i o n s c a r r i e d o u t i n t h e p r e s e n t s t u d y a r e based on t h e JF form f o r <H>. I n t h a t case, each g ' diagram w i l l c o n t a i n ( i ) a s i n g l e e f f e c t i v e i n t e r a c t i o n l i n e r e p r e s e n t i n g vJF(r) = v ( r )

-

('ti2/2m)~2~nf, o r ( i i ) a s i n g l e d i f f e r e n t i a t e d

2 2

exchange l i n e r e p r e s e n t i n g (3 /2m)v R(kFr) o r ( i i i ) a s i n g l e connected p a i r o f d i f f e r e n t i a t e d exchange 1 in e s r e p r e s e n t i n g (TI 2 /2m)viR(kFri j)

*vik(kF rik), p l u s a s s o r t e d f -1 and R l i n e s . 2

(6)

It i s more convenient t o work i n F o u r i e r space, t h e Eul e r e q u a t i o n beconii ng

w(k) 5 (45 2 2 k /4m)[S(k)-l]

+

S 1 ( k ) = 0

,

(13) where S' ( k ) = p f g ' (r)exp(i_k-_r)d_r i s th e g e n e r a l i z e d s t r u c t u r e f a c t o r corresponding t o t h e g e n e r a l i z e d d i s t r i b u t i o n f u n c t i o n g l ( r ) . By diagrammatic a n a l y s i s - - o r f o r m a l l y by f u n c t i o n a l and g r a p h i c a l d i f f e r e n t i a t i o n - - w e may e s t a b l i s h a r i g o r o u s de- composition of S1(k) analogous t o (6), i n terms o f S(k), Sd(k) and t h e primed c o u n t e r p a r t s i i d ( k ) , i i e ( k ) and i i e ( k ) o f t h e non-nodal q u a n t i t i e s i d d ( k ) , i d e ( k ) and dee(k). Equations analogous t o (7), d e r i v e d i n a s i m i l a r manner, g i v e 5 ~ ~ ( k ) , R i e ( k ) , R;,(k) and i i c ( k ) i n terms o f t h e primed i ' s and t h e v a r i o u s unprimed q u a n t i t i e s a l r e a d y introduced. F i n a l l y , by g r a p h i c a l d i f f e r e n t i a t i o n o f ( 8 ) , we o b t a i n a s e t o f 1 in e a r equations f o r t h e key q u a n t i t i e s X ' (These a r e c a l l e d t h e FHNC-

xy '

p r i m e equations, o r s i m p l y t h e prime equations.) We t h u s a r r i v e a t an a r r a y o f coupled equations, namely (6)-(9) and t h e i r primed c o u n t e r p a r t s ( 6 ' ) - ( 9 ' ) , which, i n c o n j u n c t i o n w i t h t h e E u l e r e q u a t i o n (73), determine i n p r i n c i p l e t h e o p t i m a l c o r r e l a - t i o n f u n c t i o n f (r) as w e l l as t h e corresponding t w o - p a r t i c l e s t r u c t u r e f u n c t i o n S (k)

,

and t h e r e - a f t e r f h e o p t i m a l Jastrow d i s t r i b u t i o n f u n c t i o n s and energy e x p e c t a t i o n value. Again, however, t h e problem o f t h e elementary diagrams, appearing i n t h e i n f i n i t e s e r i e s E and E '

,

must be faced i n

xy XY

a c t u a l c a l c u l a t i o n . Schemes f o r t h e i n c o r p o r a t i o n o f E' diagrams r u n p a r a l l e l t o t h o s e o f o r d i n a r y

XY FHNC theory.

Corresponding t o ( l o ) , t h e primed E ' s a r e r e s p o n s i b l e f o r t h e maintenance o f t h e r i g o r o u s long-wave1 ength p r o p e r t i e s

As i n d i c a t e d e a r l i e r , i t i s d e s i r a b l e t o observe

such p r o p e r t i e s when f o r m u l a t i n g t h e E u l e r problem.

A c c o r d i n g l y we extend t h e FHNC/C p r e s c r i p t i o n f o r c o r r e c t i n g t h e FHNC/O approximation, supplementing

Means f o r r e a l i z i n g a p r a c t i c a l numerical t r e a t m e n t o f t h e E u l e r e q u a t i o n (13) w i l l be de- s c r i b e d i n a separate a r t i c l e . We remark t h a t J.

Owen has a l r e a d y p u b l i s h e d work a l o n g s i m i l a r l i n e s /19/.

3. Beyond t h e Jastrow Description.-The Jastrow model i s expected t o d e s c r i b e r a t h e r w e l l some aspects o f t h e s t r o n g s p a t i a l c o r r e l a t i o n s among p a r t i c l e s i n a quantum f l u i d . However, s i n c e t h e assumed c o r r e l a t i o n o p e r a t o r i s s t a t e independent

(meaning i t i n v o l v e s o n l y t h e r. .) and c o y t a i n s

1 J

o n l y two-body f a c t o r s , such i m p o r t a n t phenomena as b a c k f l o w and s p i n - d e n s i t y f l u c t u a t i o n s w i l l be

i n a c c e s s i b l e t o t h i s model. One would l i k e t o have some way o f i n c o r p o r a t i n g state-dependent (as w e l l as d i r e c t three-body, four-body,

. .

.)

c o r r e l a t i o n s i n t o t h e t h e o r y w i t h o u t g i v i n g up t h e s u c c e s s f u l aspects o f t h e Jastrow approach.

Systematic procedures f o r c o r r e c t i n g t h e Jastrow model may be f o r m u l a t e d w i t h i n t h e method o f cor- r e l a t e d b a s i s f u n c t i o n s /9-11,7,8,14/ (CBF).

D i s c u s s i o n o f t h i s method w i l l be c o n f i n e d t o t h e aspects needed f o r a general understanding o f the r e s u l t s t o be presented i n t h e f o l l o w i n g s e c t i o n s .

We extend c o n s i d e r a t i o n from a s i n g l e J a s t r o w - c o r r e l a t e d wave f u n c t i o n (1 ) - (2) t o a b a s i s o f such f u n c t i o n s ,

$,,,=

12

f(rij)@,,,

,

i < j

n o r m a l i z e d t o u n i t y by

Imm

fII(,,@<, 2 (r. .)I@,,,>

3 J

t h e

cP,

c o n s t i t u t i n g a complete orthonormal s e t o f

(7)

C 7 - 2 0 2 J O U R N A L DE PHYSIQUE

Fermi-gas energy eigenfunctions. The label m r e l i a b l e ( l e a s t s e n s i t i v e t o e r r o r s , p a r t i c u l a r l y i d e n t i f i e s t h e c o l l e c t i o n of plane-wave s i n g l e - i n t h e g++ g3 connection / 2 2 / ) anlong t h e t h r e e p a r t i c l e s t a t e s occupied i n t h e Fermi-gas function choices PB, JF, CW. In t h e CW case, the single-

@,,,,

with m = o denoting t h e f i l l e d Fermi sea. In p a r t i c l e energies a r e found t o have a very simple terms of the c o r r e l a t e d matrix elements Hmn = s t r u c t u r e i n terms of t h e q u a n t i t i e s already in-

<+mmJHl+n> and Nmn =

<qrn

of the Hamil tonian troduced i n optimal FHNC theory, namely and u n i t y , a perturbation expansion f o r the ground- fi2k2

.-.

~ ( k ) =

7

+ i i C ( k ) / [ l

-

XCC(k)l + Uo

,

s t a t e energy E may be generated, (18)

2 where Uo i s a constant, independent of k. The JF

E = HO0

- I

Hmo

-

HooNmo

I

+

... ,

(16) r e s u l t i s a b i t more e l a b o r a t e , containing addi- m o Hmm

-

t h e higher terms involving more and more f a c t o r s of Hmn

-

HooNmn o r Nmn (l-6,,,). I t i s seen t h a t t h e leading term is j u s t the Jastrow energy expectation value, H o o = < H > . Here we s h a l l concentrate on t h e next term, t h e negative semi-definite second-order perturbation correction t o Hoo. W further r e s t r i c t e a t t e n t i o n to m l a b e l s which d i f f e r from t h e Fermi sea o in exactly two s i n g l e - p a r t i c l e o r b i t a l s .

(Therefore we include only the e f f e c t s of "cor- r e l a t e d two-particle-two-hole s t a t e s " . ) The re- sul t i n g correction i s denoted 6 ~ ( ~ ' ~ ) .

Two of us /7/ have c a r r i e d out an extensive diagrammatic a n a l y s i s of t h e q u a n t i t i e s Nmn

,

Hmn

-

HooNmn and Hmm

-

Hnn f o r choices of

m,n

i n - (2,2) cluding those needed f o r t h e evaluation of 6E

.

Denoting by m l , m2 and o l , o2 t h e o r b i t a l s i n which m and o d i f f e r , t h e r e l e v a n t r e s u l t s a r e conve- n i e n t l y expressed i n t h e forms

where the E ' S a r e i n t e r p r e t e d a s s i n g l e - p a r t i c l e energies and V(12) is a (non-local) e f f e c t i v e i n t e r a c t i o n . The derivations of reference /7/were based on t h e Clark-Westhaus (CW) form f o r t h e CBF matrix elements Hmn, because of the formal simplic- i t y of t h a t choice. In the meantime, t h e analysis has been extended t o t h e Jackson-Feenberg (JF) form, which we regard a s generally t h e most

t i onal terms

where C

l F

stands f o r Fourier transform, and a f u r t h e r (small ) contribution sE3] a r i s i n g from t h e three-body p a r t of t h e Jackson-Feenberg k i n e t i c energy operator. The s i n g l e - p a r t i c l e energy ~ ( k ) determines an e f f e c t i v e mass a t t h e Fermi surface via

fi2kF/iW= [di(k)/dkIkF

.

(20)

We s h a l l take m* t o be t h e e f f e c t i v e mass predicted by the Jastrow model.

The non-local e f f e c t i v e - i n t e r a c t i o n operator has the s t r u c t u r e

<mlm21 V(12)I 0 1 0 2 - 0 2 0 1 ~ = <mlm2 lW(12) 10102-0201> + + $ ~ ( m , ) + E ( ~ ~ ) - E ( o ~ 1 )-s(02)1-

-<mlm21N(12)lo102-0201>

,

(21

where W(12) and N(12) a r e again non-local operators, In d e t a i l , t h e l a t t e r operators a r e r a t h e r compli- cated; however, ~ ( 1 2 ) may be determined from N(12) by t h e graphical d i f f e r e n t i a t i o n process. The matrix elements of N(12) a r e found t o contain f a c t o r i z a b l e diagrams, implying t h e s t r u c t u r e

<mlm2 IN(12) lo102-0201~

<mlm21N (12)

B

10102

-

0201>

-

~ ~ ~ - ~ c c ~ ~ l ~ ~ ~ ~ - ~ c c ~

'

~ 2 ~ ~ ~ ~ - ~ c c ~ ~ l ~ ~ ~ i - ~ c c ~ ~ 2 ~ ~ ~ ~

B (22

where N (12) is the irreducible, basic portion of N(12) a s defined in reference /7/; and s i m i l a r l y

(8)

f o r t h e m a t r i x elements o f (U(12) = N' (12). The

B B

l e a d i n g c o n t r i b u t i o n s t o N (12), W (12) a r e t h e i r l o c a l p a r t s ; these are simply e x p r e s s i b l e i n terms of primed and unprimed q u a n t i t i e s a l r e a d y en- countered. I n fact, i t was i n t h e CBF c o n t e x t /7/ t h a t FHNC-prime equations f o r t h e X' were

XY f i r s t d e r i v e d ( a l b e i t f o r t h e CW k i n e t i c energy o p e r a t o r ) . I t i s of course n a t u r a l t h a t t h e i n - g r e d i e n t s o f t h e CBF p e r t u r b a t i o n c o r r e c t i o n s , i n t h e i r d e t a i l e d s t r u c t u r e , a r e r e l a t e d t o t h e i n g r e d i e n t s o f t h e E u l e r equation f o r t h e optimal f (r). A comparable, though much l e s s cornpl i c a t e d , s i tuati'on p r e v a i 1 s w i t h i n t h e paired-phonon a n a l y s i s by Feenberg, Jackson and Campbell /10,25/

f o r t h e o p t i m a l Jastrow t r e a t m e n t o f Bose systems.

I n t h e a c t u a l c a l c u l a t i o n s o f ~ ~ ( 1 2 ) and [crB(l 2 ) we have included, along w i t h rdd(r12) and d i d ( r 1 2 ) , c e r t a i n t r a c t a b l e "elementary" c o n t r i b u t i o n s

(see Fig. 5.4 o f reference /7/), as w e l l as t h e e f f e c t s o f separable three-body c o n t r i b u t i o n s . The subsequent p r e p a r a t i o n o f 6E (' ") f o r numerical computation f o l l o w s an e s s e n t i a l l y standard p a t t e r n /26,27/: p a r t i a l - w a v e a n a l y s i s , angle-averaging, q u a d r a t i c approximation o f h o l e energies E ( k ) , k < k F , e t c . However, i n c o n t r a d i s t i n c t i o n t o t h e procedure o f r e f e r e n c e ,/27/, t h e p a r t i c l e energies

~ ( k ) , k > kF, a r e n o t taken t o be s i m p l y t h e f r e e 2 2

e n e r g i e s

6

k /2m b u t a l s o i n c l u d e t h e constant t e r m Uo. (It i s t o be noted t h a t above t h e Fermi s u r f a c e t h e remaining terms i n t h e ~ ( k ) formula r a p i d l y become n e g l i g i b l e compared t o t h e f r e e k i n e t i c energy. ) A more thorough d i s c u s s i o n o f t h e s e m a t t e r s w i l l be presented i n another a r t i c l e . One q u a l i t a t i v e f a c t emerging from a n a l y s i s o f t h e s t r u c t u r e o f 6 E ( 2 y 2 ) should, nevertheless, be men- t i o n e d here. When t h i s c o r r e c t i o n i s reduced f o r t h e s p e c i a l case o f o p t i m a l f, making use o f t h e E u l e r e q u a t i o n w(k) = 0 and i n t r o d u c i n g and subtrac-

t i n g o u t an i n v e r s e energy d i f f e r e n c e < e - t averaged over holes, one may i s o l a t e a c o n t r i b u t i o n a t t r i b - u t a b l e t o n o n - c e n t r a l (angle-dependent) c o r r e l a t i o n s , a c o n t r i b u t i o n a p p a r e n t l y r e l a t e d t o backflow.

We conclude o u r o u t l i n e o f formal methods by p o i n t i n g o u t t h a t t h e r e s u l t s o f r e f e r e n c e /7/ f o r t h e non-diagonal CBF q u a n t i t i e s Nmn, Hmn-HooNmn and Hm-Hnn n o t o n l y y i e l d t h e i n p u t s necessary f o r e s t i m a t i o n o f t h e CBF p e r t u r b a t i o n c o r r e c t i o n s t o t h e Jastrow energy, b u t a l s o p r o v i d e f u r t h e r valu- a b l e i n f o r m a t i o n on t h e Jastrow model i t s e l f . This has a l r e a d y been seen i n t h e case o f t h e Jastrow e f f e c t i v e mass. To c i t e a more e l a b o r a t e example:

as shown i n r e f e r e n c e /8/, one may t e s t t h e s t a - b i l i t y o f t h e Jastrow ground s t a t e a g a i n s t p a i r condensation i n v a r i o u s p a r t i a l waves, i n terms o f

e f f e c t i v e p a i r i n g m a t r i x elements d e r i v e d from t h e o p e r a t o r ~ ( 1 2 ) . I n a t h i r d a p p l i c a t i o n (which by no means exhausts t h e i n t e r e s t i n g p o s s i b i l i t i e s ) , one may determine t h e magnetic s u s c e p t i b i l i t y

x

o f t h e Jastrow model from CBF m a t r i x elements. I f t h e CW form i s assumed f o r t h e Hmn, t h e simple formula

( a p p l i c a b l e t o u n p o l a r i z e d He) i s obtained, where 3

xF

i s t h e magnetic s u s c e p t i b i l i t y o f t h e f r e e Fermi gas and 6 ( 1 So) i s t h e dimensionless e f f e c t i v e p a i r i n g m a t r i x element i n t h e So channel, d e r i v e d 1 from t h e CBF a n a l y s i s o f r e f e r e n c e /8/. ( I t should be remarked t h a t e q u a t i o n (23) i s j u s t a formal r e - s u l t among CBF q u a n t i t i e s and does n o t i m p l y a c o r - responding p h y s i c a l r e l a t i o n s h i p between magnetic response and p a i r i n g . )

4. A p p l i c a t i o n s t o Helium Systems.- We c o n s i d e r o r d i n a r y , unpol a r i z e d He ( w i t h 3 1 eve1 degeneracy v = 2), t o g e t h e r w i t h f u l l y s p i n - p o l a r i z e d He (v=l). 3 The l a t t e r system w i l l be denoted He+; t h e former, 3 s i m p l y as He. 3 P r o p e r t i e s o f t h e Jastrow model o f

14

(9)

C 7 - 2 0 4 JOURNAL DE PHYSIQUE

these systems a r e computed f o r two choices of the safely preserves t h i s property, without e r r i n g too c o r r e l a t i o n function f ( r ) : ( a ) the Schiff-Verlet much in t h e upward d i r e c t i p n (which i s usually the

form /28/ case f o r t h e CW form). To avoid any possible con-

1 b 5

f S V ( r ) =

ex^[-? (T;) 1

3 (24) fusion, we s t r e s s t h a t t h e f opt r e s u l t s i n Table I with b = 2 . 8 8 8

1

independent of density and polar- and Fig. 1 a r e obtained by i n s e r t i o n of the

JF-

i z a t i o n and ( b ) an optimal f ( r ) determined from based optimal f i n t o t h e indicated functionals.

t h e JF version of the Euler equation, f o r

each

v We a l s o note t h a t a l l numerical energies a r e of and

each

density. The usual Lennard-Jones poten- course given i n K per p a r t i c l e .

t i a l i s assumed, v ( r ) = 4 c [ ( a / r ) I 2

-

( a / r ) 6 ] with

0

E = 10.22 K and a = 2.556 A.

Results f o r t h e ground-state energy expecta- t i o n value a r e collected i n Table I and plotted ( f o r the optimal f ) in Fig. 1. The reader should focus h i s a t t e n t i o n on the r e s u l t s f o r EJF = <H> JF.

s i n c e t h e other forms of t h e energy (CW, PB) con- t a i n l a r g e terms involving aspects of t h e three- p a r t i c l e d i s t r i b u t i o n function which FHNC theory may represent poorly /4,6,22/. ~t p=0.0142K3 in t h e case of ordinary He, t h e exact expectation 3 value f o r t h e Schiff-Verlet (SV) correlation func- t i o n specified above i s known by flonte Carlo (MC) c a l c u l a t i o n / 2 9 / t o l i e roughly midway between the JF and PB energy functionals computed i n FHNC/O or FHNC/C approximation /4,22/. However, w i t h i n these approximations t h e PB choice i s t h e "most l i k e l y "

among PB, JF and CW t o v i o l a t e t h e upper-bound

property of t h e exact <H> upon variation of f Fig. 1 : Jastrow ground-state energy versus density f o r unpolarized 3 ~ e and f o r 3 ~ e + , based on around a s e n s i b l e reference function. We expect t h e Lennard-Jones potential ( a = 2.556 A ) .

(Curves and points not marked with

+

r e f e r t h a t in t h e present applications t h e JF choice t o unpolarized 3 ~ e . )

3 3

Table I : Jastrow ground-state energies f o r unpolarized He and f o r He+.

(10)

One can immediately draw two i n t e r e s t i n g q u a l i t a t i v e conclusions from t h i s study of the ground-state energetics. F i r s t , the Jastrow model cannot reproduce the experimentally determined energy and density of unpolarized liquid He 3

(Lequil = -2.52 K, pequil = 0.0164 i - 3 ) a t zero temperature and zero external pressure. Important c o r r e l a t i o n e f f e c t s (presumably associated w i t h spin-density f l u c t u a t i o n s and backf low) a r e c l e a r l y missing from t h e Jastrow ansatz. Indeed, t h e margin of f a i l u r e seems especially d i s t u r b i n g u n t i l i t i s realized t h a t t h e t o t a l energy E of t h e system r e s u l t s from near cancellation of r e l a - t i v e l y l a r g e k i n e t i c and potential contributions.

For these individual terms t h e percentage e r r o r of t h e Jastrow model i s only of order 10%.

The second point concerns t h e comparison of t h e two polarization s t a t e s of He. 3 I t i s seen t h a t , beyond a re1 a t i v e l y low density, t h e Jastrow models of He+ a r e e n e r g e t i c a l l y more s t a b l e than 3 t h e corresponding models of the unpol a r i zed system This i s t h e case even f o r t h e SV c o r r e l a t i o n function--the parameter b of which was determined f o r ordinary 3 ~ e . We have, then,another indica- t i o n t h a t t h e Jastrow t r i a l function i s inadequate f o r unpolarized He. 3 On the other hand, t h e Jastrow model appears t o be r a t h e r good f o r He+, a t l e a s t 3 s o f a r a s t h e energy i s concerned: a reasonable i n t e r p o l a t i o n between t h e JF and PB curves f o r t h i s system would put t h e energy minimum somewhere i n t h e range -1.5 K t o -2 K, and the t r u e energy s u r e l y cannot be much lower. (We assume f o r t h e sake of argument t h a t t h e FHNC/C procedure i s no

3 3

l e s s accurate f o r He+ than i t i s f o r ordinary He, a supposition which has y e t t o be f u l l y t e s t e d . In t h i s connection one may observe in Fig. 1 t h a t f o r 3 ~ e + , t h e FHNCIC approximation t o the PB functional c l e a r l y v i o l a t e s the upper-bound property a t

d e n s i t i e s exceeding p = 0.014 i - 3 . )

Inspecting Table I , we notice t h a t f o r ordi- nary He t h e optimal f does not lead t o much im- 3 provement over t h e simple SV choice, EJF being e s p e c i a l l y i n s e n s i t i v e ; even f o r He+ t h e improve- 3 ment i s not dramatic. In some cases i t turns out

t h a t f opt

-

r a i s e s t h e energy s l i g h t l y , compared t o t h e SV energy. While t h i s might a t f i r s t seem con- t r a d i c t o r y , i t must be remembered t h a t s i n c e t h e Euler equation (13) i s derived from an exact energy functional and t h e r e a f t e r approximated, the s o l u t i o n obtained does not necessarily minimize an approxi- mate energy functional (FHNC version of <H>JF, e t c ) .

In Fig. 2 t h e s t r u c t u r e f a c t o r s S(k) of the optimal Jastrow models of unpolarized and polarized systems a r e plotted a t t h e same density (near

3

Pequ i 1 of ordinary He). The r e s u l t s f o r t h e two cases a r e very s i m i l a r , t h e only apparent d i s t i n c - t i o n being t h a t t h e peak is displaced s l i g h t l y in- ward f o r He+ compared t o t h e normal system. 3

Fig. 3 exposes f u r t h e r shortcomings of t h e Jastrow description of unpolarized He. 3 The ef- f e c t i v e masses of optimal and SV models a r e f a r from t h e experimental value, which has recently been s e t /30/ a t (m*/m) = 2.12 ( f o r p = pequil).

exp

An even more s t r i k i n g symptom i s displayed by the s u s c e p t i b i l i t y r a t i o

xF/x

of the SV model, which dives i n t o t h e negative region already a t q u i t e low density. The l a t t e r behavior corresponds t o our previous finding t h a t , within the Jastrow approach, 3 ~ e + i s e n e r g e t i c a l l y favored over i t s unpolarized counterpart, except a t small p. (We should remark t h a t t h e

xF/x

curve drawn i n Fig. 3 is not c o n s i s t e n t through (23) w i t h the values of m*/m and 6 ( 1 so) reported here. This curve i s de- rived from Jastrow pairing matrix elements and e f f e c t i v e masses /8/ based on t h e CW form of t h e Hmn ( f o r which (23) a p p l i e s ) , whereas the other

(11)

C 7 - 2 0 6 JOURNAL DE PHYSIQUE

q u a n t i t i e s in Figs. 3 and 4 a r e calculated using a r e purely i l l u s t r a t i v e , having no s i g n i f i c a n c e f o r t h e JF form. A t any r a t e , t h e

xF/x

r e s u l t s given t h e r e a l system.)

Fig. 2 : Jastrow s t a t i c s t r u c t u r e function f o r unpol arized 3 ~ e and f o r 3 ~ e 4 .

F i g . 3 : Effect've mass and magnetic s u s c e p t i b i l i t y

4

Fig. 4 : Dimensionless airing matrix elements of o f unpolarized He, corresponding t o t h e Jastrow unpolarized 3tle, corresponding t o the Jastrow

models. models, f o r various two-body channels.

(12)

Fig. 4 supplements t h e CW r e s u l t s of r e f e r - ence /8/ with plots of the (dimensionless) Jastrow pairing matrix elements 6 of normal 3 ~ e in So, 1 3p and 1

D

p a r t i a l waves, a s determined by FHNC/C-

0 2

approximated CBF q u a n t i t i e s of JF form. Negative 6 values signal i n s t a b i l i t y of t h e Jastrow s t a t e with respect t o p a i r condensation in t h e given p a r t i a l wave. Detailed consideration of these r e s u l t s (along t h e 1 ines of'reference /8/) leads once more t o t h e conclusion t h a t t h e Jastrow cor- r e l a t i o n operator i s d e f i c i e n t in important r e s p e c t s - - p a r t i c u l a r l y i n i t s lack of spin (and momentum) dependence.

Table I1 presents some r e s u l t s of an attempt t o c o r r e c t f o r t h e deficiencies of the Jastrow d e s c r i p t i o n by means of CBF perturbation theory.

The required CBF matrix elements a r e evaluated via t h e FHNC/C procedure a s sketched in sections 2,3.

The e n t r i e s f o r bE ( 2 s 2 ) represent our most complete estimate of this quantity, based on formula (22) f o r the N(12) matrix elements and t h e corresponding formula f o r ~ ( 1 2 ) derived by graphical (prime) d i f - f e r e n t i a t i o n . In the l a t t e r fotmul a the denominator D =

r

[I-Em(., )I[] - i C c ( 0 , ) 1 1 ~ w i l l a l s o appear. As we shall document elsewhere, t h e correction 6 ~ ( (for He systems) i s q u i t e ~ 3 ~ ~ ) s e n s i t i v e t o t h e precise means used t o t r e a t t h i s denominator. Accordingly, the r e s u l t s given i n Table I1 should be regarded as i l l u s t r a t i v e rather than q u a n t i t a t i v e . I t i s seen t h a t t h e c o r r e c t i o n is very l a r g e i n magnitude and c l e a r l y overesti- mates t h e e f f e c t s of t h e non-Jastrow c o r r e l a t i o n s . The other e n t r i e s in t h e t a b l e , labeled 6~,!,:'~), are the r e s u l t s f o r t h e perturbation correction without t h e denominator D, i.e., the f a c t o r

{[I-ice]. ..I-'

i s replaced by unity i n the f i n a l formulas f o r N(12) and W(12). I t may be argued t h a t t h e omission of D from the present treatment

simulates t h e e f f e c t of higher-order, RPA-type con- t r i b u t i o n s t o t h e CBF perturbation expansion. The

( 2 ' 2 ) i s much modified second-order correction 6Ewo

more reasonable in s i z e , though l a r g e r than 6E ( 2 2 ) a s approximated by Woo /13/. Woo used, i n e f f e c t , l e s s highly dressed CBF matrix elements than em- ployed herein; among o t h e r s i m p l i f i c a t i o n s , t h e denominators D do not appear.

Table I1 : Second-order CBF p e r t u r b a t i o n c o r r e c t i o n s t o Jastrow ground-state energies f o r un- polarized 3 ~ e , using Jackson-Feenberg k i n e t i c energy operator.

P

sv

f

(10-3 i - 3 ) 6E(2Y2) =(232) "wo (292)

We do not r e p o r t any r e s u l t s f o r t h e pertur- bation correction i n the case of He+, f o r t h e 3 following reason, associated with the behavior of

' - i -

Xcc(O ) shown i n Fig. 5. The non-nodal compound- diagrammatic q u a n t i t y Xcc(k) has i t s maximum value

-

a t k=O; i t f a l l s off as k increases through the Fermi s e a , and displays damped o s c i l l a t i o n s about zero f o r k > kF. From Fig. 5 we see t h a t icc(O

+

) r i s e s monotonically with density, reaching unity i n ' ~ e + a t a r e l a t i v e l y low value of p. Beyond t h a t c r i t i c a l d e n s i t y , s i n g u l a r i t i e s appear in t h e expression f o r t h e CBF correction & E ( ~ , ~ ) , because of t h e vanishing, a t some k , of denominators [I-icc(k)]' i n t h e W and N matrix elements and of t h e denominator 1-Xcc(k) i n t h e s i n g l e - p a r t i c l e energies ~ ( k )

.

Consequently, f o r d e n s i t i e s a t which icc(O t ) > 1 , t h e CBF perturbation procedure, i n i t s p r e s e n t computational r e a l i z a t i o n , ceases

--

(13)

C 7 - 2 0 8 JOURNAL DE P H Y S I Q U E

t o be meaningful. Formally, i t may be shown t h a t we choose n o t t o quote any m*/m r e s u l t s f o r 3 ~ e + t h e s i n g u l a r i t i e s generated by t h e denominator o f u n t i l t h e o r i g i n o f t h e s i n g u l a r i t y i n t h e s i n g l e - (22) a r e i n f a c t c a n c e l l e d by those o c c u r i n g i n p a r t i c l e energy i s b e t t e r understood.

t h e ~ ( k ) , p r o v i d e d 2 C C ( k ) remains l e s s than u n i t y That t h e values o f i C c ( o t ) i n u n p o l a r i z e d

f o r k > kF. (We a r e reminded o f s i m i l a r compensa- 3

3 ~ e a r e about h a l f those i n He+ may be a t t r i b u t e d t i o n s o f p o s s i b l e [l-iCc]-' s i n g u l a r i t i e s w i t h i n t o t h e presence o f a (rough) o v e r a l l f a c t o r o f v-' t h e FHNC t r e a t m e n t o f t h e Jastrow s p a t i a l and i n t h i s q u a n t i t y . It i s i n t e r e s t i n g t o n o t e t h a t momentum d i s t r i b u t i o n s . ) However, o u r computa-

-

Xcc(O

+

) f o r o r d i n a r y He e v e n t u a l l y crosses u n i t y , 3 t i o n a l procedure, which i s based on an e f f e c t i v e - a t a v a l u e o f p somewhere beyond t h e c r y s t a l l i z a - mass approximation, has y e t t o b e r e f o r m u l a t e d t i o n d e n s i t y . L a n t t o /31/ has observed t h e t o t a k e advantage o f t h i s c a n c e l l a t i o n . The v a n i s h i n g o f 1-Xcc(O

- +

) i n t h e e l e c t r o n gas a t v e r y [ 1 - i C c ] - l s i n g u l a r i t y i n ~ ( k ) (and hence i n - l o w density--corresponding t o t h e s t r o n g - c o u p l i n g Hm-Hoo) may be merely an a r t i f a c t o f o u r theory, regime o f t h e Coulomb system.

w i t h o u t p h y s i c a l relevance. On t h e o t h e r hand 5. A p p l i c a t i o n s t o Deuterium Systems.- We d e f i n e i t may a c t u a l l y r e f l e c t some i n t e r e s t i n g p h y s i c a l D+ as a system o f deuterium atoms somehow con-

- +

phenomenon; e.g., X (0 ) = 1 may s i g n a l some im-

CC s t r a i n e d so t h a t any p a i r o f atoms i n t e r a c t s ex- minent phase t r a n s i t i o n . F u r t h e r a n a l y s i s ( f o r c l u s i v e l y i n t h e b 3 ~ : s t a t e /32/. S i n c e t h e example, u s i n g t h e p e n e t r a t i n g methods o f CBF l a t t e r i n t e r a c t i o n i s s t r o n g l y r e p u l s i v e a t s h o r t c o u p l e d - c l u s t e r t h e o r y /14/) i s needed t o decide d i s t a n c e s and o n l y v e r y weakly a t t r a c t i v e a t between these two p o s s i b i 1 i t i es. l o n g e r range, we have a system o f f e r m i o n s which

The e f f e c t of a [l-iCc~-' s i n g u l a r i t y on t h e i s expected t o d i s p l a y extreme quanta1 b e h a v i o r - - Jastrow values of mx/m, t h e p a i r i n g m a t r i x elements even more so than He /33/. 3

6 and t h e s u s c e p t i b i l i t y r a t i o

xF/x

w i l l be s l i g h t Two species o f D+ a r e examined here, namely:

u n l e s s t h e s i n g u l a r i t y appears n e a r kF. Even so, ( i - ) D+l, w i t h

one

a l l o w e d n u c l e a r - s p i n s t a t e , and

F i g . 5 : Compound-diagrammatic q u a n t i t y XCc(Ot) f o r

-

u n p o l a r i z e d 3 ~ e and f o r ' ~ e + , as a f u n c t i o n o f d e n s i t y .

(14)

( i i ) Df2, w i t h

two

a l l o w e d n u c l e a r - s p i n s t a t e s which a r e assumed t o be e q u a l l y populated /34/.

We n o t e t h a t Dtl, w i t h one Fermi sea, has v = l and corresponds t o ' ~ e t , w h i l e Dt2, w i t h two equal Fermi seas and v=2, corresponds f o r m a l l y t o o r d i n a r y ' ~ e . W i t h such correspondences i n mind, c a l c u l a t i o n s o f t h e t y p e described i n s e c t i o n 4 have been repeated f o r deuterium. It i s found t h a t t h e r e s u l t s pre- s e r v e t h e s t a t e d analogies, t o t h e e x t e n t t h a t many o f t h e q u a l i t a t i v e f e a t u r e s encountered i n s e c t i o n 4 (as w e l l as t h e a s s o c i a t e d judgments) c a r r y o v e r

3 3

w i t h He+ r e p l a c e d by D+l and u n p o l a r i z e d He r e - p l a c e d by De2. I n p a r t i c u l a r , t h e Jastrow model shows an e n e r g e t i c preference f o r

aP,

over D+2

(except a t low d e n s i t y ) ; t h e J a s t r o w t r i a l f u n c t i o n may a g a i n be c o n s i d e r a b l y b e t t e r f o r v = l t h a n f o r v=2.

The c a l c u l a t i o n s a r e based on t h e t h e o r e t i c a l b 3 ~ : p o t e n t i a l o f Kolos and Wolniewicz /35/, as used by M i l l e r and Nosanow /34/. We r e p o r t r e s u l t s o n l y f o r a S c h i f f - V e r l e t c o r r e l a t i o n f u n c t i o n (24).

(Optimal c o r r e l a t i o n f u n c t i o n s f o r t h e deuterium systems w i l l b e generated i n l a t e r work. ) The r e - s u l t s f o r energy e x p e c t a t i o n values, s t r u c t u r e f u n c t i o n s , e f f e c t i v e masses, second-order p e r t u r b a - t i o n c o r r e c t i o n s and 3=(0

+

) values a r e presented i n Tables I 1 1 and I V and Figs. 6-9. Note t h a t i n

T a b l e I 1 1

Jastrow ground-state energies f o r two species o f s p i n - a l i g n e d deuterium. (LO r e f e r s t o lowest c l u s t e r o r d e r approximation.)

these f i g u r e s , a = 3.69

r\,

corresponding t o a Lennard- Jones f i t t o t h e Kolos-Wolniewicz p o t e n t i a l /34/.

T a b l e I V

Second-order CBF p e r t u r b a t i o n c o r r e c t i o n s t o J a s t r o w ground-state e n e r g i e s f o r DT2, u s i n g Clark-Westhaus k i n e t i c energy o p e r a t o r /7/. ( S i x p a r t i a l waves a r e included. )

It i s o f s p e c i a l i n t e r e s t t o compare t h e Jastrow e n e r g i e s o b t a i n e d i n FHNC/C a p p r o x i m a t i o n w i t h t h e e a r l i e r r e s u l t s o f M i 1 l e r and Nosanow (MN).

I n t h e MN work, a h y p e r n e t t e d - c h a i n (HNC) o r BBGKY- KSA procedure /36/ was a p p l i e d t o e v a l u a t e t h e r a d i a1 d i s t r i b u t i o n f u n c t i o n corresponding t o t h e Jastrow f a c t o r IIf ( r i j), and t h e Wu-Feenberg (WF) antisymmetry expansion /37/, c a r r i e d t o t h r e e - i n d e x terms, was used t o c o r r e c t f o r t h e presence o f t h e S l a t e r determinant Oo i n t h e (Fermi) J a s t r o w ansatz

(1 ) - ( 2 ) . T h i s t r e a t m e n t i s based on t h e JF energy f u n c t i o n a l . The c o r r e l a t i o n f u n c t i o n f was taken o f SV form, w i t h b determined f o r each v and p b y m i n i m i z i n g t h e Fermi-system energy i n HNC-WF o r BBGKY-KSA-WF approximation. b!e have adopted t h e b values corresponding t o t h e BBGKY-KSA approxima- t i o n , which were s u p p l i e d by M i l l e r . F o r t h e Dtl system o u r JF energies agree v e r y w e l l w i t h t h e HNC-WF r e s u l t s r e p o r t e d by M i l l e r and Mosanow (see F i g . 6 ) . On t h e o t h e r hand, i n t h e case o f Dt2 t h e JF and MN curves d e p a r t markedly f r o m one

another as t h e d e n s i t y i n c r e a s e s p a s t 0.003

im3

(see f i g . 7). The disagreement o f o u r D.E2 r e s u l t s

(15)

C7-210 JOURNAL DE PHYSIQUE

w i t h those o f MN i s even worse f o r t h e i r BBGKY-KSA c a l c u l a t i o n . ( A c a l c u l a t i o n a l s i t u a t i o n analogous t o t h a t f o r Df2 p r e v a i l s w i t h respect t o unpolar- i z e d He: 3 juxtapose t h e f i n d i n g s o f r e f e r e n c e /38/ a g a i n s t those o f references /4,22/.) It must be kept i n mind throughout such c o n s i d e r a t i o n s t h a t t h e n e t energies E o f t h e systems under study a r e v e r y small i n magnitude compared t o t h e separate k i n e t i c and p o t e n t i a l energies, so t h a t r e l a t i v e l y small e r r o r s i n t h e e v a l u a t i o n o f these separate p a r t s i s p r o m i n e n t l y r e f l e c t e d on t h e

i s somewhat s u r p r i s i n g f o r t h e D+2 case, where t h e d i f f e r e n c e s between o u r r e s u l t s and those o f MN can exceed 1 K i n t h e d e n s i t y range considered.

s c a l e o f Figs. 6 and 7.

-3

"

-3

p

(10 A

1

F i g . 7 : Jastrow ground-state energy versus d e n s i t y f o r D+ w i t h two a l l o w e d n u c l e a r - s p i n s t a t e s , e q u a l l y populated. ( C a l c u l a - t i o n s based on t h e KO 0s-Wolniewicz p o t e n t i a l ; o = 3.69

B.)

The p r e s e n t c a l c u l a t i o n s t i l l does n o t s e t t l e t h e q u e s t i o n o f whether Dfl ( r e s p e c t i v e l y D f 2 ) i s a l i q u i d o r a gas i n i t s ground s t a t e under zero

F i g . 6 : Jastrow ground-st'ate energy versus d e n s i t y f o r D+ w i t h one allowed n u c l e a r - s p i n s t a t e , based on t h e Kolos-Wolniewicz potential,(corresponding Lennard-Jones a = 3.69 A).

For b o t h deuterium systems we c a r r i e d o u t a search i n t h e v i c i n i t y o f t h e b values p r o v i d e d by M i l l e r . It was found t h a t these parameters are s t i l l v e r y c l o s e t o o p t i m a l f o r t h e JF energy f u n c t i o n a l as approximated here; t h e best parameters produce changes i n t h e JF curves which would h a r d l y be n o t i c e a b l e on t h e s c a l e o f Figs. 6 and 7. T h i s

pressure. ( I n t h e former case one has a Fermi l i q u i d l i k e o r d i n a r y He; i n t h e l a t t e r , one can 3 go from gas t o l i q u i d a t T = 0 under a p p r o p r i a t e pressure. ) However, we may c a l l a t t e n t i o n t o t h e v e r y small n e t e n e r g i e s and s u b s t a n t i a l n e g a t i v e

"

3

p o t e n t i a1 e n e r g i e s (e. g

. , <V> =

-5 K a t p

=

0 . 0 0 4 ~ - ) c h a r a c t e r i z i n g o u r J a s t r o w r e s u l t s . These f e a t u r e s suggest t h a t improvement o f t h e c o r r e l a t i o n operator and/or a r e l i a b l e CBF p e r t u r b a t i o n c a l c u l a t i o n may w e l l depress t h e minimum t h e o r e t i c a l ground-state energies o f t h e deuterium systems t o n e g a t i v e values, i m p l y i n g t h e e x i s t e n c e o f two new Fermi 1 i q u i d s .

(16)

Theoretische Physi k , Universi tzt Hamburg. We ex-

Fig. 9 : Compound-diagrammatic q u a n t i t y i C c ( o t ) f o r D+2 and f o r 091, a s a f u n c t i o n o f d e n s i t y . E f f e c t i v e mass of Df2 cor- responding t o J a s t r o w model.

Fig. 8 : J a s t r o w s t a t i c s t r u c t u r e f u n c t i o n s f o r D.r2 and

D q .

1.25

1.00

- 0.75

Y

Y

V)

0.50

0.25

Acknowledgments.- This r e s e a r c h has been supported i n p a r t by t h e U.S. National Science Foundation

-

I I I I

A 0

- - - -

4"-8@&-4---Q?x-Q4-&-

- - - -

0 A

-

0

-

-

8

-

B - B

&O

-

an

I I 1 I A

under Grant No. DMR78-08552, by t h e U.S. Department

p r e s s o u r a p p r e c i a t i o n t o M. D. M i l l e r f o r informa- t i v e d i s c u s s i o n s and f o r s u p p l y i n g u s w i t h p o t e n t i a l and c o r r e l a t i o n f u n c t i o n d a t a . We a l s o b e n e f i t e d from s t i m u l a t i n g d i s c u s s i o n s w i t h A . D. Jackson, L. J. L a n t t o and R. A. Smith.

References

/1/ C l a r k , J . W . , i n Progress i n P a r t i c l e and Nuclear P h y s i c s , Vol. 2 , ed. Wilkinson, D. H.

(Pergamon, Oxford, 1979).

/2/ Krotscheck, E . and R i s t i g , M. L . , Nucl. Phys.

A242

(1975) 389; E . Krotscheck, Phys. L e t t . 54A (1975) 123.

-

/3/ Fantoni, S. and R o s a t i , S., Nuovo C i m .

fi

(1975) 593.

/4/ Z a b o l i t z k y , J . G . , Phys. Rev. A15 (1977) 1258.

/5/ Krotscheck, E . , Phys. Rev.

A 1 5

(1977) 397 /6/ Krotscheck, E . , Nucl. Phys.

A317

(1979) 149.

/7/ Krotscheck, E . and C l a r k , J . W . , Nucl. Phys.

A328

(1979) 73.

/8/ Krotscheck, E. and C l a r k , J . W., Nucl. Phys.

A333

(1980) 77.

o f Energy under Contract No. EY-76-S-3001 and by /9/ Clark, J . W. and Westhaus, P., Phys. Rev.

141

(1966) 833.

t h e Deutsche Forschungsgemeinschaft. E. K. ac-

/ l o / Feenberg, E . , Theory of Quantum F l u i d s knowledges t h e h o s p i t a l i t y o f t h e Stony Brook (Academic, N . Y .

,

1969).

group w h i l e on l e a v e from I . I n s t i t u t fLr

(17)

C 7 - 2 1 2 JOURNAL DE PHYSIQUE

/11/ Clark, J. W., Mead, L. R., Krotscheck, E., Ktirten, K. E. and R i s t i g , M. L., Nucl. Phys A328 (1979) 45.

-

/12/ C l a r k , J. W. and Feenberg, E., Phys. Rev.

113

(1959) 388.

/13/ Woo, C. W., Phys. Rev.

151

(1966) 138.

/14/ Krotscheck, E., Kimmel, H. and Z a b o l i t z k y , J. G., t o be published.

/15/ Tan, H.-T. and Feenberg, E., Phys. Rev.

176

(1968) 370.

/16/ Schmidt, K. E. and Pandharipande, V. R., Phys. Rev. B E (1979) 2504.

/17/ Pandharipande, V. R. and Wiringa, R. B., Rev.

Mod. Phys.

51

(1979) 821.

/18/ Owen, J. C., Ann. o f Phys.

118

(1979) 373.

/19/ Owen, J. C., Phys. L e t t .

89B

(1980) 303.

/20/ Krotscheck, E., t o be published.

/21/ Lantto, L. J. and Siemens, P. J., Phys. L e t t . 68B (1977) 308; Nucl. Phys.

A317

(1979) 55.

-

/22/ Krotscheck, E., Z. Physik

B32

(1979) 395;

B33 (1979) 403.

-

/23/ Van Leeuwen, J. M. J., Groeneveld, J. and de Boer, J., Physica

25

(1959) 792.

/24/ S t e l l , G., i n The E q u i l i b r i u m Theory o f C l a s s i c a l F l u i d s , ed. F r i s c h , H. L. and Lebowitz, J. L. (Benjamin, N. Y., 1964).

/25/ Campbell, C. E. and Feenberg, E., Phys. Rev.

188 (1969) 396.

-

/26/ MacKenzie, J . J., Phys. Rev.

179

(1969) 1002.

/27/ Clark, J. W., Lam, P. M. and T e r Louw, W. J., Nucl. Phys.

A255

(1975) 1.

/28/ S c h i f f , D. and V e r l e t , L., Phys. Rev.

160

(1967) 208.

/29/ Ceperley, D., Chester, G. V. and Kalos, M. H., Phys. Rev. B E (1977) 3081.

/30/ Alvesalo, T. A., Haavasoja, T., Main, P. C., Manninen, M. T., Ray, J. and Rehn, L. M. M., Phys. Rev. B, t o be published.

/31/ L a n t t o , L. J. ,Phys. Rev. A, t o be published.

/32/ Dugan, J. V. and E t t e r s , R. D., J. Chem. Phys.

59 (1973) 6171 ; E t t e r s , R. D., Dugan, J. V.

-

and Palmer, R. W., J. Chem. Phys.

62

(1975)

313.

/33/ S t w a l l e y , W. C. and Nosanow, L. H., Phys. Rev.

L e t t .

36

(1976) 910.

/34/ M i l l e r , M. D. and Nosanow, L. H., Phys. Rev B E (1977) 4376.

/35/ Kolos, W. and Wolniewicz, L., J. Chem. Phys.

43 (1965) 2429; Chem. Phys. L e t t .

24

(1974)

- 457.

/36/ Woo, C. W., i n The Physics o f L i q u i d and S o l i d Helium, ed. Bennemann, K. H. and Ketterson, J. B. (Wiley,,N. Y., 1976).

/37/ Wu, F. Y. and Feenberg, E., Phys. Rev.

128

(1962) 943.

/38/ M i l l e r , M. D., Phys. Rev. B E (1976) 3937.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to