• Aucun résultat trouvé

INTERNAL FRICTION CAUSED BY THE INTRINSIC PROPERTIES OF DISLOCATIONS

N/A
N/A
Protected

Academic year: 2021

Partager "INTERNAL FRICTION CAUSED BY THE INTRINSIC PROPERTIES OF DISLOCATIONS"

Copied!
22
0
0

Texte intégral

(1)

HAL Id: jpa-00220957

https://hal.archives-ouvertes.fr/jpa-00220957

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTERNAL FRICTION CAUSED BY THE INTRINSIC PROPERTIES OF DISLOCATIONS

Gilbert Fantozzi, I. Ritchie

To cite this version:

Gilbert Fantozzi, I. Ritchie. INTERNAL FRICTION CAUSED BY THE INTRINSIC PROP- ERTIES OF DISLOCATIONS. Journal de Physique Colloques, 1981, 42 (C5), pp.C5-3-C5-23.

�10.1051/jphyscol:1981501�. �jpa-00220957�

(2)

JOURNAL DE PHYSIQUE

CoZZoque C5, suppZ6ment au nO1O, Tome 42, cntobre 1981 page C5-3

INTERNAL FRICTION CAUSED

BY

THE INTRINSIC PROPERTIES OF DISLOCATIONS

G. Fantozzi and I.G. ~ i t c h i e *

INSA, 69621 ViZZeurbanne, France

* A . E. C.L. -W.lV.R. E. ,?inma

,

Canada

Abstract.- Relaxation phenocena a t t r i b u t a b l e to tne i n t r i n s i c p r ~ p e r t i e s of ciislocations a r e revieved. The principal t h e o r e t i c a l rodels For the i n t r i n s i c c;islocations relaxations and the Snoek-KiSster relaxation a r e presented in o u t l i n e . %cent important experinental r e s u l t s , zainly on f.c.c., h.c.2. and b.c.c. metals, are exaslined and compared with the theoretical y e d i c t i o n s .

i.

Introduction.- In 1949, Bordoni ( I ) observed an internal Friction ( I F ) peak i n f . c . c . metals which could only be a t t r i b u t e d t o d i s l o c a t i o r ; ~ and was associated with double-kink generation (DKG) by Seecer

( 2 ) .

From the relaxation enthal py of 3ordoni peaks, estimates of the Peierls s t r e s s can be obtained. The r e l a t i v e l y high value found f o r the T.c.cls has persuaded several authors t h a t the 3ordoni peaks should not be a t t r i b u t e d t o

GKG.

The objective of t h i s paper i s t o review the e x p e r i ~ e n t a l properties of the Bordoni relaxation

(BR)

in the f . c . c 1 s together

w i t h

t h e i r a n a l o y e s i n other s t r u c - t u r e s , and t o compare them w i t h theoretical predictions. In the f . c . c l s the situation seecs c l e a r and in the b . c . c l s we can report the resolution of a long standing contro- versy about the r o l e played by

il

i n t e r s t i t i a l s i n the IF sr;ectra of deformed

sam-

ples. However, in the h . c . p l s and b . c . c B s some contradictions s t i l l e x i s t .

2. Theoretical Aspects.- Several models f o r the

3R

have been proposed and t h e i r e s s e n t i a l c h a r a c t e r i s t i c s a r e reviewed i n d e t a i l elsewhere

( 2 ) .

9nly two of the51 a r e generally retained t o explain experimental data on the

BR : DKG

and geometrical kink migration (GKM). In t h e b . c . c l s , the IF spectra of deforr,ied samples of Mo,

bl

and a-Fe a r e markedly d i f f e r e n t from those of sanples of

V , piby

Ta and hydrogen charged a-Fe. This difference, which until recently has been the subject of a contro- versy,is a t t r i b u t a b l e t o the presence of

H

i n t e r s t i t i a l s with some dislocation core mobility giving r i s e t o Snoek-ICi6ster (S-l:) peaks. According t o some authors

(4,5),

a t the atomic level, t h e S-#(H) relaxation i s due t o the roodification of t h e DKG and

GKN

processes by the core nobile i n t e r s t i t i a l s . Thus, i t i s i ~ p o r t a n t t o outline the ri~odels

O F

the S-X relaxation a s well.

2.1 The DKG nocie1.- The Seeger-Par6 theory (2,6) gives a good description of t h i s model. Consider a dislocation segment ( 1 ) parallel t o a Peierls valley ( f i g . 1 ) . A t

OK,

the Peierls s t r e s s

(o )

i s necessary t o displace i t . Pit

T > 0,

under the combined influence of thermal fluctuations and the applied s t r e s s P

(a,.), DKG

can occur. The IF due t o

DM6

a t t a i n s i t s naximum when the inposed frequency

(P)

i s of

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981501

(3)

C5-4 JOURNAL DE PHYSIQUE

'the sane o r d e r o f magnitude as t h e frequency

(v)

o f DKG :

P E ~ E R L S VALLEY. v =

vR

exp (-2 l J d k T ) (I

1

- - - - - -

where 2Wk = f o r n a t i o n ener- (=I

- - -

gy o f a k i n k p a i r , and vQ i s

I L L -

\

fb t h e eicjenfrequency o f t h e d i s -

-

l o c a t i o n l i n e .

A ( 0 ) B

I n Seeger's model, t h e seg- ment can be i n e i t h e r o f two c o n f i g u r a t i o n s (a) o r ( c ) . But w i t h o = 9, c o n f i g u r a t i o n

U = O ( c ) has an energy 2 !Ik g r e a t e r than t h a t o f ( a ) (see f i g . 1).

Consequently, t h e occupation p r o b a b i l i t y o f ( c ) i s v e r y s n a l l and no r e l a x a t i o n peak wi 11 be observed. The r e 1 axa- t i o n s t r e n g t h o n l y becomes ob-

(C)

X I * X servable when t h e exchange o f

d i s l o c a t i o n s between t h e two c o n f i g u r a t i o n s i s s i gni f i c a n t F i g . 1 : L e f t : schematic diagram o f a d i s l o c a t i o n ( i . e . i f t h e two c o n f i g u r a t i o n s overcoxing a P e i e r l s b a r r i e r by c r e a t i o n o f a dou- a r e e n e r g e t i c a l l y e q u i v a l e n t ) . b l e - k i n k : f r e e energy o f t h e double-kink as a func- For o # 0, t h e two c o n f i - t i o n o f k i n k s e p a r a t i o n x. g u r a t i o n s can become equal 1 y a) i n i t i a l p o s i t i o n o f t h e l i n e . b) t h e double-kink nrobable when t h e Par6 condi- i s created. c ) t h e k i n k s g l i d e along t h e l i n e . t i o n

a a b l

=

2kdk 121

i s f u l f i l l e d . When oa i s weak, t h i s c o n d i t i o n can o n l y be s a t i s f i e d by t h e i n t e r - n a l s t r e s s (ai).

This t h e o r y accounts f o r t h e p r i f i a r y c h a r a c t e r i s t i c s o f t h e BR (2) b u t f a i l s t o e x p l a i n t h e e x t e n t o f peak broadening, t h e v a r i a t i o n o f peak temperature (TFV,) w i t h microstruc'cural s t a t e and non-1 i near e f f e c t s ( s t r a i n anpl i tude dependen- ce and e f f e c t s o f b i a s s t r e s s ) . 3y i n c l u d i n g k i n k n i g r a t i o n , Engelke ( 7 ) has shown t h a t some o f these secondary f e a t u r e s can be explained. However, Esnouf and Fantozzi (3,;) have proposed a new approach t o t h e c a l c u l a t i o n o f I F caused by DKG. The energy diagram o f a segment l y i n g i n a P e i e r l s v a l l e y i s determined as a f u n c t i o n o f i t s p o s i t i o n For d i f f e r e n t values o f a and R ( f i g . 2). The a c t i v a t i o n volume ( v c ) and energy (Ec) f o r double-kink n u c l e a t i o n depend o n l y on o :

vm a = const.

C

n - 3 / 4 m = 4

(4)

K i n e t i c t h e o r y i s used t o c a l c u l a t e t h e d i s l o c a t i o n n o t i o n . The v a r i a t i o n o f t h e f r a c t i o n (nil o f d i s l o c a t i o n s l y i n g i n "Lie i - t h v a l l e y i s g i v e n by :

where t h e jump frequency from v a l l e y i t o iil i s

ri

,i+l = vR exp(-Ei ,i+l/kT) and Ei ,i+l e t c a r e as s p e c i f i e d i n F i g . 2:~he numerical s o l u t i o n o f t h e F i g . 2 : P o t e n t i a l Energy o f t h e d i s l o c a - above system, f o r an o s c i l l a t i n g ap- t i o n segment as a f u n c t i o n o f t h e number p l i e d s t r e s s , a l l o w s c a l c u l a t i o n o f

o f double-kinks. t h e area swept-out by t h e d i s l o c a t i o n

and hence t h e I F . A l l o f t h e characte- r i s t i c s o f t h e 3R a r e e x p l a i n e d by t h i s model, w i t h o u t t a k i n s i n t o account k i n k m i g r a t i o n . By o b t a i n i n g an e f f e c t i v e d i s l o c a t i o n m o b i l i t y f o r 3x6, Schl i p f and Schindlmayr ( 9 ) have obtained s i n i l a r r e s u l t s .

2.1.1 Peak h e i g h t . - For a p o p u l a t i o n o f equal segments,when t h e Pare condi- t i o n i s f u l f i l l e d , t h e i n t e n s i t y o f t h e "o v a r i e s as in w i t h n = 1 f o r s h o r t segments and n 2 f o r l o n g segr,~ents. For d i s t r i b u t i o n s o f R and oi, t h e peak h e i g h t v a r i e s as R2 f o r s h o r t serjments. !*en t h e Pare c o n d i t i o n i s i I O t s a t i s f i e d , t h e v a r i a t i o n o f peak h e i g h t i s v e r y pronounced. The exponent 2 shows t h a t t h e area swept-out by t h e segaent i s c o n t r o l l e d by t h e l i n e t e n s i o n (EL). I n a d d i t i o n , t h e r e l a x a t i o n s t r e n g t h decreases wit11 v i b r a t i o n frequency.

2.1.2

-.-

TH depends upon oi and R ( f i g . 3). It i s o n l y weakly dependent on R f o r a d i s t r i b u t i o n i n R o n l y , b u t changes s i g n i f i c a n t l y f o r d i s -

1

t r i b u t i o n s o f b o t h R and

a i .

These r e s u l t s show t h a t t h e v a r i a t i o n o f t h e pre-exponen- t i a l f a c t o r (yo) o f t h e r e l a - x a t i o n t i m e w i t h R i s given by : T~ % Rp (0 < p < 2 ) .

o The a c t i v a t i o n energy i s near

Ec (oil.

Fig.3 : V a r i a t i o n w i t h mean d e v i a t i o n i n i n t e r n a l

s t r e s s f o r d i f f e r e n t mean n o r n a l i z e d l e n g t h s Lb (LA

=

L/a) :

(5)

C5-6 JOURNAL DE PHYSIQUE

a) of the relative peak height b) of the peak temperature Ti!

(8).

2.1.3 Broadening .?actcr .- Distribution of

To

and/cr the activation energy cause peak broadening. I t can be up t o four tines -the factor for a ijebye peak. Fur- thermore, the high temperature part of the peak (aue to the longest segments) i s more developed than the r e s t of the peak.

2.1.4

Nan-1 inear effects .- The model predicts iaportant non-1 inear effects.

'!hen ai i s too snall t o s a t i s f y 'the Pare condi- tion, the peak can s t i l l develop and pass througli a maximun as the applied s t r e s s (oscillating or s t a t i c bias) increases ( f i g . 4 ) . ?!oreover, the peak s h i f t s t o lower teinperature and broadens with increasing a,. Sieilarly, the relaxation strength presents a maximm as a function

01'

ai (Fig. 3). The increase in peak height i s due to the F a r k o n d i t i on, the decrease resul t s fro^:

the reduction of swept-out area when the nunber of double-kinks increases.

Fig.

4 . :

Variation of peak height and temperature

Ti,

as a Func- tion OF aa (for L'

=

7 and a.

1 = 0 )

(8).

2 . 2

The

GIG1

;i.lr:odel.- Geometrical kinks moving a l o n ~ close-paeked directions can be ther~lal

1

y activated over .the second order Peierl s barriers giving r i s e t o

- - - * . . .

an I F $ieiio;aenon as Soc~i?

by

Brails-

v a l l e

ford (10) ai~d IYithrich (11). An applied

----.----..--- ,.----.---.-.. - - -

stress csuses

GI3 ((-Fig. 5)

given

by :

---- --

-

.--

---- .---

-

---.-. --.---.

-

7

Y D

-

= 0 8 - b i n n

a t i; a,v

2

k

1 5 1

Fig. 5

:

Geor.letrica1 kink ii~otion on a

n =

Zk/kT

= vd b- 3 exp ( -

WH/kT) dislocation making an angle

Y

with a where

=

v d

=

Debye

close-packed di recti

OQ

. frec;uenc:l,

W

M

= l:ir,!<

-;ic;ratisn enercy

(6)

and nk t h e nurlber o f geometrical k i n k s per u n i t length.

S o l u t i o n o f t h e above equation y i e l d s t h e relaxa.:ion s t r e n g t h ( A ) and tiix

( T ) o f t h e I F peak :

, ,

1-1 i s -the shear codulus and A t h e d i s l o c a L i o n d e n s i t y . The RL dependence o i i s due t o bc'iiaviour analogous t o a s t r e t c h e d s t r i n g behaviour ( 3 ) .

The

GK4 model can account f o r ;lost o 3 h e 3X c h a r z c t e r i s t i c s

.

D i s t r i b u t i o n s o f R and Y! ( F i g . 5 ) l e a d t o

broaden in^

o f % 1.5. This i s due t o d i s t r i b u t i o i ~ o:

T b u t n o t t h e a c t i v a t i o n energy ( u n l i k e DKG). P.noLher i s p o r t a n t p r e d i c t i o n i s t h a t r0 (1 15 4 /v ) :or

GK!

i s cm orders o f magnitude h i g h e r than

$

(5 132/v0) Tor DW. U n l i k e D i S , a we1 1-&Pined s t r e s s l e v e l i s n o t r e ~ u i r e d t o observe a decrease i n A when s t r e s s ( o >

:in

Y) induces a p i l e - u p o f geometrical k i n k s .

2.3 The S-K r e l a x a t i o n . - S-K(X) r e l a x a t i o n s where X i s an i m p u r i t y i n t e r s - t i t i a l (11) a r e w e l l e s t a b l i s h e d i n t h e I F spectra o f deformed b.c.c1s. A pheno- :menological model proposed by Schoeck (12) has been used w i t h v a r y i n g degrees o f success t o e x p l a i n t h e e x p e r i n e n t a l r e s u l t s . It i s based on t h e dragging o f 1 1 ' s oy s t r i n g l i k e d i s l o c a t i o n segments ( f i g . 6a). The r e l a x a t i o n tirce (T~!,) anci s t r e n g t h (ASK) found using t h i s model f o r a d i l u t e c o n c e n t r a t i o n (Cd) o f 1 1 ' s on t h e d i s l o c a - t i o n s a r e given by :

2 2

-cSK = a kT Lo Cd exp (i-iSK/kT) ; ASK =

6

A Lo 1 7 1

and t h e r e l a x a t i o n e n t h a l p y (HSK) by : tiSK = i-16 + l-lfd '

I S

I

I n these equations, Lo i s t h e mean segment l e n g t h , H' t h e b i n d i n s u>o, t > r ( D K G ) enthalpy o f t h e 1 1 ' s t o

t h e d i s l o c a t i o n s ,

8 '

0 0 - 0 - 0 0 0

K., 0 - 0 - 0 o O < t h e m i g r a t i o n enthalpy

u>O

x0

u.0. t<<~,. o f t h e 1 1 ' s a t t h e d i s l o -

0- 0 _ O o o c a t i o n s

( H ~

i s t h e same

0 0 ' 0 -oC

U=O q u a n t i t y i n t h e l a t t i c e )

anci a, B a r e numerical constants. When t h e cores

a = O , t = o a r e saturated, HSK redu-

a b

ces t o H ~ ' . Recently, F i g . 6 : Nodels o f t h e S-K r e l a x a t i o n : a) s t r i n g model. V e r d i n i and Bacci (13) b) double-kink generation i n t h e presence o f core-mobile have developed a m o d i f i - i m p u r i t y i n t e r s t i t i a l s. c a t i o n o f t h e model which

(7)

C5-8 JOURNAL DE PHYSIQLJE

takes i n t o account t h e d i s s i p a t i o n associated w i t h bow-out between t h e 1 1 ' s . They B

W'

show t h a t

aSK

becomes dependent on Gd (below s a t u r a t i o n ) and t h a t ?is#= 2H +H

.

Other m o d i f i c a t i o n s have been r e p o r t e d . For exaaple, Miner e t a l . (14) have shown t h a t when t h e occupation p r o b a b i l i t i e s o f t h e p i n n i n g s i t e s a r e more c o r r e c t l y t r e a t e d by Ferrni-Oirac s t a t i s t i c s , tiSK can take on values between H~

+

H~ and 2 H~ t

H"" .

Fror,~ many comparisons o f t h e p r e d i c t i o n s o f Schoeck's codel w i t h e x p e r i - ment, t h e r e i s l i t t l e donbt t h a t several aspects o f t h e nodel a r e c o r r e c t .

Seeger (4) a b b r i b u t e s S-K ( X ) t o DKG i n t h e presence o f core n o b i l e X i n t e r s t i t i a l s ( f i z . 6b). I n t h i s model, w i t h t h e e x c e p t i o n o f t h e numerical cons- t a n t s , equ. 17

1

i s unchanged, w h i l e t h e r e l a x a t i c n e n t h a l p y becomes :

HSK = 2 Hk

+

H

M'

19

I

where 2 tik i s t h e f o r m a t i o n e n t h a l p y o f a k i n k p a i r . E i r t h (5) c o n s i d e r i n g t h e s p e c i a l case o f S-K(H) i n a-Fe, has developed a s i m i l a r nodel f o r t h e case o f near s a t u r a t i o n . He f i n d s

6 112

HSIc = 2 Hk t HM1

-

(vo b /219 110

1

A t t h e s t r e s s l e v e l s normally i n v o l v e d eqns

/

S

I

and

1

13

1

become p r a t i c a l l y iden- t i c a l . However, t h e l a s t t e r n does g i v e an e x p l i c i t dependence on a (and hence ui) which can account F o r t h e broadening o f t h e S-S peaks. The most i m p o r t a n t p o i n t t o e s t a b l i s h i s which o f t h e p r e d i c t i o n s , eqn. 16

1

( o r i t s m o d i f i c a t i o n s ) o r eqn. 19

1

( o r 115 I) cones c l o s e s t t o r e p r e s e n t i n g thei'experimental values o f tiSK.

3. Important Experimental Results.- Our t a s k i n t h i s s e c t i o n i s t o examine t h e i m p o r t a n t experimental r e s u l t s on t h e i n t r i n s i c r e l a x a t i o n s o f d i s l o c a t i o n s i n me- t a l s and t o t r y t o i n t e r p r e t them w i t h the inodels o u t l i n e d i n s e c t i o n 2. Results p u b l i s h e d up t o t h e time o f the Manchester conference (1579) have been reviewed r e c e n t l y ( 3 ) , so we w i l l concentrate m a i n l y on more r e c e n t r e s u l t s .

3 . 1 F.C.C. and H.C.P. metals.- The

ER

i n these metals i s u s u a l l y conposed o f two I F peaks : 6, ( t h e W i b l e t t and Wilks peak) and Bz ( t h e Bordoni peak

.

I n

metals o f o r d i n a r y p u r i t y t h e BR i s n o t observed i n annealed specimens and o n l y appears a f t e r p l a s t i c deformation. I n u l t r a h i g h p u r i t y (UHP) samples, t h e BR i s always observed, even a f t e r r e c r y s t a l l i z a t i o n , b u t depends s t r o n g l y on t h e a p p l i e d s t r e s s . This i s shown on f i g . 7 f o r Pb (15) and on f i g . 8 f o r Ag (16). Thus t h e disappearance o f t h e BR i n non-UHP metals a f t e r r e c r y s t a l l i z a t i o n i s n o t due s o l e l y t o t h e decrease i n A b u t a l s o t o p i n n i n g by i m p u r i t i e s . T h i s shows t h a t t h e BR can o n l y be a t t r i b u t e d t o t h e i n t r i n s i c p r o p e r t i e s o f d i s l o c a t i o n s , i . e . GKM and/or DKG.

(8)

F i g . 8 : E v o l u t i o n o f t h e RR d u r i n g r e c r y s - t a l l i s a t i o n a t 20C°C i n GN s i l v e r c o l d - r o l l e d 6% a t 20°C

( %

= 2.5 x : 1,O.n; 2,10mn;

3, 30nn; 4, 60 mn; 5,122mn; 6 , 840mn (16).

F i g . 7 : E v o l u t i o n o f t h e BR i n Pb : 1, unannealed; 2, annealed a t C70K;

3, a t 550K (15).

3.1.1 Deak height.- The peak h e i g h t v a r i e s w i t h i m p u r i t y content, c o n d i t i o n s of p l a s t i c deformation, annealing and i r r a d i a t i o n . This v a r i a t i o n i s l i n k e d t o t h e e v o l u t i o n o f R and i s o f t h e form gr w i t h 1

6

r

&

2.

3.1.2 Peak tenperaSture.- The peak teraperature v a r i e s s l i g h t l y w i t h t h e mi

-

c r o s t r u c t u r a l s t a t e and i s caused e s s e n t i a l l y by a dependence o f T on R ( c k S w i t h s l y i n g between 1 and 4) (3,17). This v a r i a t i o n e x p l a i n s t h e l a r g e d i s p e r s i o n o f the data i n ,Arrhenius p l o t s .

3.1.5 Broadening f a c t o r . - The peaks a r e g e n e r a l l y

tvo

t o four times broader tnan a Jebye peak, i . e . -r i s d i s t r i b u t e d . They a r e broader f o r small amounts o f p l a s t i c defor;!ation,witl~ t h e increase i n w i d t h ?ore pronounced on t h e h i g h tenpera- t u r e s s i l e s . I n c o n t r a s t , annealing decreases t h e \:id",~s by r e d u c i n ~ t h e h i y h tem- p e r a t u r e sides p r e f e r e n t i a l l y . This asyrr7etry i n t h e r e L u c t i o n O F t i l e w i d t h i s shown by t h e d i f f e r e n c e s i n t h e I F curves f o r s l i g h t l y deformed A1 i n f i g . 9 ( 18)

-

(9)

C5-10 JOURNAL DE PHYSIQUE

Fig. 9 : the d i f f e r e n c e 6n

-

6n+l between t h e curve obtained d u r i n g t h e l i n e a r warm- up, n, and t h a t obtained d u r i n s t h e l i n e a r warc-up, n + l

,

a f t e r f l e x u r a l aeformation o f O.2 % a t 83 X ( n = 3, annealing temperature T R = 222 K; n = $, T R = 24; K; n = 5,

T 2 =

205 K; n = 6 , T - 316 S). The s h o r t arrow

2

-

i n d i c a t e s t h e peak temperature o f Z2, w h i l e t h e l o n g arrow i n d i c a t e s t h e texpera- t u r e o f t h e oaximum o f 6,

-

6n+l ( 1 8 ) .

3.1.4 Non-Linear E f f e c t s . - When oi i s s i g n i f i c a n t ( a f t e r 1ar:e p l a s t i c defamation), oa has l i t t l e e f f e c t ( f i ~ . 1,;). However, f o r weak oi

A a-lx l o "

I

l a

I

F i g . 10. : I n t e r n a l f r i c t i o n i n g o l d colci-worked 7 Z a t 23°C : a ) a f t e r d e f o r n a t i o n , b) a f t e r annealing 60 n i n a t 35C°C. O s c i l l a t i n c s t r a i n amplitude : ( 1 ) c m = 4 x 1 0 - ~ ,

( 2 ) I ~ X ~ C - " ( 3 ) 5 ~ 1 3 - ~ ' ( 4 )

~ x I o - ~ . c ) I n t e r n a l f r i c t i o n i n g o l d cold-worked 62 % and a n n e a l e ~ 60 min a t 1GS0C.

( 1 ) = ?x~;-7, ( 2 ) 1 . 5 ~ 1 0 - , ( 3 ) O X ~ O - ~ , ( 4 ) 1 . 5 x 1 0 - ~ (14).

(10)

i m p o r t a n t n o n - l i n e a r e f f e c t s are observed ( F i g . I C ) . : t h e r e l a x a t i o n s t r e n g t h de- pends s t r o n g l y on

%

( p e r i o d i c o r s t a t i c ) . S i r i l a r r e s u l t s have been observed by many authors ( 3 ) . The BR i n t e n s i t y increases considerably w i t h the vibra" ~ 1 0 n an- p l i t u d e o r s t a t i c s t r e s s . Moreover, t h e rezoval o f t h e BR d u r i n g recovery o r r e - c r y s t a l l i z a t i o n i s caused by a decrease o-f oi. I n soae cases, t h e peak h e i g h t pas+

ses through a naxir~um as a f u n c t i o n o f t h e s t r a i n amplitude. I n

MQ,

s i y n i i ' i c a n t non- l i n e a r e f f e c t s are observed a f t e r p l a s t i c deformation when o n l y one s l i p system i s a c t i v a t e d (20). As shown i n f i ~ . 11, t h e peak h e i g h t s o f both B1 and S2 pass through a maxieurfi as t h e superimposed b i a s s t r e s s i s increased.

F i g . 11 : V a r i a t i o n s o f t h e peak h e i s h t s o f as a f u n c t i o n o f b i a s s t r e s s

-

6 as ) ; 1, o = 0; 2, o =8x10 11; 3,

-5

s

-5 s -4

as = 2x10 11; 4, o s = 5 x 1 0 11; 5, S = 1 0 11.

6 i and 3; : a f t e r s u b s t r a c t i o n o f t h e back- ground (2C).

3.1.5 Lgw T e ~ p e r a t u r e Modulus Defect.- I n b o t h f . c . c B s and h.c.pls, t h e r e i s a modulus d e f e c t a t ter3peratures lower t h a n t h e 6R. Consequently, SZ?, on a t l e a s t one o f t h e d i s l o c a t i o n types, must be reserved t o e x p l a i n t h i s phenonenon.

3.1.5 D i s l o c a t i o n types.- Seeger (2) proposed t h a t non-screw d i s l o c a t i o n segments ( 1 ' s ) g i v e r i s e t o B1 and screws ( 0 ' s ) g i v e r i s e t o B2, since t h e P e i e r l s energy f o r 0 ' s i s I i i g l i e r than t h a t f o r 1 ' s . T h i s i s supported by obser- v a t i o n s t h a t Bl i s qore s e n s i t i v e t o p i n n i n g by p o i n t d e f e c t s than B2. However, r e c e n t e l e c t r o n nicroscopy s t u d i e s by Lauzier and i i n i e r (21) suFport an e a r l i e r hypothesis o f Thompson and tlolr!es (22),

i

.e.

31 i s associated w i t h 90' and 30' d i s l o c a t i o n s l y i n g along <112> d i r e c t i o n and 52 i s associated w i t h 60° and screw d i s l o c a t i o n s l y i n g a l o n ~ < I 1 9 d i r e c t i o n . The 0 ' s are r e s p o n s i b l e :or t h e h i g h t e o p e r a t u r e component of B2 whereas t h e 6C0 d i s l o c a t i o n s a r e r e s p o n s i b l e f o r t h e low t e c ~ p e r a t u r e co,lponen'i. T h i s hypothesis a1 locrs us t o e x p l a i n t h e v a r i a t i o n of

(11)

C5-12 JOURNAL DE PHYSIQUE

the peak tenperature during i r r a d i z t i o n o r annealing (21) an3 also accounts f o r the two peaks

X

and

Y

observed in deformed Ni (23)

:

peak

X

may be the analogue of anci

Y

the analogue of

B1.

Besson (23) proposed t h a t

Y

was caused by dissociated forns of the sane dislocations responsible f o r

X.

The Thonipon and Holmes hypothesis i s more plausible and does not necessitate the assunption of an increase in dissociation with p l a s t i c deforsation. Nevertheless, the r d l e of stac- king f a u l t energy i n the BX remains t o be elucidated. In Wg, Seyed-Reihani (20) has shown t h a t r e s u l t s lead t o a conclusion i n keeping with Thonpson and Holmes hy- pothesis a l s o .

3.1.7 Comment.- Although the

BR

has been observed in several h . c . p l s , only i n

UKP Mg

(26) have 31 and

B2

peaks

w i t h

properties conparable t o those i n t h e f . c . c ' s been reported. We conclude t h a t f . c . c l s and h.c.p's behave s i m i l a r l y ( 3 ) . Iievertheless, f u r t h e r studies on other

UHP

h . c . p l s will be necessary t o confiri3 t h i s point.

3.1.8 Interpretation.- Only the

DKG

model accounts f o r a l l of the experimen- t a l c h a r a c t e r i s t i c s of the

32

as can be seen fron a d i r e c t conparison of sections 2.1.1. t o 2.1.<.. w i t h sections 3.1.1. t o 3.1.4. Nevertheless, the value of a ob-

4

P

tained fror?, the relaxation enthalpy of the

BR

-

10-

p) i s considerably grea- t e r than t h a t predicted from p l a s t i c behaviour and so, the

DXG

node1 f o r the

ER

i s s t i l l contested (3,17). Two r e l a t i v e l y new types of experirient a l s o support the

CXU

model. F i r s t l y , neasurexents of ultrasonic attenuation a t very low

temperatures

de:.ionstrate

GKFl

(24)

:

the attenuation decreases as the bias s t r e s s increases ( f i g . 12). This " s t i f f e n i n g " phenonenon i s due t o the pile-up of geometrical kinks

in response t o the bias

- .

a

-

s t r e s s (25). In the tenpe-

\ 0 \ a

r a t u r e range of the

ER,

4 K 1 9 ~ 55K 105K

4

1 5 1 ~

dislocation segoents sur-

nount the P e i e r l s b a r r i e r s and the attenuation in-

- creases

w i t h

bias s t r e s s

Fig. 12

:

Variation of attenuation versus s t r e s s a t ( f i g . 12). So.2e d i f f e r e n t d i f f e r e n t t e s t i n g temperatures in A1 ( 2 4 ) . r e s u l t s were reported re- cently (26)

b u t

remain t o be confir~ied. Secondly, a thermal l:f activated microdefor~iation stage (3,27) associa- ted with the

9k

has been observed i n A1 , Au and

Mg

( f i g . 13) tosether with a va- r i a t i o n i n t h e a n e l a s t i c l i m i t (27).

A

q u a n t i t a t i v e analysis of these r e s u l t s y i e l d s an activation energy of

%

0 . 1 eV and a voluae of %1OC

b3

e n t i r e l y in keeping with the

DKG

model ( 2 7 ) .

In conclusion, the experisjental r e s u l t s strongly support the existence of a

Peierls-Nabarro s t r e s s in the f.c.c and h.c.p metal of t o p.

(12)

Fig. 13

:

?licrodeforr4iation (an6 derivative curve) as a function of temperature f o r a 6N gold sam- ple, deforned

0.7 %

in torsion a t

,7-\

10

K

and annealed a t 150 K

:

( a )

with a s t a t i c s t r e s s

a =

5x10

-4

, ( b ) a f t e r suppression of the s t r e s s a t 10

K ( 3 ) .

0 020 40 80 80 lo0 0 50 100

r e s u l t s f o r a deformed s i n g l e c r y s t a l of Ta (33) a r e shown i n f i g .

15

where the IFS i s resolved i n t o

7

compo- nent peaks with only one of them a t t r i b u t e d (by the authors) t o 3.2 B.C.C. Heta1s.- The i n t r i n s i c dislocations relaxations i n the b . c . c l s a r e of special i n t e r e s t because the mobilities of y s and 0 ' s a r e such t h a t the analogue of the Bordoni relaxation i s s p l i t i n t o two well-separated peaks (28,29)

:

a low temperature peak associated with

DKG

(L) and a peak a t a much higher tercpera- t u r e associated with DkS ( 0 ) . Moreover, geometrical kinks on 0 ' s a r e expected t o be r a t h e r abrupt ( e f f e c t i v e l y high second order Peierls b a r r i e r s (33)) so t h a t

GKF4

( 0 ) should f a l l i n t c a tenperature range close t o t h a t f o r

DKG

(I). As in the case o f the .F.c.cls,

GR4

(I) i s expected t o occur a t very low temperatures

( < 4 K)

and manifest i t s e l f as a modulus defect a t the lowest temperatures investigated.

These expectations seem t o be realized

i n

Ho,

fJ

and a-Fe as typified by t h e IFS of a deformed s i n g l e crystal o f Mo (31,32) in f i g . 14. In c o n t r a s t , i n

V ,

Nb

and Ta ( a l s o a-Fe + H ) the IFS i s characteri-

t h e i n t r i n s i c disloca-

100 200 300 400 500 600 T ( K )

tion processes discus-

sed above; t h e others Fig.

14 :

Internal f r i c t i o n spectrum of a deformed crystal a r e a t t r i b u t e d t o the of Mo. P l a s t i c a l l y strained 1

%

a t 200

K

+ a small additio- interactions of dislo- nnal p l a s t i c s t r a i n i n torsion a t 295

K

(31). cations with 1 1 ' s .

Q-'

~ 1 0 ~ Molybdenum

-

ci t 1001

RRR = 7357 T

zed by a l a r g e r number

of peaks. Typical re-

(13)

JOURNAL DE PHYSIQUE

SNOEK-KOSTER RELAXATION

S.K.P.

71 7'2

Most of the differen- ces between the f.c.cls and b.c.ci s can be t r a - ced t o the strong interactions between residual 11's (H,

N ,

0 o r

C

atoms) with the dislocations in b.c.c1s. In f a c t , these i n t e r a c t i o n s can lead t o diametri- c a l l y opposed changes i n properties, e.g.

Fig. 15: Internal f r i c t i o n spectrum of a deformed single crys- hardening through t a l of Ta. Deformation history

:

3.1

%

t e n s i l e s t r a i n a t the interactions of 375K + 0.5

%

t e n s i l e s t r a i n a t 200K +. a small additional plas- 11's with 1 ' s and t i c s t r a i n i n torsion a t 295K (33). softening through

t h e i r interactions with 0 ' s ( s e e review by Pink and Arsenault ( 3 4 ) ) . The presence of t r a c e amounts of H in deformed

V ,

Nb and Ta samples has led t o a controversy over the i n t e r p r e t a - tion of the IFS i n these metals which has been resolved recently.

3.2.1

A

Controversy Resolved.- The IFS of deformed

V ,

Nb or Ta i s general- l y characterized by a group of relaxations i n the range 120-200K ( e - g . f i g . 15) l a - belled

or

by most workers (35,36). However, a peak labelled

6 ,

a t even lower tem- peratures, i s observed i n some samples (35,37). As suggested by Bruner ( 3 8 ) , the Rome school (35,37). has argued t h a t

a

requires the presence of both

H

and d i s - locations and t h a t

S

can be a t t r i b u t e d t o i n t r i n s i c dislocation processes. This i n t e r p r e t a t i o n was contested by the S t u t t g a r t School who studied samples with consi- derably lower I1 concentrations and observed neither

6

nor any indication of d i s - location movement below

a,

leading them t o a t t r i b u t e

a

t o i n t r i n s i c dislocation processes. Nevertheless, over the l a s t few years, evidence t h a t a involved H began t o accumulate

:

notably from Shibata e t a l . (39) and Mizubayashi e t a l . (40) f o r V , Ferron e t a l . ( 4 1 ) , Kuramochi e t a l . (42) and Verdini and Bacci (43) f o r Nb and Rodrian (33) f o r Ta. Yet, no explanation f o r the absence of

6

i n samples with lower I1 ( p a r t i c u l a r l y 0) contents was offered. More recently, work on UHP Nb (31, 44, 45) has demonstrated t h a t a involves H and t h a t the major component can be a t t r i b u t e d t o an S-K(H) relaxation (43). In the highest purity samples

(CH

<< 1

a t . p.p.m,

Co <

5 a t . p.p.m), the work a t S t u t t g a r t (31, 44, 45) has shown

t h a t another peak appears below a ( % 70 K a s shown i n f i g . 16). B u t , i n order t o

completely s e t t l e the controversy, i t i s necessary t o show t h a t the 70 K peak i s

equivalent t o

6.

In an attempt t o do t h i s , Maul (45) repeated measurement on sam-

(14)

p l e s doped w i t h 0 and H (Co = 800

-

1000 a t , p.p.m and CH = 20

-

30 a t . p.p.m).

The r e s u l t s a r e shown i n F i g . 17 and compared d i r e c t l y w i t h 6 (35).

It i s c l e a r t h a t i n doped Nb t h e r e i s a peak % 30 0 which i s Nb 7011 e q u i v a l e n t t o 6. A sug-

7 8 9 10 C.< 5 atpprn

F 3 1.5 kHz T -20K

gested e x p l a n a t i o n o f these r e s u l t s l i e s i n t h e t r a p p i n g o f m o b i l e H a t immobile 0 ( o r N) so t h a t t h e number o f H atoms a v a i l a b l e t o deco- r a t e t h e d i s l o c a t i o n s i s reduced, a1 lowing t h e i n - t r i n s i c mechanisms t o be revealed i n l e s s pure samples (44, 45). However, F i g . 16 : I n t e r n a l f r i c t i o n o f a s i n g l e c r y s t a l o f Nb we do n o t regard t h e equi- a f t e r a thorough degassing (CH << 1 a t . p.p.m) and de- valence o f t h e 30 K ( 6 )

f o r m a t i o n a t 20 K (45). and 70 K peaks as having

been demonstrated conclu- s i v e l y . Since 6 i s ob-

1

served o n l y i n t h e presen- ce o f s i g n i f i c a n t q u a n t i -

0

-

t i e s o f 0 ( o r N), we

-

X

i=l suggest t h a t 6 i s pre-

dominantly GKM ( 0 ) and 0.5

-

t h a t DKG ( l ) , which i s predominant i n t h e 70 K peak, i s pinned-out. T h i s i s supported by f o u r t y -

,

/ pes o f o b s e r v a t i o n : i)

0 - I I I

-

0 100 200 300 a s h i f t as l a r g e as 70 K

f (K)

-

t o 30 K i s n o t observed F i g . 17 : I n t e r n a l f r i c t i o n i n a doped Nb s i n g l e c r y s - i n c o n t r o l l e d p i n n i n g ex- t a l (Co = 800

-

1000 a t . p.p.m)

.

1, a f t e r deformation 2 periments, where t h e a f t e r H charging t o CH = 20-30 a t . p.p.m; 3, r e s u l t s s h i f t f o r an e q u i v a l e n t o f Mazzolai and Nuovo (35,45). r e d u c t i o n i n peak h e i g h t

i s o n l y 5-6 K (35,3);

i i ) t h e r e l a x a t i o n parameters of 6 a r e more c o n s i s t e n t w i t h GKM ( 0 ) than DKG ( 1 ) ( s e c t i o n 3.2.4); i i i ) r e s u l t s on thoroughly outgassed V (40) appear t o e x h i b i t b o t h

(15)

~ 5 - 1 6 JOURNAL DE PHYSIQUE

peaks i n t h e same spectrum, w h i l e t h e h i g h e r temperature peak i s absent i n samples outgassed t o a l e s s e r e x t e n t ; i v ) a ( a t t r i b u t e d t o DKG

(1)

i n cc -Fe)cannot be gene- r a t e d i n t h e presence o f o n l y % 2 0 a t . p.p.m o f C o r N (46).

3.2.2 S-K (H) Peaks.- I t i s i n t e r e s t i n g t o examine t h e p r e d i c t i o n s o f t h e models o u t l i n e d i n s e c t i o n 2-3 f o r t h e case o f t h e S-K (H) i n a-Fe : i ) because i t i s t h e most thoroughly i n v e s t i g a t e d S-K (H) and ii) because i t i s s i m i l a r i n most respects t o t h e S-K (H) ( l a b e l l e d a) i n V, Nb and Ta. To check t h e v a l i d i t y o f eqns 18

1

and 19

1

we must compare t h e experimental values o f HSK ( r a n g i n g from 0.11 t o 0.33 eV) (47-50) w i t h ~ ~

+

H ~ ' ( and 2 H k ( l ) 1

+

H". Fmm s t u d i e s of peak a i n Fe, 2 Hk

(I)

i s i n t h e range 0.04 t o 0.06 eV (48, 50, 51), w h i l e t h e most probable value o f H

B (L)

i s 0.61 eV (52). Whether we take HM' = HM ( f o l l o w i n g Seeger ( 4 ) ) o r H ~ H 12 ( f o l l o w i n g H i r t h ( 5 ) ) , since t h e values o f H~ curren- M ' ~ t l y advocated by v a r i o u s reviewers l i e i n t h e range 0.042 t o 0.069 eV (53,54), no combination o f t h e data seems t o be c o n s i s t e n t w i t h e i t h e r t h e Schoeck model, eqn.

181, o r t h e Seeger o r H i r t h models, eqn. 191, unless t h e lower bound o f HSK (found i n a s e r i e s o f magnetic a f t e r - e f f e c t s t u d i e s o n l y ) i s compared w i t h t h e upper bound o f 2 Hk

(I) +

HM' as p o i n t e d o u t by KC e t a l . (49). We suggest t h a t t h i s v e r y unsa- t i s f a c t o r y s i t u a t i o n a r i s e s because 2 Hk

(I)

i s e f f e c t i v e l y increased i n t h e p r e - sence o f H. This i s c o n s i s t e n t w i t h t h e v i e w p o i n t expressed by H i r t h (5) who a t t r i - butes t h e S-K (H) i n Fe t o a combination o f hardened 1 ' s and softened 0 ' s .

3.2.3 C l a s s i f i c a t i o n o f t h e I F Peaks.- From t h e above, i t i s c l e a r t h a t the l a b e l l i n g o f t h e peaks i n t h e IFS o f a deformed b.c.c. has become confusing.

We propose t h a t t h e l a b e l l i n g should be m o d i f i e d i n t h e manner shown i n t a b l e 1 t o r e t a i n as much o f the t r a d i t i o n n a l c l a s s i f i c a t i o n scheme (3) as p o s s i b l e , y e t t o r e f l e c t t h e mechanisms involved, r a t h e r than simply t h e temperature ranges i n which the peaks occur.

3.2.4 Other Recent Experimental Results.- From f i g . 14, i t i s c l e a r t h a t i n UHP deformed b.c.c's t h e IFS c o n s i s t s o f a low temperature group o f peaks and a h i g h temperature peak. The low temperature group i s g e n e r a l l y a t t r i b u t e d t o one o r b o t h o f t h e a l ( 0 ) and a processes; t h e h i g h temperautre peak i s a t t r i b u - t e d t o t h e y process. I n t h e f o l l o w i n g , we r e f e r t o them p i m p l y as al/a and y r e s p e c t i v e l y . Evidence f o r t h e presence o f a t l e a s t two d i s c r e t e r e l a x a t i o n s i n a ' l a c o n s i s t s o f t h e marked asymmetry o r shoulder which appears on t h e low tempe- r a t u r e s i d e o f t h e peak and a corresponding step i n t h e modulus curve. Four such steps have been r e p o r t e d f o r t h e lowest temperature peak i n V ( 4 0 ) . T h i s i s sirni- l a r t o t h e stepped modulus curves associated w i t h t h e BR ( 3 ) .

a ) R e l a x a t i o n Parameters.- A c t i v a t i o n parameters from t h e peak s h i f t o f a ' l a w i t h frequency f a l l i n t o two groups : f o r V (37), Nb (43,55) and Ta (35) t h e a c t i - v a t i o n energy f a l l s i n t h e range 0.012 t o 0.047 eV and t h e pre-exponential f a c t o r f a l l s i n t o t h e range t o 2 x 1 0 - ~ s ; f o r Mo (3,32),

W

(3) and a-Fe (51,46), t h e

(16)

e q u i v a l e n t ranges a r e 0.04 t o 0.29 eV and 1 . 4 x 1 0 - ' ~ t o 5x10-1°s. The f i r s t set, i .e. t h e o l d 6 peaks, seems t o be c o n s i s t e n t w i t h GKM ( 0 ) ; w h i l e t h e second s e t seems t o be more c o n s i s t e n t w i t h DKG

(I).

I t w i l l be i n t e r e s t i n g t o see how t h e r e l a x a t i o n parameters o f t h e r e c e n t l y discovered 70 K peak i n Nb and t h e 57 i n V compare w i t h those o f t h e o l d 6 peaks.

TABLE 1

CLASSIFICATION SCHEME FOR THE I F PEAKS I N DEFORMED BCC METALS

.

R e l a x a t i o n parameters so f a r obtained f o r t h e y peaks i n Nb (56), Ta (33), Mo(32) W(3), a-Fe (46,57,58) a r e a l l e n t i r e l y c o n s i s t e n t w i t h DKG ( 0 ) . The y peak narrowness and i n s t a b i l i t y i s taken i n t o account by a model proposed by AstiC (58). I n t h i s model. t h e O's move by thermal a c t i v a t i o n i n t h e i n t e r n a l s t r e s s f i e l d and t h e d i s l o c a t i o n segments change from an i n i t i a l s t r a i g h t p o s i t i o n

towards a bowed-out position. During t h i s motion, t h e screw p a r t o f t h e d i s l o c a t i o n decreases and t h e y peak disappears. This model gives a good d e s c r i p t i o n o f t h e y behaviour i n b.c.cls.

NEW LABEL a' ( 1 )

a; ( 0 )

1

a l / a

a i i = 1,2,3

Y ( i

Bi

(1)

fii ( @ I S-K' (X), S-K' ( X , l ) S-K (X), S-K (X,O) (X = H, 0, N o r C)

B,(X) 2 BY(x) PROCESS

INTRINSIC

1

GKM

(1)

DISLOCATION GKM ( 0 )

LOW TEMP. DKG (1)

INTRINSIC

DISLOCATION DKG (0)

1

HIGH TEMP.

INTRINSIC INTERACTION EXTRINSIC INTERACTION CORE-MOBILITY

EXTRINSIC INTERACTION IMMOBILE PINS

OLD LABEL1S) a'

a ' a2 a (Mo, W, Fe) 6 (V, Nb, Ta) 57 K (V) 70 K (Nb)

Y. Y1 Y2

B ~ , i = 1 , 2, 3

a (V, Nb, Ta) C.W.P.

S-K 'i

'i

(17)

C5- 18 JOURNAL DE PHYSIQUE

b) Conditions of P l a s t i c deformation.- Studies of the amount and temperatu- r e of p l a s t i c deformation on the a ' / a and y peaks, p a r t i c u l a r l y i n Mo (32,59),

W

(77) and a-Fe (58, 60) indicate t h a t a major component of a ' l a i s due t o 1 ' s and t h a t

y

i s due t o 0 ' s . In a-Fe the e n t i r e a ' / a complex i s a t t r i b u t e d t o

DKG

(1) ( 6 0 ) , which suggests t h a t the apparent s t r u c t u r e of a ' l a i s due t o the presence of several types of t s with nearly equal mobilities.

c ) Effects of Impurities.- In a-Fe, the interaction of 11's (other than H ) w i t h 1 ' s gives r i s e t o 6, (60,61). Similar peaks a r e expected i n t h e other

b . c . c l s but i n

V , Nb

and Ta they a r e probably inhibited by t h e i n t e r a c t i o n s of 0 (or

N ) w i t h

residual

H,

o r masked by the

S-K ( H )

relaxation. Extra interaction peaks a r e observed i n the r e s u l t s of Rieu

(59)

on single c r y s t a l s of Mo and

W .

Of these, the peak labelled B2 by t h e author i s a t t r i b u t e d t o the i n t e r a c t i o n of dislocations w i t h unspecified impurities. In Nb (62) and Ta ( f i g . 1 5 ) , the two components yl and y2 t h a t a r e candidates f o r

DKG ( 8 )

behave d i f f e r e n t l y

i n

the presence of 11's. I t has been reported t h a t i n Nb

yl

requires the presence of 0 (62), whereas in Ta, y2 requires the presence of 0 (33). In Fe, By (60, 61) seems t o require the presence of

C

( o r N). I t i s probable, t h a t i n a l l the b . c . c l s of suf- f i c i e n t l y high p u r i t y

y

i s a symmetric s i n g l e peak ( s e e f i g .

14

f o r Mo). In subs- t i t u t i o n n a l Fe a l l o y s , Asti& (58) has observed two peaks c a l l e d yI and y I I

( f i g . 18)

:

yI appears around 230 K and y I I a t about 320 K. For d i l u t e a l l o y s ,

yI

and

yII

appear together whereas f o r concentrated alloys only

y I

appears.

The behaviour of these two peaks i s q u i t e similar t o t h e

y

peak in pure iron.

Fig. 18

:

Internal f r i c t i o n spectra of Fe-Ti alloys predeformed 5 % a t 300 K

then deformed a t 120 K

:

influence of T i concentration (58).

(18)

The

YI

peak i s associated t o

DKG

on softened 0 ' s and the activation enthalpy measured from IF experiments i s i n good agreement w i t h the values deduced from p l a s t i c i t y behaviour

(58).

The yII peak i s due t o DKG on normal 0 ' s .

d ) Effects of I r r a d i a t i o n . - Low temperature, low dose i r r a d i a t i o n s of prede- formed b . c . c l s produce similar changes t o the IFS a s low temperature deformation.

Both create i n t r i n s i c point defects which i n t e r a c t with the dislocations and give r i s e t o interaction peaks analogous t o the Hasiguti peaks i n the f . c . c l s

( 3 ) .

The most detailed study of a deformed and i r r a d i a t e d b.c.c. i s the study of a-Fe re- ported by the Grenoble group (46, 60, 61). The evolution of the IFS a f t e r 20K

electron i r r a d i a t i o n i s shown i n f i g . 19 and the r e s u l t s of

fflxlos

experiments comparing the l ow

SPECTRULI AFTER ANNEAL AT I 77 K 2 1 5 0 K

3 18OK

temperature i r r a d i a t i o n w i t h

4 220K

s 2 6 0 K

deformation a r e summarized i n

f i g . 20. Generation of i n t r i n - s i c point defects a t low tem- peratures suppresses a 1 / a and generates

B1.

After an- nealing i n stage I11 of t h e recovery of e l e c t r i c a l r e s i s - t i v i t y , the dislocations which give r i s e t o a ' / a a r e

o SO 100

cleaned of t h e i r i n t r i n s i c

point defects and

a 1 / a

reap- Fig. 19

:

Evolution of the internal f r i c t i o n spec- pears. By following changes t r u m of deformed and electron i r r a d i a t e d (20 K) i n the relaxation i n t e n s i t y a-Fe during successive anneals (60,61). and peak temperature of a ' / a

and B1 during anneal i ng , stages s i m i l a r t o those observed i n t h e recovery of r e s i s t i v i t y can be observed, allowing the IFS t o be used as a sensitive tool in the study of radiation damage.

In

Nb

and Ta, i t i s apparent t h a t the interaction of t r a c e s of H with vacancies leads t o f u r t h e r complications (33,45).

Effects of i r r a d i a t i o n on y have not been studied in any d e t a i l .

A

second interaction peak, By, i s observed a t temperatures j u s t below y i n a-Fe (46).

I t i s a t t r i b u t e d t o the dragging of a s e l f - i n t e r s t i t i a l - t y p e defect by geometrical kinks on 0 ' s .

e ) Low Temperature Modulus Defect.- Changes i n the dynamic e l a s t i c moduli a t very low temperatures have been reported in

V ( <

6K) (401,Nb

(<

15K) (45), Ta

(<

209 (33) and a-Fe

(<

4K) (60). These r e s u l t s are generally attributed t o a 1 ( 1 ) ( i .e.

GKM(1) )..However, i n Fe there i s some evidence t h a t

GKMaO)

may be involved as well (60).

(19)

C5-20 JOURNAL DE PHYSIQUE

f ) Effects of Oscillation Amplitude and Bias Stresses.- In the Nb single c r y s t a l s ( 4 2 ) , a l / a increases i n i n t e n s i t y with increasing s t r a i n amplitude.

In a-Fe, s t r a i n ampli-

o;l

.lo3

tude dependence occurs

r e s u l t s a r e e n t i r e l y Fig. 20

:

Evolution of the a l / a + B1 complex in defor- consistent with

DKG

(I) med a-Fe following electron i r r a d i a t i o n o r supplemen- and

DKG (0)

respectively.

t a r y cold-work a t

77 K

(60,61) o r a f t e r neutron i r r a d i a - Increasing s t r a i n am-

t i o n a t

77 K

(46). plitude causes the inten-

s i t y o f

y

i n Nb t o increase (62) and bias

8.10~

s t r e s s e s increase the

PO

high temperature back-

ground. These r e s u l t s a r e analogous t o those reported f o r the Bordoni relaxation ( 3 ) .

g) Microdeformation. -

Microdeformation stages

0 BOO I W Tx 0 roo zW TI 0 a s o ,.

associated w i t h a l / a

2

I

0 .

( a ) (b) ( c ) (see f i g . 21) and

y

Fig. 21

:

( a )

IF

peaks a 1 / a and 8, in Fe a f t e r 2

%

(58'65) have been

deformation a t RT. (b) Microdeformation cycle

: AB,

loa- ted recently. The results ding t o os

=

6 x l 0 - ~

; BC

heating under s t r e s s ;

C D ,

coo- obtained using a torsion ling under s t r e s s ; DE,unloading; EF, recovery without pendulum technique can s t r e s s ; ( c ) Derivative curves of the a 1 / a stage

:

be summarized a s follows

1

os

=

3 x l 0 - ~ ~ ; 2 os

=

6 x 1 0 - ~ ~ (64).

i)

the activation volume associated with

a

i s

i n the range 10 t o 100b3

0 100 150 200 250 300 350

T( 10 %

50 b3 f o r

y.

These

-

a-F*

4 4

+ d ' ~ a*&

/-

,

i

/" \.

i \

\.

;

I'

..- -

ELLCTROMS

i

-

i I UW

TENP,

-. --__

a t 5 x 1 0 - ~ even a t 4K and increases with i ncrea- sing temperature (61,63).

Recent studies of the

s t r a i n amp1 i tude depen-

dence associated

w i t h

a l / a and

y

in M o s i n -

g l e c r y s t a l s (32) y i e l d

activation volumes of

30-150

b

3 f o r the major

component of

a l / a

and

(20)

i n keeping w i t h DKG

(b;

ii) a s u b s t r u c t u r e corresponding t o a' i s observed b u t has n o t been analysed i n d e t a i l ; i i i ) t h e recovery stage (ar) (see f i g . 20) ( b ) ) i n t h e absence o f s t r e s s i s always a t a lower temperature than stage a; i v ) a micro- deformation stage i s a l s o associated w i t h 6, b u t i t s c h a r a c t e r i s t i c s are such t h a t i t i s n o t amenable t o t h e same t y p e o f a n a l y s i s used i n t h e case o f stage a;

and v ) t h e stage associated w i t h

Y

(58,65) can be c o r r e l a t e d w i t h t h e z e r o - p o i n t - d r i f t o f t h e pendulum i n conventional s t u d i e s o f t h e I F peak y and t h e r e s u l t s c o n f i r m t h a t 0 ' s a r e r e s p o n s i b l e f o r b o t h t h e microdeformation stage and peak y.

Furthermore, t h e model proposed by A s t i e e t a l . (65) (see 3.2.4. a) can a l s o descri- be t h e y microdeformation i n b.c.cls.

The I F peaks a ' l a and y ( a t

=

1 Hz) a r e i l l u s t r a t e d s c h e m a t i c a l l y ( t o g e t h e r w i t h t h e S-K (H) peaks) i n f i g . 22. I n Mo, W and a-Fe, a l / a c o n t a i n s a major component due t o DKG

(I),

whereas i n V , Nb and Ta c o n t a i n i n g s i g n i f i c a n t amounts o' b o t h H and 0 ( o r N) i t seems t h a t DKG

(I)

i s pinned-out and a ' / a ( p r e v i o u s l y 6) i s pre- dominant1 y due t o GKM ( 0 )

.

However, i n UHP Nb a major component o f a ' l a i s a t t r i b u t e d t o DKG

(I).

I n V, Nb. Ta and a-Fe t h e r e i s a good evidence t h a t a l ( l ) occurs below t h e l o w e s t temperatures y e t i n v e s t i g a t e d .

F i g . 22 : Shematic diagram showing t h e r e l a t i v e p o s i t i o n s and shaped o f t h e a l / a and y peaks a t about 1 Hz i n u l t r a h i g h p u r i t y b.c.c.

t r a n s i t i o n metal.

'b' ', *

0 100 200 300 4W 5 M T I K I

Although no one b.c.c. has been s t u d i e d t o t h e e x t e n t t h a t a l l t h e primary and secondary c h a r a c t e r i s t i c s o f t h e

BR

(3) have been confirmed f o r b o t h a l / a and y; each o f t h e c h a r a c t e r i s t i c s i s e x h i b i t e d by one o r more o f t h e b.c.c. metals taken as a group. Now, t h e r e can be 1 i t t l e donbt t h a t a ' / a and y taken t o g e t h e r c o n t a i n t h e analogue o f t h e

BR

i n t h e f.c.cls.

Acknowledgements.- The authors wish t o thank P r o f . H. Schultz,

P .

Groh, C. M i n i e r , M. Koiwa and Dr. C. Esnouf, J. Lauzier, L.B. Magalas who k i n d l y made r e s u l t s o f t h e i r groups' i n v e s t i g a t i o n s a v a i l a b l e p r i o r t o p u b l i c a t i o n .

(21)

C5-22 JOURNAL DE PHYSIQUE

References

( 1 ) P.G. BORDONI, Ric. Sci. 19, 851, 1949; J . Acoust. Soc. Am. 26, 495, 1954.

(2) A. SEEGER, P h i l . Mag. 1, 651, 1956; J . Phys. 32, C2-193, 1971.

(3) G. FANTOZZI, C. ESNOUF, W. BENOIT and I. RITCHIE, Prog. Mat. Science t o be pub1 ished.

G. FANTOZZI, W. BENOIT, C. ESNOUF and J. PEREZ, Ann. Phys. F r . 4, 7, 1979.

(4) A. SEEGER, Phys. S t a t . S o l . 55(a), 457; 1979.

( 5 ) J.P. HIRTH, Met. Trans. A, 11A, 861, 1980.

(6) V.K. PARE,

J.

Appl. Phys. 32, 332, 1961.

(7) H. ENGELKE, Phys. S t a t . Sol. 36, 231, 1969.

(8) C. ESNOUF and G. FANTOZZI, Phys. S t a t . S o l . ( a ) , 47, 201, 1978.

( 9 ) J . SCHLIPF and R. SCHINDLMAYR, P h i l . Mag. A, 40, 1, 13, 1979.

(10) A.D. BRAILSFORD, Phys. Rev. 122, 778, 1961 and 128, 1033, 1962.

(11) C. WUTHRICH, S c r i p t a Met. 9, 641, 1975.

(12) G. SCHOECK, Acta M e t a l l . 11, 617, 1963.

(13) L. VERDINI and D. BACCI, Nuovo Cimento 59B, 1, 163, 1980.

(14) R.E. MINER, R. GIBALA and F.A. HULTGREN, Acta M e t a l l . 24, 233, 1976.

(15) D. WAGNER and F. STANGLER, 6 t h ICIFUAS, ed. by R.R. H s i g u t i . a n d N. Mikoshiba, p. 585 (1977). U n i v e r s i t y o f Tokyo Press.

(16) P. STADELMANN and W. BENOIT, S c r i p t a Met. 11, 645, 1977.

(17) W. BENOIT, G. FANTOZZI and C. ESNOUF, Nuovo Cimento 338, 1, 1976.

(18) G. FANTOZZI, F. FOUQUET and P.F. GOBIN, S c r i p t a Met. 7, 53, 1973.

(19) T. JALANTI, Thesis, E.P.F. Lausanne, 1975.

(20) S.M. SEYED-REIHANI, Thesis, U n i v e r s i t y o f Lyon, 1981.

(21) J . LAUZIER and C. MINIER, t h i s conference.

(22) 0.0. THOMPSON and D.K. HOLMES, J. Appl. Phys., 30, 525, 1959.

(23) J.L. BESSON, Thesis, U n i v e r s i t y o f Limoges, 1977.

(24) Ph. DETERRE, C. ESNOUF, G. FANTOZZI, P. PEGUIN, J . PEREZ, I.G. RITCHIE, F. VANONI and A. VINCENT, Acta Met. 27, 1779, 1989

(25) G. ALEFELD, J . Appl. Phys. 36, 2642, 1965.

(26) G. GREMAUD, Thesis, Lausanne, 1981.

(27) C. ESN3UF and G. FANTOZZI, P h i l . Mag. A, 42, 63, 1980.

(28) B. ESCAIG, S c r i p t a M e t a l l . 5, 199, 1971.

(29) A. SEEGER and B. SESTAK, S c r i p t a M e t a l l . 5, 875, 1971.

(30) P.C. GEHLEN

-

I n t e r a t o m i c p o t e n t i a l s and S i m u l a t i o n o f L a t t i c e Defects, B a t t e l l e Colloquium, e d i t e d by J.R. BEELER and R.J. JAFFEE, Plenum Press, New-York, 1971 p. 475.

(31) H. SCHULTZ, M. MAUL, U. RODRIAN and R. GRAU, Proc. 5 t h I n t e r n a t i o n a l Sympo- sium on "High P u r i t y M a t e r i a l s i n Science and Technology" e d i t e d by J. Mor- genthal and H. Oppermann, Dresden GDR, Vol. 111, 334, 1980.

(32) R. GRAU, Doctoral Thesis, S t u t t g a r t , 1981.

(33) U. RODRIAN, Doctoral Thesis, S t u t t g a r t , 1980.

(34) E. PINK and R.J. ARSENAULT, Prog. Mat. Science 24, 1, 1, 1979.

(35) F.M. MAZZOLAI and M. NUOVO, Sol. S t a t . Comm. 7, 103, 1969.

(36) R. KLAM, H.E. SCHAEFER and H. SCHULTZ, Proc. 6 t h ICIFUAS, Tokyo 1977, E d i t e d by R.R. H a s i g u t i and N. Mikoshiba, U n i v e r s i t y o f Tokyo Press, 1977, p. 599.

(37) 6. CANNELLI and F.M. MAZZOLAI

,

J . Phys. Chern. S o l i d s , 31, 1913, 1970.

(38) L.J. BRUNER, Phys. Rev., 118, 2, 399, 1960.

(39) K. SHIBATA, M. KOIWA and 0. YOSHINARI, Trans. J.I.M. 19, 491, 1978.

(40) H. MIZUBAYASHI, S. OKUDA and M. OAIKUBARA, S c r i p t a M e t a l l . 13, 1131, 1979.

(41) 6. FERRON, M. QUINTARD and P. MAZOT, S c r i p t a Metal 1

.

12, 623, 1978.

(42) N. KURAMOCHI, H. MIZUBAYASHI and S. OKURA, S c r i p t a M e t a l l . 14, 1047, 1980.

(43) L. VEROINI and D. BACCI, Nuovo Cimento 598, 1, 163, 1980.

(44) M. MAUL and H. SCHULTZ, t h i s conference.

(45) M. MAUL, Doctoral Thesis, S t u t t g a r t , 1980.

(46) V. HIVERT, P. GROH, P. MOSER and W. FRANK, Phys. S t a t . S o l . 42(a), 511, 1977.

(47) R. MARTINEZ, F. WALZ and H. KRONMULLER, Appl. Phys. 7, 107, 1975.

(48) H. KRONMULLER, H. STEEB and N. KONIG, Nuovo Cimento, 33B, 205, 1976.

(49) T.S. KE, H. KRONMOLLER, A. SEEGER and 2.Q. Sun, Proc. 3 r d I n t . Conf. on t h e E f f e c t o f Hydrogen on t h e behaviour of M a t e r i a l s , Jackson Lake Lodge, Wyoming, Aug. 1980.

(22)

(50) I.G. RITCHIE, J.F. DUFRESNE and P. MOSER, Phys. S t a t . Sol. 52(a), 331, 1979.

(51) K. TAKITA, M.NIIKURA and K. SAKAMOTO, S c r i p t a M e t a l l . 14, 1047, 1980.

(52) A.J. KUMMICK and H.H. JOHNSON, Acta M e t a l l . 28, 33, 1980.

(53) J.F. DUFRESNE, A. SEEGER, P. GROH and P. MOSER, Phys. S t a t . Sol. 36(a), 579, 1976.

(54) J. VOLKL and

G.

ALEFELD, Topics i n A p p l i e d Physics 28, Hydrogen i n Metals 1, chapter 12. E d i t e d by G. ALEFELD and J. VOLKL, Springer-Verlag, B e r l i n , 1978.

(55)

N.

IGATA, N. KURAMOCHI,

N.

MASAMURA, A. KOHYAMA, K. MIYAHARA, S. SAT0 and H.

YOSHIDA, Phys. S t a t . Sol. 55(a), K 127, 1979.

(56) DE LIMA, Thesis, E.P.F. Lausanne, 1981.

(57) M-SHIMADA and K. SAKAMOTO, S c r i p t a Metal 1

.

13, 1177, 1979.

(58) P. ASTIE, Thesis, Toulouse, 1981.

(59) G.E. RIEU, Acta M e t a l l . 26, 1, 1978.

(60) I.G. RITCHIE, J.F. DUFRESNE and P. MOSER, Phys. S t a t . Sol. 50(a), 617, 1978.

(61) J.F. DUFRESNE, I .G. RITCHIE and P. MOSER, Proc. 3 r d E.C. I .F.U.A.S., Manches- t e r 1979. E d i t e d by C.C. Smith, Pergamon Press, 1980, p. 37.

(62) N. IGATA, H. MURAKANI and N. MASAMURA, S c r i p t a M e t a l l . 14, 463, 1980.

(63) M. KAKEGOWA and K. SAKAMOTO, Jap. J. Appl

.

Phys. 9, 1057, 1970.

(64) J. SANJUAN, L. NO, G. FANTOZZI, C. ESNOUF and F. VANONI, t h i s conference.

(65) P. ASTIE, J.P. PEYRADE and P. GROH, S c r i p t a Metall., t o be published.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to