• Aucun résultat trouvé

Optimization of running strategies based on anaerobic energy and variations of velocity

N/A
N/A
Protected

Academic year: 2021

Partager "Optimization of running strategies based on anaerobic energy and variations of velocity"

Copied!
37
0
0

Texte intégral

(1)

HAL Id: hal-01024231

https://hal.inria.fr/hal-01024231

Submitted on 15 Jul 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Optimization of running strategies based on anaerobic energy and variations of velocity

J. Frederic Bonnans

To cite this version:

J. Frederic Bonnans. Optimization of running strategies based on anaerobic energy and variations of velocity. NETCO 2014, Jun 2014, Tours, France. �hal-01024231�

(2)

Optimization of running strategies based on anaerobic energy and variations of velocity

J. Fr´ed´eric Bonnans

Inria-Saclay and CMAP, Ecole Polytechnique, France

Netco2014 Conf., Tours, June 23-27, 2014

(3)

Outline

1 Keller’s model

2 Variable energy recreation

3 Bounding the derivative of f

(4)

Sources

Talk based on the joint work [1] with Amandine Aftalion, Lab.

Math. Versailles, UVSQ.

Pioneering reference: J.B. Keller [2].

[1] A. Aftalion and J.F. Bonnans,Optimization of running strategies based on anaerobic energy and variations of velocity. SIAM J. Applied Math., to appear (HAL preprint).

[2] Keller, J.B.,Optimal velocity in a race, Amer. Math. Monthly 81 (1974), 474–480.

(5)

1 Keller’s model

2 Variable energy recreation

3 Bounding the derivative of f

(6)

Keller’s model: dynamics

Consider the followingstate equation:

(1.1) v(t) =˙ f(t)φ(v(t)); e˙(t) = ¯σf(t)v(t),

Cost function: RT

0 v(t)dt.

energy recreation: ¯σ >0

drag functionφ(v) =v/τ, withτ >0.

Generalized drag function: φC2 on (0,);φ(0) = 0;

φ positive; (v) increasing

Example: φ(v) =avβ,a>0, β1.

(7)

Keller’s model: constraints

Control constraint: 0f(t)fM. Energy constraint: e(t)0.

Maximal force strategy: optimal for short horizons T Tc. In the sequel T >Tc.

(8)

Keller’s model: discussion

Maximal speed (never reached): 0 =fM vM, i.e.

vM =τfM.

Constant energy speed: f =v/τ,σ =fv, and so:

vE = τ σ.

Energy variation when constant speed:

e(t) ifv >vE, and e(t) otherwise.

(9)

Keller’s model: Keller’s conjecture

Optimal strategy has three arcs First arc: maximal forcef =fM. Second arc: constant speedv>vE. Last arc: zero energy e = 0.

Negative jump of force at junction times Unclear proofs in the literature for φ(v) =v.

(10)

Keller’s model: numerical resultsI

Mechanical parameters: fmax = 9.6m s−2,τ = 0.67s Energy parameters: ean0 = 1400m2 s−3, ¯σ= 49m2 s−3. d = 1500m.

2000 discretization steps, i.e. time step close to 0.12s.

Free softwarewww.bocop.org.

Optimal time is 248.21s

(11)

Keller’s model: numerical results with bocop.org

0 1 2 3 4 5 6 7

0 50 100 150 200 250

velocity v(t)

Velocity

8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8

0 50 100 150 200 250

force f(t)

Force

0 500 1000 1500

0 50 100 150 200 250

AOD(t)

Reverse energy

(12)

Zoom on end of race: zero energy arc

8.4 8.5 8.6 8.7 8.8 8.9 9.0

242 243 244 245 246 247 248 249

force f(t)

Final force

1340 1350 1360 1370 1380 1390 1400 1410 1420 1430

242 243 244 245 246 247 248

AOD(t)

Final reverse energy

(13)

Keller’s model: main result

So the numerical results agree with Keller’s conjecture, and indeed:

Theorem

Keller’s conjecture holds, even with the generalized drag function.

We next present the proof of this result.

(14)

Keller’s model: Hamiltonian and costate

Hamiltonianfunction:

H :=v+pv(f φ(v)) +peσfv).

Costate equation:

p˙v =1pvφ(v)pef

dpe =dµ,

Final conditionspv(T) =pe(T) = 0, and so: pe =µ.

Multiplierto the state constraint: say µ(T) = 0 and 0; supp(dµ)⊂ {t; e(t) = 0}. Thereforepe =µ0.

(15)

Switching function

Theswitching function is

Ψ :=Hu=pvpev.

ByPontryagin’s principle, we have:

f(t) =

fM if Ψ(t)>0, 0 if Ψ(t)<0,

(16)

pe has negative values

Lemma

pe has negative values.

Proof.

Ifpe) = 0 then over (τ,T):

pe = 0, since it is nondecreasing andpe(T) = 0.

˙

pv = 1 +pvφ(v) (is >0 ifpv 0) andpv(T) = 0 Sopv <0Ψ =pv <0f =fM

Contradiction by lemma 3.7 of paper.

(17)

pv has negative values

Lemma

pv has negative values.

Proof.

pv 0Ψ>0f = 0p˙v >0; but pv(T) = 0.

Corollary

An optimal trajectory starts with a maximal force arc.

(18)

Derivative of switching function

When the state constraint is not active,pe is constant and so:

Ψ :=Hu=pvpev.

Ψ = (1 +˙ pvφ(v) +pef)pe(f φ(v))

= 1 +pvφ(v) +peφ(v) and so,

Ψ˙ Ψφ(v) = 1 +pe(φ(v) +(v)).

Lemma

On a singular arc, v is constant.

(19)

No zero force arc

∆ := ˙ΨΨφ(v) = 1 +pe(φ(v) +(v)).

Lemma

No zero force arc occurs.

Let (ta,tb) be such an arc; then ta>0.

Iftb=T then e(T)>0: impossible.

Ψ0 over the arc; Ψ(ta) = Ψ(tb) = 0.

We have therefore ∆(ta)0∆(tb).

On this arc pe is constant and v decreases, and so ∆(t) increases: contradiction.

(20)

No second maximal force arc

∆ := ˙ΨΨφ(v) = 1 +pe(φ(v) +(v)).

Lemma

No second maximal force arc occurs.

Let (ta,tb) be such an arc; then ta>0.

Iftb<T, ”symmetric argument”: v increases, ∆ decreases, but ∆(ta)0∆(tb).

Iftb=T,µshould have a jump at time T, but then limtTΨ(t) =pe(T)v(T)>0 implying that f = 0 at the end of the trajectory.

(21)

Keller’s model: proof of main result

Let ta(0,T) be the exit point of the maximal force arc.

We know that Ψ = 0 over (ta,T).

Let tb(0,T) be the first time at which the energy vanishes has no final jump).

(ta,tb) is a singular arc.

If the energy is not zero on (tb,T): there would exist tc,td

with tbtc <td T such thate(tc) =e(td) = 0, and e(t)>0, for allt (tc,td).

Then (tc,td) is a singular arc, over which ˙e =σfv is constant: contradiction.

(22)

1 Keller’s model

2 Variable energy recreation

3 Bounding the derivative of f

(23)

Variable energy recreation

Less recreation when energy close to its extreme values, and additional recreation when deceleration:

˙

e =σ(e) +η(a)fv

where a is the acceleration: a= ˙v =f φ(v),and η convex:

η(a)0, η(a) = 0 iff a0.

Function σ(e) regularization of a piecewise affine and continuous function, value 0 at extreme values, otherwise constant.

(24)

Numerical results with variable σ(e) and η(a) = 0

0 1 2 3 4 5 6 7

0 50 100 150 200 250

velocity v(t)

Velocity

8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7

0 50 100 150 200 250

force f(t)

Force

5 10 15 20 25 30 35 40 45 50 55

0 50 100 150 200 250

sigma(t)

σ(e)

(25)

Hamiltonian and costate with variable σ(e)

Hamiltonian function:

H:=v+pv(f φ(v)) +pe(σ(e) +η(f φ(v))fv).

Costate equation:

p˙v =1pvφ(v)pef peη(a)φ(v)

dpe =peσ(e)dµ, Final conditionspv(T) =pe(T) = 0.

µ(T) = 0,0,supp(dµ)⊂ {t; e(t) = 0}.

(26)

Minimization of Hamiltonian with variable σ(e)

Hamiltonian function:

H:= (pv pev)f +peη(f φ(v)) + indep. off Concave functionof the control f

Minimum attained at extreme values 0 or fM. Need of relaxed formulation; expectation of force:

f = 0×(1θ) +θfM

We may as well takef as parameter and thenθ=f/fM.

(27)

Relaxed formulation

Recreation due to deceleration at zero speed:

R(v) :=η(φ(v) State equation

˙

v =f φ(v)

˙

e =σ(e)fv+ (1f/fM)R(v) Hamiltonian

H=pv(f φ(v)) +pe(σ(e)fv+ (1f/fM)R(v)).

(28)

Relaxed formulation: theoretical analysis

Assume σ(e) = ¯σ andη(a) =εη(a) For ε >0 small enough

Same optimal structure as for Keller’model:

maximal force, constant speed, zero energy.

(29)

1 Keller’s model

2 Variable energy recreation

3 Bounding the derivative of f

(30)

Numerical results when bounding ˙f

0 1 2 3 4 5 6 7

0 50 100 150 200 250

velocity v(t)

Velocity

7.0 7.5 8.0 8.5 9.0 9.5 10.0

0 50 100 150 200 250

force f(t)

Force

(31)

Numerical results: zoom with variable σ(e) and η(a) 6= 0

5.80 5.85 5.90 5.95 6.00 6.05 6.10 6.15 6.20

113 114 115 116 117 118 119

velocity v(t)

Zoom on velocity

7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8

113 114 115 116 117 118 119

force f(t)

Zoom on force

(32)

Periodic problem

Maximize average speed: (1/T)RT

0 v(t)dt.

Periodic speed and force, loss of energy e(0) =e(T) +Ted. State equation and constraints

v(0) =v(T); f(0) =f(T).

e(0) =e(T) +Ted;

˙

v =f ;

˙

e =σ+η(a)fv;

0f fM; |f˙| ≤1, for a.e. t(0,T).

(33)

Zoom vs periodic: velocity

5.80 5.85 5.90 5.95 6.00 6.05 6.10 6.15 6.20

113 114 115 116 117 118 119

velocity v(t)

Zoom on velocity

5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4

2 3 4 5 6 7 8 9 10

velocity v(t)

Periodic velocity

(34)

Zoom vs periodic: force

7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8

113 114 115 116 117 118 119

force f(t)

Zoom on force

8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0

2 3 4 5 6 7 8 9 10

force f(t)

Periodic force

(35)

Related work

[1] S. Aronna, J.F. Bonnans and B.S. Goh,Second order necessary conditions for control-affine problems with state constraints. Research report, to appear (HAL preprint).

(36)

Open questions

Asymptotic analysis η(a) =εη(a).

Shape of oscillations ? Expansion of cost function

(37)

THE END !

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to