• Aucun résultat trouvé

DYNAMICS OF PROTONS IN WATER AND AQUEOUS ZnCl2 SOLUTIONS

N/A
N/A
Protected

Academic year: 2021

Partager "DYNAMICS OF PROTONS IN WATER AND AQUEOUS ZnCl2 SOLUTIONS"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00224280

https://hal.archives-ouvertes.fr/jpa-00224280

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DYNAMICS OF PROTONS IN WATER AND AQUEOUS ZnCl2 SOLUTIONS

M.-C. Bellissent-Funel, R. Kahn, A. Dianoux, M. Fontana, G. Maisano, P.

Migliardo, F. Wanderlingh

To cite this version:

M.-C. Bellissent-Funel, R. Kahn, A. Dianoux, M. Fontana, G. Maisano, et al.. DYNAMICS OF

PROTONS IN WATER AND AQUEOUS ZnCl2 SOLUTIONS. Journal de Physique Colloques, 1984,

45 (C7), pp.C7-143-C7-149. �10.1051/jphyscol:1984715�. �jpa-00224280�

(2)

DYNAMICS OF PROTONS IN WATER AND AQUEOUS Z n C I Z SOLUTIONS

M.-C. B e l l i s s e n t - F u n e l , R. Kahn, A . J . ~ i a n o u x * , M . P . ~ o n t a n a * * , G . ~ a i s a n o * * * , P . ~ i ~ l i a r d o * * * and F . wanderlingh***

L a b o r a t o i r e Le'on B r i l l o u i n , CEN ~ a c l a ~ ' , 91191 G i f - s u r - Y v e t t e Cedex, France

* I . L . L . ,

**

B.P. 156 X , 38042 Grenoble Cedex, France I s t i t u t o d i F i s i c a and G. N.S.M., P u m a , I t a l y

***

I s t i t u t o d i F i s i c a and G . N.S.M., Messina, I t a l y

Resume - Nous avons & t u d i @ l e s mecanismes de d i f f u s i o n des protons dans

=pure e t l e s s o l u t i o n s aqueuses de ZnC12, par d i f f u s i o n q u a s i - e l a s t i - que incoherente de neutrons e t avons montre q u ' i l e t a i t indispensable de t e n i r compte du mouvement de r o t a t i o n des mol@cules d'eau ; l e temps de r e l a - x a t i o n c a r a c t e r i s t i q u e a s s o c i e passe de 0.8 ps pour l ' e a u pure Z 20 ps pour l a s o l u t i o n s a t u r e e c e que l ' o n i n t e r p r e t e en termes de rotationsg&nees dans l e s s o l u t i o n s concentrees. La p a r t i e t r a n s l a t i o n n e l l e des s p e c t r e s a 6t.S convenablement r e p r e s e n t e e s u r t o u t l e domaine en Q e x p l o r e , Z 1 'a i d e d'un modele de d i f f u s i o n par s a u t s a l e a t o i r e s . La longueur de s a u t obtenue r e s t e pratiquement l a meme quand on passe de l ' e a u l a s o l u t i o n s a t u r e e e t v o i s i n e de l a d i s t a n c e e n t r e protons dans l a mol6cule d ' e a u .

Abstract

-

We s t u d i e d t h e d i f f u s i v e motions of t h e protons i n pure water and ZnCl aqueous s o l u t i o n s , using incoherent q u a s i - e l a s t i c neutron s c a t t e r i n g . We siowed t h a t i t i s e s s e n t i a l t o take i n t o account t h e r o t a t i o n a l motion of t h e water molecules ; t h e a s s o c i a t e d c h a r a c t e r i s t i c r e l a x a t i o n time v a r i e s from 0 . 8 ps f o r H20 t o 20 ps f o r t h e s a t u r a t e d s o l u t i o n which i s i n t e r p r e t e d i n terms of hindered r o t a t i o n s f o r t h e concentrated s o l u t i o n s . The t r a n s l a - t i o n a l linewidth i s conveniently f i t t e d over t h e whole Q-range, using t h e Random Jump Diffusion model f o r which t h e jump length t u r n s out t o be roughly t h e same f o r pure H20 and t h e s a t u r a t e d s o l u t i o n , f a i r l y c l o s e t o t h e d i s - t a n c e between ~ r o t o n s i n t h e water molecule.

The study of microscopic s t r u c t u r e and dynamics i n i o n i c l i q u i d s , and p a r t i c u l a r l y aqueous s o l u t i o n s of s t r o n g e l e c t r o l y t e s (NiCl?, ZnC12, ZnBr2) has received a g r e a t impulse following t h e i n i t i a l neutron d i f f r a c t ~ o n experiments of Enderby e t a1 / I / . The e x i s t e n c e of c o l l e c t i v e v i b r a t i o n a l e x c i t a t i o n s a t s u f f i c i e n t l y high concentra- t i o n s has been e s t a b l i s h e d by Raman spectroscopy /2/ i n many of t h e s e l i q u i d e l e c - t r o l y t e s . Exafs measurements /3/ have provided a d i r e c t proof t h a t i n highly con- c e n t r a t e d ZnBr aqueous s o l u t i o n s , about 80 % of t h e Br atoms a r e found i n t h e f i r s t coordination s 2 e l l around t h e Zn ions t o form complexes. Further o r e t h e Exafs d a t a have shown t h a t t h e l o c a l i o n i c o r d e r extends, a t l e a s t , t o 6-8

!

and t u r n s o u t t o be very s i m i l a r t o t h e c r y s t a l l i n e s t r u c t u r e of t h e corresponding s o l u t e s . Moreover t h e e x i s t e n c e of dynamically c o r r e l a t e d regions has been conjectured f o r ZnC12 solu- t i o n s i n D2O on t h e b a s i s of small angle neutron s c a t t e r i n g / 4 / . The e x i s t e n c e of such regions i n t h e s o l u t i o n s should be r e f l e c t e d by t h e d i f f u s i o n a l dynamics i f studied on t h e a p p r o p r i a t e time and length s c a l e . In t h i s l e t t e r , we p r e s e n t a s t u - dy of t h e d i f f u s i v e motions of t h e protons i n pure water and ZnCl? aqueous solutions a s a f u n c t i o n of t h e s o l u t e c o n c e n t r a t i o n , using incoherent q u a s i - e l a s t i c neutron s c a t t e r i n g . O u r d a t a a r e a c c u r a t e enough t o show t h a t i t i s e s s e n t i a l t o t a k e i n t o account t h e r o t a t i o n a l motion of t h e protons.

The experiments have been performed on t h e IN6 time of f l i g h t spectrometer a t t h e ' ~ a b o r a t o i r e commun C E A , C N R S

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984715

(3)

JOURNAL DE PHYSIQUE

ILL, Grenoble. A t a wavelength X = 5.9 A ( i n c i d e n t energy = 2.35 meV), 16 spectra were taken, simultaneously, f o r an angular range v a r y i n g from 12.80 up t o 110.30 degrees. The energy r e s o l u t i o n (FWHM = 50-70 peV) was determined u s i n g a vanadium standard sample. The s o l u t i o n s were placed i n t e f l o n - c o a t e d aluminium p l a n a r c e l l s w i t h 0.15 mm t h i c k w a l l s , and 0.65 mm thickness. Since t h e transmission v a r i e d b e t - ween 0.74 and 0.793 f o r H20 and t h e s a t u r a t e d ZnC12 s o l u t i o n , we have a p p l i e d m u l t i - p l e s c a t t e r i n g c o r r e c t i o n s u s i n g t h e Monte C a r l o program DISCUS / 5 / .

Our experiments have been performed a t (T = 298 K ) , on p u r e water and ZnCl s o l u - t i o n s i n H 0 f o r t h e f o l l o w i n g concentrations : 3M, 6M and 12.6M ( s a t u r a t e 2 s o l u - t i o n ) . I n $ i g u r e l a and l b , we present t h e c o r r e c t e d i n t e n s i t y spectra o f water and o f t h e s a t u r a t e d s o l u t i o n corresponding t o a s c a t t e r i n g angle o f 64.20 degrees.

The main c o n t r i b u t i o n t o t h e s c a t t e r i n g cross s e c t i o n i s t h e incoherent s c a t t e r i n g by protons. I n t h e Born approximation f o r N i d e n t i c a l n u c l e i / 6 / , t h e cross s e c t i o n i s p r o p o r t i o n a l t o t h e incoherent s c a t t e r i n g f u n c t i o n Sinc(Q,w) where

19

and bw denote t h e momentum and energy t r a n s f e r s . Sinc(9,w) i s t h e r o u r i e r transform o f t h e Van Hove /7/ s e l f c o r r e l a t i o n f u n c t i o n G s ( ~ , t ) . The incoherent i n t e r m e d i a t e s c a t t e - r i n g f u n c t i o n can be w r i t t e n as :

where L i s t h e p o s i t i o n v e c t o r o f one proton, so t h a t

r=s+fi+i

w i t h : molecular mass c e n t r e p o s i t i o n vector, a : mean p o s i t i o n v e c t o r o f t h e p r o t o n r e l a t i v e t o t h e mass centre. F i n a l l y , u repreyents a1 1 t h e small amp1 i t u d e displacements ( v i b r a t i o n s ) . Assuming no time c o r r e 7 a t i o n between these motions, and as i n t h e q u a s i - e l a s t i c region, t h e v i b r a t i o n s o n l y c o n t r i b u t e t o t h e i n t e n s i t y through a Debye-Waller f a c - t o r , t h e incoherent s c a t t e r i n g law w i l l thus be a c o n v o l u t i o n o f t h e t r a n s l a t i o n a l and r o t a t i o n a l p a r t s . We assume t h a t t h e p r o t o n t r a n s l a t i o n a l motion i s characte- r i z e d by a t r a n s l a t i o n a l d i f f u s i o n broadening AET, and consequently

where AET i s t h e h a l f w i d t h a t h a l f maximum o f t h e q u a s i - e l a s t i c l i n e (HWHM) and D t h e s e l f d i f f u s i o n c o e f f i c i e n t .

For s i m p l i c i t y , we assume t h a t t h e p r o t o n has an i s o t r o p i c r o t a t i o n a l d i f f u s i o n motion around t h e c e n t r e o f mass o f t h e molecule c h a r a c t e r i z e d by a r o t a t i o n a l d i f f u s i o n c o e f f i c i e n t Dr, t h i s m o t i o n being described by t h e Sears model /8/.

Using t h e expression ( 2 ) and t h e Sears model, t h e t h e o r e t i c a l s c a t t e r i n g f u n c t i o n /9/ i s g i v e n by :

n n r n AE,

where j are t h e s p h e r i c a l Bessel f u n c t i o n s and a i s comparable t o t h e 0-H bond l e n g t h t a = 0 . 9 8

8 ) .

T h i s s c a t t e r i n g law i n t h e n convoluted w i t h t h e i n s t r u m e n t a l r e s o l u t i o n f u n c t i o n t o f i t t h e experimental d a t a .

As a f i r s t step i n t h e a n a l y s i s we have t r i e d t o f i t t h e data w i t h t h e s i n g l e l o r e n t z i a n (SL) form which corresponds t o Dr = 0 i n equation ( 3 ) . I n f i g u r e 2, we

(4)

Fig. l b

-

Q u a s i - e l a s t i c spe t r a of aqueous ZnC12 s a t u r a t e d s o l u t i o n (T=298K, 0;64.Z0°, Q=l . l 3 k - I ) , o Experimental p o i n t s , - F i t with D r = 0.005 meV.

(5)

JOURNAL DE PHYSIQUE

F i g . 2

-

AET versus Q 2 f o r H20 a t T=298K. A f r o m a SL f i t , e From a f i t w i t h D r = 0 . 1 3 meV, x Sakamoto e t a l ' s d a t a (SL) a t T=296K, W h i t e ' s d a t a (SL) a t T=296K, - - Random jump d i f f u s i o n model (SL), -- Random jump d i f f u s i o n model (Dr = 0.13 meV)

,

I T y p i c a l e r r o r b a r .

.3

. ? -

.1

0

p r e s e n t t h e AET v a r i a t i o n w i t h Q[ o b t a i n e d b y t h i s f i t . The r e s u l t s a r e i n good agreement w i t h t h o s e o f Sakamoto e t a1

/ l o /

and a l s o w i t h t h o s e o f White /11/,

However, i t i s a p p a r e n t from a c l o s e e x a m i n a t i o n o f t h e v a r i a t i o n o f (I:,": - I ~ ~ ~ c )

- .

/

/c/

/

/ a

,"/

/

- 4

/

I Typical error bar

L I I I I

,

versus w, e s p e c i a l l y i n t h e t a i l r e g i o n , t h a t t h e f i t w i t h a s i n g l e l o r e n i z i a n i s p o o r ( F i g . l a ) .

0 0.5 1.0 1.5 2.0 2.5 Q ' I ~ ~ ~ )

U s i n g t h e e x p r e s s i o n ( 3 ) , we have f i t t e d t h e q u a s i - e l a s t i c p a r t o f t h e measured spectrum f o r a g i v e n a n g l e b y t h e f o l l o w i n g r e l a t i o n : F(Q,w)=A Sinc(Q,w)+B where A r e p r e s e n t s an a m p l i t u d e f a c t o r and B t h e e x p e r i m e n t a l background which can c o n t a i n some i n e l a s t i c c o n t r i b u t i o n . Only t h r e e r o t a t i o n a l l o r e n t z i a n s have been c o n s i d e r e d ( i . e . R 5 3 ) and t h e e x p e r i m e n t a l s p e c t r a have been f i t t e d b y u s i n g 4 parameters,

A and B. We have e v a l u a t e d , i n each case, t h e t r a n s l a t i o n a l d i f f u s i o n AET'

DL'

.

c o n t r i u t i o n and t h e t e r m i n c l u d i n g t h e r o t a t i o n a l d i f f u s i o n c o n t r i b u t i o n .

We o b t a i n e d t h e v a l u e o f D r = 0 . 1 3 meV f o r p u r e H20. Dr decreases down t o 0.005 meV as s o l u t e c o n c e n t r a t i o n i s r a i s e d up t o s a t u r a t i o n . C o r r e s p o n d i n g l y , t h e c h a r a c t e - r i s t i c r e l a x a t i o n t i m e -cr=B/6Dr v a r i e s f r o m - c r = 0 . 8 ps f o r H20 t o 20 ps f o r t h e s a t u r a t e d s o l u t i o n . A t low s a l t c o n c e n t r a t i o n s , t h e symmetry o f t h e o c t a h e d r a l c o o r d i n a t i o n i n t h e f i r s t h y d r a t i o n s h e l l (6H20) /3,12/ a l l o w s t h e w a t e r m o l e c u l e s t o r o t a t e v e r y e a s i l y , g i v i n g r i s e t o a v a l u e o f D, s i m i l a r t o t h a t o f water. When t h e s a l t c o n c e n t r a t i o n becomes equal t o 12.6M, t h e w a t e r m o l e c u l e s / z i n c i o n s r a t i o i s a b o u t 2 and so t h e b i n d i n g f o r c e s between t h e e l e m e n t a r y u n i t s , which a l l o w t h e s t r u c t u r e t o be extended o v e r medium range d i s t a n c e a r e v e r y s t r o n g . Thus t h e w a t e r m o l e c u l e r o t a t i o n s become v e r y hard, g i v i n g r i s e t o a v e r y l o w v a l u e o f t h e Dr c p e f f i c i e n t .

(6)

I n f i g u r e 3, we present t h e HWHM v a r i a t i o n AET versus QL obtained by f i t t i n g t h e expression ( 3 ) f o r pure Hz0 (Dr = 0.13 meV) and t h e s a t u r a t e d s o l u t i o n (Dr = 0.005 meV) a t 298K. The corresponding r e s u l t s f o r 6M and 3M s o l u t i o n s are a l s o presented. Accor- d i n g t o t h e Random Jump D i f f u s i o n model f o r t r a n s l a t i o n a l d i f f u s i o n /13/ t h e quasi- e l a s t i c h a l f w i d t h should be given by :

II

Q'Q;

AE, = ( 4 )

o (l+Q2()

Qo i s a c h a r a c t e r i s t i c l e n g t h i n a random d i s t r i b u t i o n o f jump l e n g t h s given by,

and T~ i s t h e residence time o f a molecule i n a q u a s i - e q u i l i b r i u m p o s i t i o n .

We found t h a t eq.(4) could f i t c o n v e n i e n t l y t h e AET vs Q behaviour. For t h e satura- t e d s o l u t i o n of,ZnC12 i n H20, t h e f i t y i e l d s t h e f o l l o w i n g values f o r t h e parameters:

R o = 0 . 5 8 ? 0 . 0 5 A, T = 8 . 1 * 0 . 5 ps (and thus t h e hydrodynamic d i f f u s i o n c o e f f i c i e n t D = Q E / r 0 t u r n s o u t ?o be D = 0.41.10-5 cm2 s e c - I /14/). F o r pure H20, we obtained Q o = 0 . 6 4 * 0 . 0 5 A i n agreement w i t h t h e r e s u l t s o f Chen e t a1 /15/, and . r o = 1 . 7 + 0 . 1

(7)

C7-148 JOURNAL DE PHYSIQUE

2 -1

ps, so t h a t D = 2.40. cm sec

,

which i s t h e c o r r e c t value o f t h e macroscopic d i f f u s i o n c o e f f i c ' e n t a t room temperature. From (5), we may deduce t h e mean quadra- t i c jump l e n g t h L3 =

z2

= 6ag i .e. L = &,,ao. we obtained f o r t h e s a t u r a t e d s o l u t i o n and f o r pure water t h e values L = 1.43 A and L =1.58

1

r e s p e c t i e l y which are c l o s e t o t h e d i s t a n c e between protons i n t h e H20 molecule (dH = 1.55

1).

I t i s i n t e r e s t i n g t o note t h a t f o r t h e case o f pure H20 t h e random d i f f u s i o n model o f eq.(4) does n o t seem t o f i t t h e h i g h e r Q data. T h i s discrepancy m i g h t be due t o t e c h n i c a l problems i n t h e f i t t i n g , caused by t h e comparable h a l f - w i d t h s t h a t t h e r o t a t i o n a l and t r a n s l a t i o n a l components have i n the h i g h Q range. However, i t m i g h t a l s o i m p l y a d e f i n i t e tendency o f t h e AET t o bend over a t h i g h Q ' s . I n t h i s case, a more a p p r o p r i a t e model f o r t h e t r a n s l a t i o n a l d i f f u s i o n o f water molecules c o u l d be t h a t proposed by Chudley and E l l i o t t /16/.

C l e a r l y i n order t o d i s t i n g u i s h between these two models f u r t h e r measurements a t h i g h e r Q values a r e needed. A t t h i s time we p r e f e r t o i n t e r p r e t our data on t h e b a s i s o f t h e random jump model s i n c e i t i s more " l i q u i d - l i k e " and i n v o l v e s l e s s r a d i c a l assumptions about t h e microscopic d i f f u s i o n a l motion o f t h e H20 molecules.

I n t h i s paper, we showed t h a t t h e r e e x i s t , a t l e a s t , two components i n t h e quasi- e l a s t i c neutron spectrum from water and h i g h l y concentrated ZnC12 s o l u t i o n s . The broad one i s associated w i t h t h e r o t a t i o n a l m o t i o n o f t h e H20 molecules.

The t r a n s l a t i o n a l p a r t i s described i n t h e whole Q-range i n v e s t i g a t e d by a random jump d i f f u s i o n model f o r both t h e pure H20 and t h e s a t u r a t e d ZnC12 s o l u t i o n .

L e t us n o t e t h a t even i n pure H 0 t h e residence time T t u r n s o u t t o have t h e r e l a - t i v e l y l a r g e value o f 1.7 ps an$ increases up t o 8 ps ?or water i n t h e s a t u r a t e d s o l u t i o n . Such times are o b v i o u s l y long enough t o s u s t a i n c o l l e c t i v e v i b r a t i o n a l e x c i t a t i o n s i n t h e l o c a l l y ordered r e g i o n s and thus c o n f i r m t h e assignment o f low frequency Raman spectra i n these systems as v i b r a t i o n a l d e n s i t y o f s t a t e s /2/.

Another r e s u l t concerns t h e value o f t h e mean jump l e n g t h L which t u r n s o u t t o be r o u g h l y t h e same f o r pure H20 and s a t u r a t e d s o l u t i o n and c l o s e t o t h e value o f t h e d i s t a n c e between protons i n t h e H20 molecule. For t h e i n t e r m e d i a t e case o f t h e more d i l u t e s o l u t i o n s , t h e a n a l y s i s i s more complex and s h a l l be r e p o r t e d i n a f u r t h e r pub1 i c a t i o n .

From t h e present data, on ZnC12 aqueous s o l u t i o n s , we have n o t been a b l e t o separate a c o n t r i b u t i o n from d i f f e r e n t species o f water as i t has been r e p o r t e d by Enderby e t a1 /17/ i n a r e c e n t work on NiC12 s o l u t i o n s . However, we f e e l t h a t , a t l e a s t a t h i g h concentrations, t h e concept o f h y d r a t i o n s h e l l s may l o s e i t s usefulness. I n f a c t our data c o n f i r m t h a t such systems are b e s t described by i n t e r m e d i a t e range ordered patches i n s i d e which e s s e n t i a l l y a l l t h e H20 molecules are more o r l e s s e q u i v a l e n t .

REFERENCES

/1/ R.A. Howe, W.S. Howells and J.E. Enderby, J.Phys. C7, L l l l (1974)

/2/ M.P. Fontana, G. Maisano, P. M i g l i a r d o and F. Wanderlingh, J.Chem.Phys. 69

676 (1978) -

/3/ P. ~ a ~ a r d e ,

A.

Fontaine, D. Raoux, A. Sadoc and P. M i g l i a r d o , J. Chem.Phys. 72,

3061 (1980) -

/4/ G. Maisano, P. M i g l i a r d o , F. Wanderlingh, M.P. Fontana, M-C.Bellissent-Funel and M. Roth, J.Physique C6, 42, C6-51 (1981)

/5/ M.W. Johnson, Harwell Report AEK-R7682 (1974)

/6/ W. Marshall and S. Lovese\/, Theory o f Thermal Neutron S c a t t e r i n a (Oxford Claren-

. .

-

- ., ,

don Press) 1971

/7/ L. Van Hove, Phys.Rev. 95, 249 (1954)

/8/ V.F. Sears, Can J .Phys.-V4, - 1299 (1966) ; - 45, 237 (1966)

(8)

/11/ J.W. White, Ber. Buns. Gesell. Physik. Chem. 75, 379 (1971)

/12/ G.S. Darbari

,

M.R. Richelson and S. Petrucci ,T.Chem.Phys. 53, 859 (1970) /13/ P . A . E g e l s t a f f , An Introduction t o t h e Liquid S t a t e , AcademE Press, London

1967

/14/ Y . Nakamura, S. Shimokawa, K . Futamata and M. Shimoji, J . Chem. Phys.

2,

3258 (19821.

~ h e s e ' r e s u i t s a r e r e l a t i v e t o a NMR r e l a x a t i o n study of water molecules i n concentrated ZnC12 s o l u t i o n s . There i s some discrepancy with our r e s u l t s f o r t h e measured values of t h e s e l f d i f f u s i o n c o e f f i c i e n t of t h e s a t u r a t e d s o l u t i o n . Furthermore, i t seems t o us t h a t t h e s e p a r a t i o n between intermole- c u l a r and intramolecular c o n t r i b u t i o n s t o t h e r e l a x a t i o n i s q u i t e a r b i t r a r y f o r a molecular l i q u i d , s i n c e t h e intermolecular c o n t r i b u t i o n i s influenced by t h e r o t a t i o n a l motion of t h e molecule. Thus, i t i s d i f f i c u l t t o compare t h e r o t a t i o n a l c o r r e l a t i o n times obtained by t h e two methods.

/15/ S.H. Chen, J . T e i x e i r a and R . Nicklow, Phys.Rev. A 26, 3477 (1982) /16/ C.T. Chudley and R.J. E l l i o t t , Proc. Phys. Soc. 7 7 , 3 5 3 (1961)

/17/ N.A. Hewish, J.E. Enderby and W.S. Howells, P h y s x e v . L e t t .

-

48, 756 (1982).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to