• Aucun résultat trouvé

THE CURRENT STATUS OF PROTON DECAY PHYSICS

N/A
N/A
Protected

Academic year: 2021

Partager "THE CURRENT STATUS OF PROTON DECAY PHYSICS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00221895

https://hal.archives-ouvertes.fr/jpa-00221895

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE CURRENT STATUS OF PROTON DECAY PHYSICS

L. Sulak

To cite this version:

L. Sulak. THE CURRENT STATUS OF PROTON DECAY PHYSICS. Journal de Physique Collo-

ques, 1982, 43 (C3), pp.C3-205-C3-210. �10.1051/jphyscol:1982342�. �jpa-00221895�

(2)

JOURNAL DE PHYSIQUE

CoZZoque C3, s u p p Z 6 m e n t a u n o 1 2 , Tome 43, d s c e m b r e 1 9 8 2 p a g e C3-205

THE CURRENT STATUS OF PROTON DECAY P H Y S I C S

L . Sulak

U n i v e r s i t y o f M i c h i g a n , Ann A r b o r , M I 48109, U.S.A.

T h i s review condenses the c o n t r i b u t i o n s o f the rapporteurs t o t h i s session.

The developments over the l a s t year r e l e v a n t t o p r o t o n decay i n v e s t i g a t i o n s , i n c l u d i n g t h e o r e t i c a l i m p l i c a t i o n s and past, present and near f u t u r e exoerimental work are summarized.

1. T h e o r e t i c a l Aspects

We begin t h i s review by a summary o f the i m p l i c a t i o n s of r e c e n t t h e o r e t i c a l

developments f o r proton decay. Employing a = 1/137.036 and Ax = 0 . 1 6 0 1 i : ~ ~ ~ GeV i n the r e n o r m a l i z a t i o n group equations o f the minimal SU(5) Georgi-Glashow modell ( 3 generations o f fermions and

3+5

Higgs s c a l a r s ) , one obtains2

2-

+O

.004

s i n ew(mw) = 0.214-0.003

These p r e d i c t i o n s are i n e x c e l l e n t agreement w i t h experiment3

and thereby p r o v i d e s t r o n g support f o r grand u n i f i c a t i o n .

O f course, minimal SU(5) also p r e d i c t s proton decay ( p + e f o , e+w

...

). Recently, t h e p r e d i c t e d l i f e t i m e T has s i g n i f i c a n t l y decreased f o r two reasons. 1) A decrease i n Am since r p scales as Aw,

4

and 2) an increase i n the estimated magnitude o f proton decay m a t r i x elements4, e.g. the i n c l u s i o n o f 3 quark f u s i o n (uud+e+) diagrams. Presently, one f i n d s

which i s very n e a r l y i n c o n f l i c t w i t h the bound5 i n f e r r e d from the K o l a r experiment,

I s minimal SU(5) already i n t r o u b l e ? I f a l i f e t i m e o f r p = 1031 y r were t o be e s t a b l i s h e d , minimal SU(5) would r e q u i r e Am

2

0.3 GeV. Thus, p r e c i s e determination o f AK would be needed t o t e s t the model. What happens i f p r o t o n decay

is

n o t observed a t a

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982342

(3)

JOURNAL DE PHYSIQUE

l i f e t i m e s e n s i t i v i t y o f 1031 y r ? Bigger GUTS, such as S0(1O), SU(7) etc., o f f e r v i a b l e a1 t e r n a t i v e s . U n f o r t u n a t e l y , they do n o t p r o v i d e p r e d i c t i o n s f o r T p; i n s t e a d they accommodates a l a r g e range o f values.

Another p o s s i b i l i t y i s t o en arge the SU(5) model. Indeed, appending new

non-degenerate Higgs mu1 t i p l e t s t o the model6 o r i n c r e a s i n g both t h e fermion and Higgs

,

c o n t e n t v i a supersymmetry7 can s i g n i f i c a n t l y modify the T P p r e d i c t i o n . We discuss these 1 a t t e r scenarios.

Minimal SU(5) has always had a problem regarding the fermion spectrum. It p r e d i c t s

%/me = ms/md, which i s o f f by an order o f magnitude. This i s g e n e r a l l y r e c t i f i e d by i n t r o d u c i n g a complex 45 o f Higgs sca1ars.l Why n o t go a l l t h e way and i n c l u d e a 10,

15

and 50 ( o r several o f each)? Indeed, only the Higgs

-

5,

10, 15, 5

and

-

50 c o u ~ l e t r f e r m x n b i l i n e a r s ( i n 5+10).

Each submul t i p l e t o f the decomposition under SU(3)cxSU(2)~xU(l) o f t h e Higgs SU(5) m u l t i p l e t s has a d i s t i n c t mass mi. Only some m i ' s are constrained. C o n s t r a i n t s from KO-KO and DO-DO m i x i n g are n o t very stringent.6 F o r degenerate values o f the mi, the p r e d i c t i o n s o f minimal SU15) are unchanged. One can s h i f t r p r a t h e r s i g n i f i c a n t l y withou much m o d i f i c a t i o n o f sin2ew(mW) by a j u d i c i o u s choice o f mi. E.g., assuming no mass r a t i i s >10 and maximizing t h e lifetiin: p r e d i c t i o n s , one f i n d s T~ = 3x1031 y r (an increase by 2 orders of magnitude) w h i l e sin2ew(mw) = 0.215. Since the p o s s i b i l i t y o f a l a r g e r SU(5) Higgs s e c t o r i s n o t u n r e a l i s t i c , t h i s u n c e r t a i n t y i n the T~ p r e d i c t i o n provides m o t i v a t i o f o r pushing the experiments t o the

-

1 0 3 ~ y e a r s e n s i t ~ v i t y .

Imposing a supersymmetry on the minimal S U ( 5 ) model, where each fermion (boson) i s given a boson ( f e r m i o n ) partner, a l s o changes the predictions.7 F o r bE = 0.16 GeV and N 1 i g h t Higgs isodoublets8, supersymmetric SU(5) w i t h supersymmetry breaking a t =inw p r e d i c t mb/@ = 2.8 and

4 0.259 5x1030 y r

.

The p r e d i c t i o n f o r sin26,(mW) i s l a r g e r than the experimental value p a r t i c u l a r l y f o r N H = ~ ) . However, by e n l a r g i n g the Higgs content f u r t h e r s 9 one can g e t sin26,(mW) = 0.21-0.22 and T P = 1031 y r .

The values o f T g i v e n above correspond t o tree-1 eve1 gauge-boson-medi ated decays.

Loop e f f e c t s i n some supersymmetric t h e o r i e s (depending on supersymmetry breaking) can g i v e r i s e t o dimension 5 o p e r a t o r s l o which may l e a d t o new dominant decay modes such as p

+ V,K+ and n-+ vTKo. The-signal f o r such decays i s l e s s c l e a r than p + e+no i n the new detectors. ~ o m e s t a k e l l gives a lower bound T p - > 3x1031 y r f o r decays r e s u l t i n g i n a f i n a s t a t e p+. T h i s probably t r a n s l a t e s i n t o a l i m i t o f about 3x1030 y r f o r these modes.

Other theor'etical developments have relevance f o r proton decay experiments since the suggest a l t e r n a t i v e signatures t h a t should be searched f o r . Using T 2 3 ~ ~ 3 0

yr,

C h e t y r k i n e t a1 .I2 have obtained an e f f e c t i v e bound for t h e f r e e neugron nn o s c i l l a t i o n p e r i o d Tn- 5 2/6m

,

2x107 sec. T h i s i s b e t t e r than present r e a c t o r experimental bounds.

As the laVge p r o t o n decay experiments become o p e r a t i o n a l , they may push T into 108-109 se as a byproduct.

An enlarged Higgs s e c t o r which i n c l u d e s the 50 w i t h r a t h e r l i g h t , doubly-charged and c o l o r - s e x t e t s c a l a r s may lead-to observable r a t e s f o r double baryon decay A 5 = AL = -2:

pp + a+a+, pn + 2'7 o r nn + vv (E = e,p).13 The s i g n a t u r e f o r the f i r s t r e a c t i o n , back-to-back charged l e t o n s w i t h = 1 GeV each, i s q u i t e spectacular.

Rubakov and C a l l any4 have argued t h a t as superheavy SU(5) magnetic monopoles moue through matter, they may c a t a l y z e proton decay. Rubakov estimates a cross-section of cr = 10-26 cm2 f o r the r e a c t i o n Wp + Mte++X. T h i s would cause a s t r i n g o f proton decays

separated s p a t i a l l y by 10-100 cm and temporally by microseconds i f such a monopole t r a v e r s e d one o f t h e b i g p r o t o n decay detectors. These r e s u l t s are independent o f t h e u n i f i c a t i o n mass. However, the t h e o r e t i c a l a n a l y s i s i s p r e l i m i n a r y ; much work needs t o b done regarding p o s s i b l e suppression mechanisms. Nevertheless, a double discovery ( p r o t o n decay and magnetic monopoles) may be forthcominq i f t h e i r surmise i s v a l i d .

(4)

2. Experimentally, Where Do We Stand Today?

L i m i t s on .rp have been s e t from the r a t e s o f stopping and decaying muons i n d e t e c t o r s deep underground. I t i s assumed t h a t the muons come from nucleon decay i n the d e t e c t o r o r t h e surrounding rock v i a the decay o f i o n secondaries. F o r decay modes favored by SU(5), t h e quoted l i m i t s from Learned e t a1 .19 and Cherry e t a1 . I 6 are

r p > 1030 y r s

and T~ > 1.5~1030 yrs, resp.

For o t h e r decay modes, e.g. the SUSY-favoured p + K+v,, K+ + pv,,, the l i m i t s would be comparable. These l i m i t s are p o s s i b l y o p t i m i s t i c since no account i s taken o f p i o n absorption i n the parent nucleus. A s i m i l a r l i m i t has been s e t f o r confined events i n a 35 t o n c a l o r i m e t e r i n the Soudan I experiment.17

The Tata I n s t i t u t e l 0 s a k a l T o k y o group5,18 has operated a 140 t o n Fe c a l o r i m e t e r f o r 460 days a t 7600 mwe depth i n the K o l a r Gold F i e l d s . I t c o n s i s t s o f 1.2

cm

t h i c k Fe p l a t e s separated by orthogonal l a y e r s o f p r o p o r t i o n a l tubes, 10x10 cm i n cross-section.

F o r each event recorded t h e r e are t y p i c a l l y 10-15 h i t s , so t h a t any one t r a c k may be d e f i n e d by only 2 o r 3 h i t s i n each o f the two views. Track and vertex r e s o l u t i o n i s t h e r e f o r e poor and even a prong d i s t r i b u t i o n i s d i f f i c u l t t o consider r e l i a b l e . Energy estimates are based on pulse h e i g h t per h i t , ranqe, and t r a c k lenqth. The authors c l a i m an energy r e s o l u t i o n o f AEIE = 20%, b u t i t i s p o s s i b l y a f a c t o r two worse as estimated by sampling frequency and the EGS Monte C a r l o program.

Three confined nucleon decay candidates i n 60 t o n years ( f i d u c i a l ) are claimed, b u t s i n c e these events cannot be d e f i n i t i v e l y e s t a b l i s h e d as nucleon decays, the experiment s e t s a lower l i m i t i n the r e g i o n o f r p > 3 x 1 0 3 ~ yrs. The experimenters observe a t o t a l o f 19 i n t e r a c t i o n s ( o r decays) a t a r a t e o f (1&2.5)/100 ton-yr; t h i s i s c o n s i s t e n t w i t h n e u t r i n o background estimates. The g r e a t achievement o f t h i s group has been t o operate the f i r s t experiment w i t h a l a r g e dedicated d e t e c t o r deep underground, and t o i n s p i r e o t h e r groups t o embark on s i m i l a r p r o j e c t s .

The

NU SEX^^

c o l l a b o r a t i o n has ooerated a 150 t o n c a l o r i m e t e r ( 1 cm Fe p l a t e s and r e s i s t i v e streamer tubes o f 1 cm2 cross-section) f o r -30 days under Mont Blanc. A t o t a l o f one observed i n t e r a c t i o n sets a l i m i t o f r p 2 3 x 1 0 ~ ~ y r .

The i n t e r a c t i o n s o f atmospheric n e u t r i n o s c o n s t i t u t e the main background t o any p r o t o n decay signal. Per k i l o t o n - y e a r exposure, one expects 150 n e u t r i n o events, o f which 50 have a v i s i b l e energy o f 0.W0.3 GeV. An equal number o f nucleon decays would

correspond t o T = 1 . 2 ~ 1031 y r . Before one can c l a i m any signal

,

the n e u t r i n o background must be understood. There are several consistency t e s t s t o be performed by observing the n e u t r i n o s :

( i The v, and v e f l u x e s are c l o s e l y r e l a t e d t o the measured sea-level muon f l u x e s and a r e known t o 30% o r b e t t e r . The observed f l u x e s should agree w i t h the expected n e u t r i n o r a t e and spectrum shape.

( i i ) The muonless t o muonic events should be i n the r a t i o o f 1:2.

( i i i ) The z e n i t h angle (8) d i s t r i b u t i o n should peak a t the h o r i z o n t a l , e.g.

N(e>60°)/N(e<600) = 1.30.

( i v ) The l a t i t u d e (A) and east-west e f f e c t s r e s u l t i n g from the magnetic c u t - o f f o f the primary spectrum should be apparent, e.g. N(h=0°)/N(A=500N) = 0.6. At A=OO, N(E)/N(W) = 0.5. U n f o r t u n a t e l y a t the l o c a t i o n o f most experiments (-50' n o r t h l a t i t u d e ) N(E)/N(W) = 0.98, so t h a t only t h e K o l a r experiment can v e r i f y the east-west asymmetry.

( v ) The n e u t r i n o event topology i s c h a r a c t e r i s t i c . This has been demonstrated by t h e NUSEX group19 w i t h an Fe c a l o r i m e t e r a t the CERN PS beam. The proton energy (10 GeV) was chosen so t h a t the n e u t r i n o spectrum was s i m i l a r t o t h a t o f cosmic rays. (Of course, o n l y v,, ' s and no v e 1 s were i n the beam.) They f i n d 58% 1-prong, 27% 2-prong, and 8% a3-prong events. So a simple d e v i a t i o n from t h i s prong d i s t r i b u t i o n c o u l d be evidence f o r a non-neutrino signal. They conclude t h a t o n l y 3% o f the n e u t r i n o events c o u l d simulate nucleon decays. The l a t t e r are defined as 2-prong events, w i t h back-to-back angle >120°, o r a3-prong events w i t h 1 secondary backward r e l a t i v e t o the r e s u l t a n t momentum o f the others.

(5)

C 3 - 2 0 8 JOURNAL DE P H Y S I Q U E

Assuming an energ.y r e s o l u t i o n o f A E E 20%, t h e i r a n a l y s i s suqgests a signal t o background r a t i o o f u n i t y f o r r = 1031 y i a r s . This i s o p t i m i s t i c i n the sense tha a 2-body nucleon decay (e.g. n + e f - ) can o f t e n appear as a s i n g l e prong due t o absorption o r s c a t t e r i n g i n the parent nucleus. F u r t h e r , t h e energy r e s o l u t i o n f o an i s o t r o p i c angular d i s t r i b u t i o n and 1 cm sampling i s more n e a r l y 30% a t best.

The NUSEX a c c e l e r a t o r studies p r o v i d e valuable i n f o r m a t i o n on r e a l n e u t r i n o event c h a r a c t e r i s t i c s i n c a l o r i m e t e r s designed f o r nucleon deca

.

They show t h a t o r SUSY decay modes.

i t should be p o s s i b l e t o demonstrate a c l e a n s i g n a l , i f r p < 10 2 years, f o r SU(5)

3

3.

-

The New Tracking Calorimeter_

U n t i l r e c e n t l y two t r a c k i n g d e t e c t o r s were o p e r a t i o n a l . I n May 1982, the Mont Blan detector19 (150 tons) j o i n e d the Soudan (30 tons) and K o l a r Gold (150 tons) detectors.

The small mass and the coarse g r a i n resp., o f the l a t t e r two d e t e c t o r s are complemented the f i n e g r a n u l a r i t y o f the Mont Blanc detector. It i s a d i g i t a l t r a c k i n g c a l o r i m e t e r w i t h 1 cm t h i c k i r o n p l a t e s and ( 1 cm)2 p l a s t i c streamer tubes between t h e plates.

These t r a c k i n q c a l o r i m e t e r s are more complex and expensive than the a1 t e r n a t i v e wat Cerenkov detectors. They a l s o s u f f e r from the d i s t u r b i n g nuclear e f f e c t s (Fermi motion and nuclear r e i n t e r a c t i o n s ) o f the h i g h Z d e t e c t o r m a t e r i a l . However, they f e a t u r e a u n i f o r m s e n s i t i v i t y t o the various p o s s i b l e decay modes. The r e c e n t enlarqement o f the p r e d i c t e d proton decay schemes by supersymqetric t h e o r i e s have f u r t h e r enhanced by t h i s feature.

I n d i g i t a l c a l o r i m e t e r s a l l t h e i n f o r m a t i o n r e l e v a n t t o event i d e n t i f i c a t i o n comes from the p a t t e r n of h i t elements. T h i s p a t t e r n determines the event v e r t e x and topoloqy p a r t i c l e i d e n t i f i c a t i o n , energy measurement, and prong d i r e c t i o n . The l a t t e r i s general a v a i l a b l e f o r electromagnetic showers. It can a l s o be determined by t h e i d e n t i f i c a t i o n the (K,n) + u + e decay sequence. The v+e d e t e c t i o n e f f i c i e n c y o f the Mont Rlanc d e t e c t i s about 30%. Due t o the h i g h 11- capture p r o b a b i l i t y i n i r o n (38%)) o n l y (K+,T+) + +

e+ decays are observed. As a consequence, the observation o f the decay chain i d e n t i f i e s the p o s i t i v e charge o f t h e secondary.

The s e n s i t i v i t y o f t h e Mont Blanc d e t e c t o r i s r a t h e r uniform f o r a wide spectrum o f p o s s i b l e decay modes: from e+n t o K'v. From the CERN beam t e s t s , i t s g r a n u l a r i t y appears adequate t o r e j e c t v background f o r an exposure o f a few 100 ton-years. I t shou t h e r e f o r e be able t o i n v e s t i g a t e p r o t o n l i f e t i m e up t o 1031 years.

A l a r g e r d i g i t a l t r a c k i n g c a l o r i m e t e r i s now under c o n s t r u c t i o n i n the F r e j u s tunne I t should s t a r t o p e r a t i o n next year w i t h 500 tons. The eventual t o t a l mass w i l l be 1.5 Kton. An e s s e n t i a l f e a t u r e i s i t s very f i n e g r a i n : 3 m i r o n p l a t e s , i n t e r l e a v e d w i t h f l a s h chambers o f (5 mn)2 cross section. Geiger tubes p r o v i d e the t r i q g e r . I t s g r a n u l a r i t y should be adequate t o r e j e c t v background f o r an exposure o f a few Kton-year It should be able t o explore up t o a l i f e t i m e o f years. I f t h e proton decays, the d e t e c t o r should be able t o i d e n t i f y complex decay modes such as ef + ( p , w , n ) o r p + ~ i . Two more f i n e g r a i n c a l o r i m e t e r s have been proposed. The f i r s t one, a 1 Kton devic i s advocated f o r the Soudan mine. The t r a c k i n g devices would be l o n g - d r i f t p r o p o r t i o n a l chambers, sandwiched w i t h 0.5 cm i r o n p l a t e s . The s p a t i a l g r a n u l a r i t y o f t h i s d e t e c t o r would n o t be as f i n e as t h a t o f the F r e j u s detector, b u t t h e AE/AX measurement c o u l d presumably compensate f o r t h a t , and a1 so p r o v i d e t r a c k d i r e c t i o n a l i t y .

The second proposed c a l o r i m e t e r would be i n s t a l l e d i n the Gran Sasso Laboratory.

P r e s e n t l y t h e r e a r e two a l t e r n a t i v e desiqns under study, one w i t h f l a s h chambers and one w i t h p l a s t i c Geiger tubes. E i t h e r would have a t i m e - o f - f l i g h t system t o q i v e

d i r e c t i o n a l i t y .

T h i s v a r i e t y o f t r a c k i n g d e t e c t o r s and techniques, e x h i b i t i n g non-negl i q i b l e d i f f e r e n c e s i n t h e i r d e t e c t i o n features, should ensure a c a r e f u l e x p l o r a t i o n of p r o t o n l i f e t i m e i n t o the 1032 years ranqe.

4. The New Water Cerenkov D e t e c z

Two U.S. c o l l a b o r a t i o n s have j u s t begun o p e r a t i n g l a r g e water Cerenkov detectors designed s p e c i f i c a l l y t o search f o r nucleon decay reactions. These d e t e c t o r s are run bj t h e Harvard-Purdue-Wisconsin c o l l a b o r a t i o n i n the S i l v e r King Mine, Park C i t y , Utah and the Irvine-Michigan-Brookhaven c o l l a b o r a t i o n i n the Morton S a l t Mine, Cleveland, Ohio.

(6)

L. Sulak C3-209

Another water detectorz0, under c o n s t r u c t i o n a t the Kamioka metal mine i n Japan, i s scheduled t o be i n o p e r a t i o n by l a t e 1982 by a group from Tokyo, Tsukuba, and KEK.

Water Cerenkov d e t e c t o r s p r o v i d e a t low c o s t 6 x 1 0 3 ~ nucleons per k i l o t o n y i e l d i n g 60 branching r a t i o x e f f i c i e n c y events per k i l o t o n - y e a r f o r T~

-

1031 years. The low d e n s i t y o f the medium and the l a r g e volume o f the d e t e c t o r allows the t r a c k s from an event t o expand t o

-

4.5 meters, w i t h Cerenkov r a d i a t i o n f u r t h e r p r o j e c t i n q the i n f o r m a t i o n t o many meters distance. From t h i s extended p a t t e r n , t h e d i r e c t i o n s o f t r a c k s a r e obtained through timing. P a t t e r n r e c o g n i t i o n , t r a c k d i r e c t i o n , and energy r e s o l u t i o n combine t o i d e n t i f y events and e l i m i n a t e background. For c l a s s i c a l SU(5) modes ( i .e., p + e+ro) the decay products are electromagnetic and produce d i s t i n c t i v e back-to-back showers w i t h r e c o n s t r u c t i o n r e s o l u t i o n s on v e r t e x l o c a t i o n o f

-

50 cm., a x i s d i r e c t i o n s o f 10' t o 15' and energy r e s o l u t i o n o f 10% t o 20%. I n c o n t r a s t , SUSY modes (e.g., p + vK) are u n i d i r e c t i o n a l

,

produce few photoelectrons and have d i f f e r e n t associated backgrounds.

Although designed f o r the electromagnetic modes, t h e water Cerenkov d e t e c t o r s w i l l be capable o f r e s o l v i n g some SUSY reactions, b u t w i t h lower e f f i c i e n c y .

The IMB d e t e c t o r i s approximately cubical w i t h 21 m sides and 2048 photo-mu1 t i p 1 ie r s . F i v e - i n c h hemi s p h e r i c a l phototubes are arranged uni form1 y over the s i x i n n e r surfaces v i e w i n g the 10 k i l o t o n s o f water. The i n n e r 4 k i l o t o n s c o n s t i t u t e the f i d u c i a l volume.

I n c o n t r a s t , the HPW d e t e c t o r i s c y l i n d r i c a l w i t h a volume d i s t r i b u t i o n o f 704

p h o t o m u l t i p l i e r s i n 850 tons o f water (-l/m3) and w i t h m i r r o r s l i n i n g t h e e n t i r e i n n e r s u r f a c e t o enhance l i g h t c o l l e c t i o n . Whereas the IMB design u t i l i z e s the o u t e r 2 m o f water as an a c t i v e shield, the HPW tank w i l l be surrounded by p r o p o r t i o n a l w i r e chambers and concrete as a shield. Both exoeriments m a i n t a i n very pure water t o achieve absorption l e n g t h s f o r photons a t -420 nm wavelength o f 25 t o 30 m. The Kamioka d e t e c t o r w i l l be c y l i n d r i c a l i n shape w i t h 1000 l a r g e 20" PMTts mounted on the i n n e r surfaces viewing a 1 k i l o t o n f i d u c i a l volume (3 k i l o t o n s t o t a l

1.

The IMB and HPW groups are c u r r e n t l y analyzing cosmic muon data t o v e r i f y the r e s o l u t i o n s o f t h e i r r e s p e c t i v e d e t e c t o r s and t o t e s t and improve the r e c o n s t r u c t i o n programs. The r e s u l t s are encouraging. A t a muon r a t e o f a few Hz, the muon

t r a j e c t o r i e s , each w i t h v a r i a b l e length, produce Cerenkov cones t h a t are c l e a r l y evident.

Event c h a r a c t e r i s t i c s are i n close accord w i t h Monte Carlo p r e d i c t i o n s . A run o f the IMB device i n December 1981 w i t h the d e t e c t o r 1/3 f u l l o f water provided a data s e t o f throughgoing and stopping muons d e p o s i t i n g

-

1 GeV. This r u n gave r e s u l t s e n t i r e l y c o n s i s t e n t w i t h expectations f o r photoelectron y i e l d , f o r angular d i s t r i b u t i o n w i t h r e s p e c t t o the zenith, and f o r measurement o f t h e muon l i f e t i m e .

With estimated n e u t r i n o backqroundsof -1 eventfyear mimicking proton decay i n the IMB and HPW ex eriments, a l i m i t on the iiirdF6on l i f e t i m e can be s e t a t about 2 (HPW) t o 10

5

(IMB) x 10 2 y e a r s f o r electromagnetic decay modes. N e u t r i n o i n t e r a c t i o n s w i t h back-to-back l e p t o n - p i o n t r a c k s s i m i l a r t o nucleon decay (e.q., v n + p - p r o ) l i m i t the s e n s i t i v i t y . For SUSY modes, the number o f photoelectrons detected i s an order o f magnitude l e s s and the background e l im i n a t i o n commensurate1 y rllore d i f f i c u l t ; these modes a r e c u r r e n t l y being s t u d i e d by k n t e C a r l o techniques. F u r t h e r d i f f i c u l t i e s are due t o nuclear e f f e c t s , which reduce the number o f observable nucleon decays by p i o n absorption, and Fermi motion, which degrades the back-to-back s t r u c t u r e o f two body and quasi-two body modes. With 20% o f t h e protons f r e e and w i t h an appreciable f r a c t i o n o f the Fermi motion o f the bound protons w i t h i n angular and energy r e s o l u t i o n , 40% o f proton decays appear t o s u r v i v e these d i f f i c u l t i e s .

5. Summary

Where do we stand today? The KGF group have observed n e a r l y 20 events a t a r a t e expected from n e u t r i n o background; i t i s n e i t h e r excluded nor proven t h a t a few o f these c o u l d be nucleon decays. S i m i l a r l y , t h e s i n g l e event from the NUSEX d e t e c t o r i s c o n s i s t e n t w i t h the expected n e u t r i n o r a t e . I t i s c l e a r t h a t several experiments w i t h d i f f e r e n t techniques w i l l be needed t o e s t a b l i s h a s i g n a l . The new d e t e c t o r s provide compl imentary technologies. They i n c l u d e good s p a t i a l r e s o l u t i o n and sampl i n g t o d e f i n e v e r t i c e s , r e s o l v e m u l t i - t r a c k events, and give e/p d i s c r i m i n a t i o n . Further, p a r t i c l e d i r e c t i o n i s a v a i l a b l e t o d i s c r i m i n a t e two prong decay events from s c a t t e r s , and t o d i s t i n g u i s h decays 1 i ke p + K+V, and K+ -t pvU from n e u t r i n o background 1 i ke

vu

+

N + N + n + p .

The n e x t few months are going t o be very a c t i v e and e x c i t i n g f o r a l l the proton decay p r o j e c t s .

(7)

JOURNAL DE PHYSIQUE

References

H. Georgi and S. Glashow, Phys. Rev. L e t t .

-

32, 438 (1974).

H. Georgi, H. Quinn and S. Weinberg, Phys. Rev. L e t t . 33, 451 (1974); A. Ruras, J.

E l l is , M.K. G a i l l a r d and D. Nanopoulos, Nucl

.

Phys. B I T , 66 (1978); W. Marciano and A. S i r 1 i n "Proc. o f the Second Workshop on Grand U n i f i c a t i o n , " e d i t e d by J. L e v e i l l e L. Sulak and D. Unger (Birkhauser, Boston 1981); f o r a r e c e n t review see W. Marciano

"Proton Decay -1982" Proceedings o f Orbis S c i e n t i a e X I X (1982).

A. S i r l i n and W. Marciano, Nucl. Phys. B E , 442 (1981); C. L l e w e l l y n Smith and J.

Wheater, Phys. L e t t .

-

105B, 486 (1981).

V. Rerezinsky, I. Io f f e and Ya. Kogan, Phys. L e t t . 1056, 33 (1981); J. Donoghue and

-

E. Golowich, U. o f Mass. p r e p r i n t (1982).

M. Krishnaswamy e t a1

.,

Phys. L e t t .

E,

339 (1981).

L.

Ibanez, Nucl. Phys. 8181,

-

105 (1981); W. Marciano and Z. Parsa (unpublished).

S. Dimopoulos, S. Raby and F. Wilczek, Phys. Rev. D24, 1681 (1981); S. Dimopoulos and ti. Georgi, Nucl. Phys. 8193,

-

150 (1981); N. Sakai, Phys.

G,

153 (1981).

L. Ibanz and G. Ross, Phys. L e t t . 105B, 439 (1981); M. Einhorn and D.R.T. Jones, Univ. o f Mich. p r e p r i n t (1981);

ciano no

and G. Senjanovic, BNL p r e p r i n t (1981).

A. Masiero, D. Nanopoulos, K. Tamvakis and T. Yanagida, p r e ~ r i n t (1982).

S. Weinberg, Harvard Univ. p r e p r i n t (1981); N. Sakai and T. Yanagida, Nucl

.

Phys.

8197, 533 (1982); S. Dimopoulos, S. Raby and F. Wilczek, p r e p r i n t (1981); J. E l l i s , D,anopoulos and S. Rudaz, CERN p r e p r i n t (1981).

M.L. Cherry e t a1

.,

Phys. Rev. L e t t .

23,

1507 (1981).

K. Chetyrkin, M. Kazarnovsky, V. Kuzmin and PI. Shaposhnikov, Phys. L e t t .

z,

358

(1981

1.

6. Feinberg, M. Goldhaber and G. Steigman, Phys. Rev. D18, 1602 (1978); L. A r n e l l o s and W. Marciano, Phys. Rev. Lett.; R. Mohapatra and G. s n j a n o v i c , p r e p ' r i n t 1982; V.

Gupta, S. Pakvasa and V. Singh, Tata I n s t . P r e p r i n t (1982).

V. Rubakov, JETP L e t t .

-

33, 644 (1981); C. Callan, P r i n c e t o n Univ. p r e p r i n t (1982).

J. Learned, e t al., Phys. Rev. L e t t .

43,

907 (1979).

M.L. Cherry, e t al., Phys. Rev. L e t t .

-

47, 1507 (1981).

M. Marshak, e t a1

.,

p r e s e n t a t i o n a t t h i s meeting.

M.R. Krishnaswamy, e t a1

. ,

Phys. L e t t . 1982 ( i n press) and M.G.K. Menon, p r e s e n t a t i o n a t t h i s meeting.

G. B a t t i s t o n i , e t al., Proc. ICOBAN, Bombay (1982) and E. F i o r i n i , p r e s e n t a t i o n a t t h i s meeting.

M. Koshiba, p r e s e n t a t i o n a t t h i s meeting.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to