• Aucun résultat trouvé

Nucleation time in coagulation-fragmentation models

N/A
N/A
Protected

Academic year: 2021

Partager "Nucleation time in coagulation-fragmentation models"

Copied!
23
0
0

Texte intégral

(1)

HAL Id: hal-02794818

https://hal.inrae.fr/hal-02794818

Submitted on 5 Jun 2020

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Nucleation time in coagulation-fragmentation models

Romain Yvinec, Julien Deschamps, Erwan Hingant

To cite this version:

Romain Yvinec, Julien Deschamps, Erwan Hingant. Nucleation time in coagulation-fragmentation

models. Journées Modélisation Aléatoire et Statistique de la SMAI (Société de Mathématiques Ap-

pliquées et Industrielles), Société de Mathématiques Appliquées et Industrielles (SMAI). FRA., Jun

2015, Les Karellis, France. �hal-02794818�

(2)

Nucleation Time in Coagulation-Fragmentation models

Romain Yvinec

1

, Julien Deschamps

2

and Erwan Hingant

3

1BIOS group INRA Tours, France.

2DIMA, Universita degli Studi di Genova, Italy.

3CI2MA, Universidad de Concepci´on, Chile

(3)

Becker-D¨ oring model for Nucleation

Reversible one-step agregation

C

i

` C

1

ÝÝá âÝÝ

ai

bi`1

C

i`1

(1)

The nucleation time is given by the following First Passage Time, T

1,0N,M

:“ inftt ě 0 : C

N

ptq “ 1 | C

i

pt “ 0q “ Mδ

i“1

u . (2) More generally, we can look at

T

ρ,hN,M

:“ inftt ě 0 : C

N

ptq ě ρM

h

| C

i

pt “ 0q “ M δ

i“1

u . (3) for given positive constant ρ and 0 ď h ď 1.

Remark

C

1

ptq `

ÿ

i

iC

i

ptq ” M .

(4)

“Large number limit” of the nucleation time

What are the dependencies of the nucleation time with respect to the model parameters ?

Here, we ask : what is the nucleation time for very large initial quantity M and nucleus size N ?

M,NÑ8

lim T

ρ,hN,M

(4)

(5)

Premi` ere approche ”standard”

“petits M ,N ”

on peut d´ ecrire l’ensemble du syst` eme, ´ ecrire la matrice de passage entre les ´ etats et r´ esoudre l’´ equation lin´ eaire correspondante.

(8,0,0)

(6,1,0)

(4,2,0)

(2,3,0) (5,0,1)

(3,1,1)

(1,2,1) (2,0,2) (0,4,0)

(0,1,2) (7,0,0)

(5,1,0)

(3,2,0)

(1,3,0) (4,0,1)

(2,1,1)

(0,2,1) (1,0,2)

(a) (b)

Dimension du syst` eme

7tconfig. tC u,

N

ÿ

i“1

iC

i

“ M u «

M

N

N!

(6)

Simplified model 1) Constant Monomer formulation

The model with Constant C

1

is Linear, we have ’exact’ solution Proposition

E“

T

ρ,hN,M

MÑ8

C

te

pa, Nq M

1

M

p1´hq{pN´1q

(5) where C

te

pa, nq is a constant that depends on api q, i ď N and N.

pC

i

q

i

follows a Poisson distribution of mean the solution of a linear ODE (constant monomer original Becker-D¨ oring formulation)

d c

dt “ Ac ` B, dc

n

dt “ c

1

c

n´1

,

(6)

for which we can show c

N

ptq «

´N´1ź

k“1

apkq

¯

C

1N

t

N´1

pN ´ 1q! ,

(7)

Simplified model 2) Single-cluster formulation

If we suppose that a single cluster can be present at a time, then the model is one-dimensional, ’exact’ solution and classical FPT theory gives (it’s a 1D discrete random walk)

Proposition

E“

T

1,0N,M

N´1

ÿ

i“1 i

ÿ

j“1

b

i

b

i´1

. . . b

j`1

a

i

a

i´1

. . . a

j

1

pM ´ iq . . . pM ´ j qM

δj“1

Remark

Similar results with “Pre-equilibrium” hypothesis when b Ñ 8.

(8)

General idea : rescaling strategy

Consider the deterministic irreversible aggregation model dc

i

dt “ a

i

c

1

pc

i´1

´ c

i

q, c

1

`

ÿ

i

ic

i

“ m,

t

˚

“ inftt ě 0 : c

N

ptq “ ρm | c

1

p0q “ mu Then with c

i1

cmi

, τ “ mt ,

dc

i1

d τ “ a

i

c

11

pc

i´11

´ c

i1

q, c

11

`

ÿ

i

ic

i1

“ 1,

τ

˚

“ inf tt ě 0 : c

N1

ptq “ ρ | c

11

p0q “ 1u This strategy shows that

t

˚

“ C

te

m .

(9)

Asymptotic for finite N

The same results holds Proposition

E

T

ρ,hN,M

MÑ8

C

te

pa, Nq M

1

M

p1´hq{pN´1q

(7) where C

te

pa, nq is a constant that depends on api q, i ď N and N.

Indeed,

CipMtqM

is “close” to the solution of the SDE d c

ε

“ Jpc

1

qcdt ` ?

εBpc

1

qcd w

t

(8)

where the variance is of order ε “

M1

and the nucleation time can be comuted by

T

ρ,hN,M

” inf tτ ě 0 : c

Nε

pτ q “ ρε

1´h

| c

i

pτ “ 0q “ 1δ

i“1

u . (9)

(10)

But ! There are complex behavior for ’intermediate’ M . Indeed T

1,0N,M

may be

§

bimodal

§

nearly independent of M over several log.

log10(M)

1 3 5 7 9

log10(T)

-10 -8 -6 -4 -2 0 2 4

N=6

log10(M)

1 3 5 7 9

N=10

log10(M) 1 3 5 7 9 11

N=15

(11)

Asymptotic for large N

Wa want to prove behavior like T

?M,M

1,0

“ inf tt ě 0 : C

?M

ptq “ 1 | C

i

pt “ 0q “ M δ

i“1

u

MÑ8

? M . (10)

We need a limit theorem when N, M Ñ 8...

(12)

Choose a fix state space

With ε “ 1 N “ 1

? M Ñ 0, we obtain a fix state space by looking at

µ

εt

p. q “

ÿ

iě2

ε

α

C

iε

γ

tqδ

p. q P

Mb

pR

`

q (11)

The nucleation time is thus T

?M,M

1,0

“ inf tt ě 0 : µ

εt

pt1uq “ ε

α

ą 0 | µ

ε0

“ 0u, (12)

The scaling exponents α, γ need to be adjusted in order to obtain

a non-trivial limit (and according to other scaling hypotheses on

a, b...).

(13)

Rescaled Equation (1)

ÿ

i

ϕpiεqC

i

ptq “

ÿ

i

ϕpiεqC

i

p0q `

Oϕt

`

żt

0

ϕp2εq

a

1

pC

1

psqq

2

´ b

2

C

2

psq

ds

`

żt

0

ÿ

i

pϕpiε ` εq ´ ϕpiεqqa

i

C

1

ps qC

i

ps q ds

`

żt

0

ÿ

i

pϕpiε ´ εq ´ ϕpiεqqb

i

C

i

psq .

εt

, ϕy “ xµ

εin

, ϕy `

Otε,ϕ żt

0

ϕp2εq

a

ε1

pC

1ε

psqq

2

´ b

2ε

C

2ε

psq

ds

` ε

żt

0

ż

ε

pϕqpa

ε

pxqC

1ε

psq ´ b

ε

pxqqµ

εs

pdx q ds (13)

(14)

Rescaled Equation (2)

Hence, if the flux pa

ε

pxqC

1ε

ps q ´ b

ε

pxqq is of order ε

´1

), we may expect everything to converge nicely, except the red term !

εt

, ϕy “ xµ

εin

, ϕy `

Otε,ϕ żt

0

ϕp2εq

a

ε1

pC

1ε

psqq

2

´

b2εC2εpsq‰

ds

`

żt

0

ż`8

0

ε

pϕqpa

ε

pxqC

1ε

psq ´ b

ε

pxqqµ

εs

pdx q ds (14)

We need to look at the term

C2ε“ xµεs,1y

!

(15)

Fast variable

The equations on C

2ε

involves C

3ε

, which involves C

4ε

and so on...and there are fast variables.

C

iε´1

1

εaεpεpi´1qqC1εCi´1ε

Ý ÝÝÝÝÝÝÝÝÝÝÝ á â ÝÝÝÝÝÝÝÝÝÝÝ Ý

1 εbεpεiqCiε

C

iε

1

εaεpεiqC1εCiε

ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ

1

εbεpεpi`1qqCi`1ε

C

i`1ε

,

We cannot hope a convergence in a standard function space.

We need a functional space that do not see the fast variations, such as

M

pR

`

, l

1

pR

`

qq, (with respect to the weak topology) for the occupation measure, defined by, for measurable sets U of l

1

,

Γ

ε

´

r0, T s ˆ U

¯

:“

żt

0

1

tpCε

i psqqiPUu

ds

(16)

Theorem

(Under some conditions...) pµ

ε

, pC

iε

qq converges in

D

pR

`

, p

M,

p1 ` xqdxqq ˆ

M

pR

`

, l

1

pR

`

qq towards

t

, ϕy “ xµ

in

, ϕy `

żt

0

ϕp0q“

a1pc1psqq2´b2c2psq‰

`

żt

0

ż`8

0

ϕ

1

pxqpapxqc

1

ps q ´ bpxqqµ

s

pdxq ds . xµ

t

,

id

y ` c

1

ptq “ m :“ xµ

0

,

id

y ` c

1

p0q

And pc

i

ptqq

iě2

is a stationary solution in l

1

of the following deterministic constant-monomer Becker-D¨ oring system ( for

’freezed’ c

1

“ c

1

ptq)

c

92

“ 0 “ ´

´

a

2

c

1

c

2

´ b

3

c

3

¯

, c

9i

“ 0 “

´

a

i´1

c

1

c

i´1

´ b

i

c

i

¯

´

´

a

i

c

1

c

i

´ b

i`1

c

i`1

¯

.

where a

i

, b

i

depends on the behavior of a, b at 0

(17)

For apxq “ ax

r

` opxq, bpxq “ bx

r

` opxq, r ă 1, the above equation reduces to, for

c1ptq ą ba

,

t

, ϕy “ xµ

in

, ϕy `

żt

0

ϕp0qa1pc1psqq2

`

żt

0

ż`8

0

ϕ

1

pxqpapxqc

1

ps q ´ bpxqqµ

s

pdxq ds . xµ

t

,

id

y ` c

1

ptq “ m :“ xµ

0

,

id

y ` c

1

p0q

Remark

The boundary condition is : flux at 0 = dimerization rate

(18)

Numerical illustration : SBD to LS

§

apxq ” 1, bpxq “ x,

§

Incoming charcateristics.

§

Video

0.0 0.5 1.0 1.5 2.0

Time 0.00.5

1.01.5 2.02.5 3.03.5 4.0

(Rescaled)Number Number of free particlecε1(t)andc1(t)

0.0 0.5 1.0 1.5 2.0

Time 0

2 4 6 8 10 12

(Rescaled)Number Number of clustershµεt,1iandhµt,1i

ε= 10−2 ε= 10−3 ε= 5·10−4 Deterministic

(19)

Numerical illustration : verifying the time-scale

101 102 103 104 105 106 107 108 109 M

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time/ M

First Passage TimeT1,0M ,M

104 105 106 107

M 01

23 45 67 8

Time/ M

First Passage TimeTρ,hM ,M,ρ= 0.01,h= 0.5

(20)

Numerical illustration and further work

§

apxq ” x, bpxq “ 1,

§

outgoing charcateristics.

§

Video : Metastability

0 50 100 150 200 250 300 350 400

Time 0.00.5

1.01.5 2.02.5 3.03.5

Number

Number of free particlecε1(t),ε= 0.04

0 500 1000 1500 2000 2500 3000

Time 0.00.5

1.01.5 2.02.5 3.03.5

Number

Number of free particlecε1(t),ε= 0.025

102 103 104 105

M= 3/ε2 100

101 102 103 104 105 106 107 108

Time

First Passage TimeT0

(21)

Merci !

§

First passage times in homogeneous nucleation and self-assembly,

R.Y., Maria D’Orsogna and Tom Chou

(Journal of Chemical Physics (2012) 137 :244107)

§

From a stochastic Becker-D¨ oring model to the

Lifschitz-Slyozov equation with boundary value,

Julien Deschamps, Erwan Hingant and R.Y.,

arXiv :1412.5025 (2014)

(22)

Consider a sequence ofp˜aiεq,p˜biεq,pC˜iεp0qq,pM˜εq. LetpC˜iεptqqbe the corresponding solution and define (supposeaε1,b2ε,aε,bε and

C1εp0q, µεp0,dxqconverges in an appropriate sense)

aεi :“ εA˜aεi , @iě2, bεi :“ εBiε, @iě3, aε1 :“ εA1˜aε1,

bε2 :“ εB12ε.

χεi :“ 1rpi´1{2qεβ,pi`1{2qεq, aεpxq :“ ÿ

iě2

aεiχεipxq,

bεpxq :“ ÿ

iě3

bεiχεipxq.

We then define the variables

Ciε “ εαiε,@i ě2, C1ε “ εθ1ε.

µεpt,dxq “ ÿ

iě2

Ciεptqδβpdxq, Mε “ εα`βε.

The above results hold with the following choices

θ “ α`β , A “ ´α , B “ β ,

A1 “ ´α´2β , B1 “ 0,

aεi „ aiεraβ,@i ě2 biε „ biεrbβ,@iě2,

0 ď minpra,rbq ă1.

(23)

Concrete Example

Consider a sequence of p˜ a

εi

q, p b ˜

εi

q, p C ˜

iε

p0qq, p M ˜

ε

q. Let p C ˜

iε

ptqq be the corresponding solution and define (suppose a

ε1

, b

ε2

, a

ε

, b

ε

and C

1ε

p0q, µ

ε

p0, dxq converges in an appropriate sense)

a

ε

pxq :“ 1 ε

ÿ

iě2

˜

a

εi

χ

εi

pxq , b

ε

pxq :“ ε

ÿ

iě3

˜ b

iε

χ

εi

pxq .

a

ε1

:“ 1 ε

3

˜ a

ε1

, b

ε2

:“ b ˜

ε2

,

˜

a

εi

„ a

i

ε

1`ra

,

b ˜

εi

„ b

i

ε

rb´1

, minpr

a

, r

b

q ă 1 . We then define the variables

C

1ε

“ ε

2

C ˜

1ε

, µ

ε

pt, dx q “ ε

ÿ

iě2

C ˜

iε

ptqδ

iεβ

pdx q .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to